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Large Teams of Small Robots

Small and inexpensive robots

 
● Limited Memory
● Limited Visibility
● No identifiers

 
● Inability to communicate
● Inability to measure (accurately)
● Not possible to leave marks

Limitations 
of 

Robots 

Distributed
 Tasks 

Are we forgetting something?
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Moving & Computing consumes Energy

● Moving consumes more energy than computing!
● Small robots cannot have a large Fuel-Tank or Battery!
● Robots cannot refuel or recharge while moving!

Our Assumption: 
[ Energy bound = B ]   => At most B moves per robot.

When a robot runs out of battery it dies!  

Limited 
Energy 

Distributed
 Tasks 
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The Model

● Environment: Connected graph G.

● Nodes are identical, edges are locally ordered.

● The robots are numbered 1,2,3 ... k

● Robots have internal memory.

● Local Visibility

● Communication:

– Local : Face to face

– Global : Wireless. 

● Each robot can traverse at most B edges.
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The Problems

● Data Transfer

– One source to one target

– Many to one (Convergecast)

– One to Many (Broadcast)

● Exploration / Search

● Map Construction

● Rendezvous 

● Pattern Formation
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Optimization of Energy

● Total Energy Consumption 

 ( Total Movements / Time)
 

● B : Maximum Energy used by a Robot 

 (For fixed number of robots: k)

● k : Number of Robots used

 (For fixed energy bound B)
 

● Bi-criteria Optimization

● Time versus Energy tradeoff

OUR 
OBJECTIVE

PREVIOUS
RESULTS

FUTURE
WORK
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Prior Knowledge

OFFLINE

● With Global Knowledge

 (Global Communication between robots)

Optimize actual cost!

ONLINE

● Without Prior Knowledge

 (Local Communication between robots)

Optimize Competitive Ratio!
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A simple Problem : Pizza Delivery

● Single source to single target

● Many robots (scattered among nodes of G)

S

T
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A simple Problem : Pizza Delivery

● Pizza must travel on some S-T path.

● Each robot pushes pizza on a continuous part of this path. 

S

T
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A simple Problem : Pizza Delivery

● Pizza must travel on some S-T path.

● Each robot pushes pizza on a continuous part of this path. 

S T

Order on Robots   =>  Strategy for Delivery
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Pizza Delivery is NP-complete

● By a reduction from 3-PARTITION Problem  [ALGOSENSORS 2013]
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Pizza Delivery on a Line

● Pizza Delivery on a line is poly-time solvable.

● If each robot is already on the line and has same energy B. 

S T

If robots have arbitrary energy levels (B1,B2,B3,B4 ...)

● Pizza-Delivery on a line is (weakly) NP-hard !
● Reduction from Weighted-4-partition problem. 

[Chalopin et al. ICALP 2014]
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Pizza Delivery on a Tree

● Pizza Delivery on a tree is NP-hard.

● Even if each robot start with same energy B. 

S T
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Algorithms for Pizza Delivery

Necessary Condition:

S T

B
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Algorithms for Pizza Delivery

Necessary Condition:

● There exists a S-T path in the intersection graph.

S T
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Algorithms for Pizza Delivery

If there exists a S-T path in the intersection graph,

=> there is poly-time algorithm using 3B energy per robot. 

S T
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2-Approx. Algorithm

● Suppose there is a robot at S.

● Each robot can carry to neighboring robot using 2B energy.

● Guess the first robot r(i) in the optimal strategy.

● Place r(i) at S with reduced energy (smaller ball).

TS
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Robots in Continuous Space

Open Question:

● How to solve Pizza-delivery in 2D plane?

  When each robot can move an Euclidean distance of at most B.

TS
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Robot to Robot Data-Transfer

● Each robot carries some data.

● Robots can exchange information on meeting at a node.

● Problems studied:

– Convergecast (many to one)

– Broadcast (one to many)
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Robot to Robot Data-Transfer

Results:  [Anaya et al. 2012]

● OFFLINE

– Convergecast and Broadcast are NP-hard in Trees

– 2-approximation algorithm for any graph (Convergecast)

– 4-approximation algorithm for any graph (Broadcast)

● ONLINE

– 2-competitive algorithm (Convergecast)

– 4-competitive algorithm (Broadcast)

– No (2-ε) competitive algorithm is possible. 
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Robots moving on Polygon

● Robots occupy vertices of polygon

● Can move to any visible vertex

● At most B moves per robot
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Robots moving on Polygon

● Robots occupy vertices of polygon

● Can move to any visible vertex

● At most B moves per robot

Problems studied:
● Rendezvous

● Gather in one vertex

● CONNECTED
● Form a connected configuration

● CLIQUE
● Place robots on a k-clique
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Robots moving on Polygon

Results: [Bilo et al. 2013]

OFFLINE Optimization

● Rendezvous

– O(mn) time to compute

● CONNECTED

– NP hard to compute optimal strategy

– APX-hard (for Euclidean distance)

● CLIQUE

– NP hard to compute optimal strategy

– No (1.5 – ε) approximation algorithm
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Global Knowledge

OFFLINE

● With Global Knowledge

 (Global Communication between robots)

Optimize actual cost!

ONLINE

● Without Prior Knowledge

 (Local Communication between robots)

Optimize Competitive Ratio!



MAC-GRASTA 2015 (Montreal) 

Exploration Problem

 < B
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Exploration of Known Trees

 Instance: An undirected tree T = (V,E) , |V | = n , a fixed node r ∈ V  , an 
integer k > 0

 Solution: tours C_1, C_2, . . . C_k , where U C_i = E  and each tour contains

the node r.

 Goal: Minimize B = max{|Ci| : i = 1, . . .k}

Computing Optimal offline exploration is NP-hard!   
[Fraigniaud et al. 2006]

Reduction from 
3-PARTITION Problem
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Online Exploration

● The offline version of the problem is NP-hard, even for trees.

● We consider the online exploration problem for Trees.

● For any tree T and starting vertex r,

– Let Cost(T,r) be cost of our online exploration algorithm

– Let OPT(T,r) be cost of optimal offline algorithm 

● Competitive Ratio =  MAX ( Cost(T,r) / OPT(T,r) )
(all T,r)
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Online Tree Exploration

● The tree T is unknown, except for starting vertex r.

● For a team of k agents, minimize B   [Dynia et al. 06]

– 2-approximation algorithm  (Offline version)

– Competitive ratio of 8  (Online version)

– Lower bound of 1.5

● For robots of fixed energy B, minimize team-size k  [ThisTalk]

– Algorithm using O(log B).OPT agents (Local communication)

– Lower bound of Ω(log B).OPT agents 



MAC-GRASTA 2015 (Montreal) 

Height of the Tree

● If the height of the tree (from r) is more than B it cannot be fully 
explored!

● We assume that the height of the tree is at most B-1.

B
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Lower Bound

(1) If there is no communication 
between r and depth D-1

– Algorithm sends x agents.

– Algorithm fails if x+1 leaves

(2) If there is communication 
between r and depth D-1

– If D=B-1, at least (log B) agents 
needed for communication

– If only one leaf, then competitive 
ratio = log B

D

Any online algorithm has competitive ratio of Ω( log B)
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Our Algorithm

● Recursive Algorithm

● Explore up to depth (ε.B)

● For each node at next level, 
recursively call the algorithm

● Number of levels = log
(1/1-ε)

 B

(We try to use no more than OPT 
agents for each level)

ε.B

ε.B
1

0 < ε < 1/4
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The Look-ahead

● For each level i, explore beyond 
the next level (i+1)

● Overlap of depth = 1/2 B_i 

● For each node at level (i+1), the 
algorithm is called only if there 
are unexplored nodes in the sub-
tree.

(1/2+ε)B

Two sub-trees at the same level are 
independent!

(No agent can go from unexplored 
part of one subtree to unexplored 
part of the other subtree)
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Exploring a sub-tree

● Perform DFS restricted to depth 
d_i

● If an agent runs out of energy, the 
next agent from the root, arrives 
to continue with the exploration.

● Each agent saves x(b)= (1/2-ε)b/2 
units of energy for later use.

Note:
We assume Global communication.
We will later remove this assumption.
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Cost of the Algorithm

● Each agent uses at least (1/2-ε)b/2 units of energy for 
exploring new nodes.

● For k agents, we have 

k . (1/2-� )b/2  >  2.|T|  > 2 . OPT . b

● If the subtrees at a level are independent, we can add 
the costs.

● Thus, the total number of agent used at each level is a 
constant times the optimal number of agents for the 
whole tree. 

● Cost of the algorithm = O(log B) . OPT
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From Global to Local Communication

● Each agent A needs a constant number (m<4) of 
helper agents.

● The first helper A1 goes halfway with agent A and 
waits, the second helper A2 goes half of the remaining 
depth and waits, and so on.

● When agent A runs out of energy, it uses the saved 
energy to move towards to the last helper agent A_m. 

● The information is propagated to the root of the 
subtree. 

● So we have a competitive ratio of O(log B) even for 
the local communication model.
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Conclusions

● We presented an algorithm for exploring an unknown tree 
with multiple agents, each having limited energy B.

● The number of agents used by the algorithm is O(log B) 
times the optimal offline algorithm. This result is 
asymptotically tight.

● The competitive ratio is independent of the size of the tree 
(and depends only on the height or the energy limit).

● Our algorithm can explore trees of height at most B, while the 
algorithm for single agent with refuelling can only explore 
trees of depth B/2.
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Open Problems

● How to explore general graphs with energy-constrained robots? 
What is the competitive ratio in that case?

● What if the robots are allowed to exchange energy (i.e. If a 
robot can give its remaining energy to recharge another robot)?

● What is the competitive ratio of exploration with global 
communication?

● If the graph/tree is large, how many nodes can be explored by 
an online algorithm compared to the optimal offline algorithm? 
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THANK YOU!

MERCI


