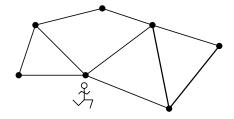
Anonymous Graph Exploration with Binoculars

Jérémie Chalopin Emmanuel Godard Antoine Naudin

LIF, CNRS & Aix-Marseille Université

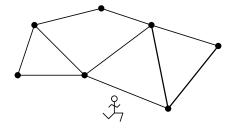
GRASTA-MAC 2015

Graph Exploration



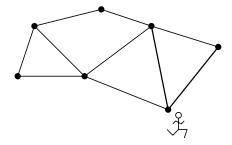
- An agent is moving along the edges of a graph
- Goal : visit all the nodes and stop

Graph Exploration



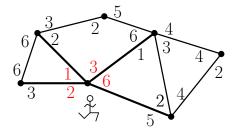
- An agent is moving along the edges of a graph
- Goal : visit all the nodes and stop

Graph Exploration



- An agent is moving along the edges of a graph
- Goal : visit all the nodes and stop

How to navigate in the graph?



- Anonymous graph
- Port-numbering
- The agent knows its incoming port number
- It has an infinite memory

Exploration without information

Exploration of a graph G

Visit every node of G and stop

Question

What graphs can we explore without information?

Exploration without information

Exploration of a graph G

Visit every node of G and stop

Question

What graphs can we explore without information?

An algorithm \mathcal{A} is an exploration algorithm

▶ for every graph G, if A stops, then the agent has visited all the nodes of G

Exploration without information

Exploration of a graph G

Visit every node of G and stop

Question

What graphs can we explore without information?

An algorithm \mathcal{A} is an exploration algorithm for a family \mathcal{F}

- ▶ for every graph G, if A stops, then the agent has visited all the nodes of G
- ▶ for every graph $G \in \mathcal{F}$, \mathcal{A} visits all nodes of G and stops

Known Results [Folklore]

If nodes can be marked :

• every graph is explorable by a DFS in O(m) moves

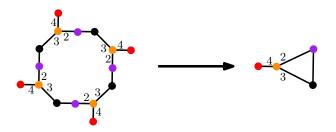
If nodes cannot be marked :

- Trees can be explored by a DFS in O(n) moves
- Non tree graphs : it is impossible to detect when all nodes have been visited

Graph Coverings

Definition

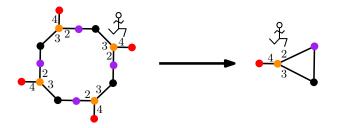
A graph covering is a locally bijective homomorphism $\varphi: G \rightarrow H$



Lifting Lemma

Lifting Lemma (from Angluin)

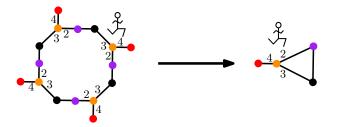
If G is a graph cover of H, then an agent cannot decide if it starts on $v \in V(G)$ or on $\varphi(v) \in V(H)$



Lifting Lemma

Lifting Lemma (from Angluin)

If G is a graph cover of H, then an agent cannot decide if it starts on $v \in V(G)$ or on $\varphi(v) \in V(H)$



Corollary

If an exploration algorithm \mathcal{A} stops in r steps in H, $r \geq |V(G)|$

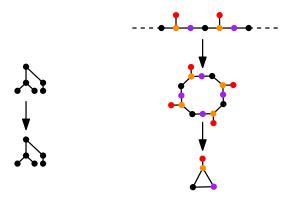
GRASTA-MAC 2015

Anonymous Graph Exploration with Binoculars

Explorable graphs without global information

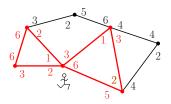
G is explorable

- \iff G has a unique graph cover (itself)
- \iff *G* has no infinite graph cover
- \iff *G* is a tree



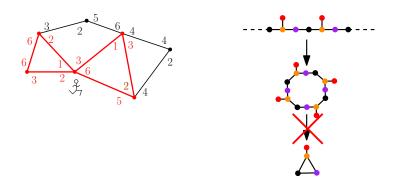
Our model : Mobile Agent with Binoculars

the agent sees the graph induced by its neighbors



Our model : Mobile Agent with Binoculars

- the agent sees the graph induced by its neighbors
- One can detect triangles
- Graph coverings are no longer the good notion



What can we do with binoculars?

- Can we explore every graph?
 - ► NO

Cycles of length \geq 4 cannot be explored

What can we do with binoculars?

- Can we explore every graph?
 - NO Cycles of length ≥ 4 cannot be explored
- Can we characterize explorable graphs?
 - YES
 - using clique complexes and simplicial coverings
 - a universal exploration algorithm

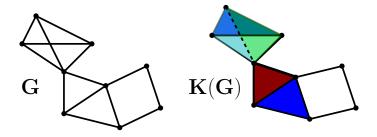
What can we do with binoculars?

- Can we explore every graph?
 - NO Cycles of length ≥ 4 cannot be explored
- Can we characterize explorable graphs?
 - YES
 - using clique complexes and simplicial coverings
 - a universal exploration algorithm
- Can we find an efficient universal algorithm for explorable graphs?
 - NO
 - the exploration time cannot be bounded by a computable function

Clique complexes

Definition

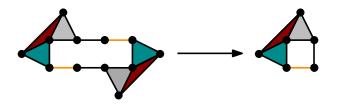
The clique complex K(G) of G is a simplicial complex s.t. the simplices of K(G) are the cliques of G



Simplicial coverings

Definition

A simplicial covering is a locally bijective simplicial map $\psi: \mathcal{K} \to \mathcal{K}'$

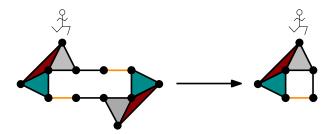


If K(G) is a simplicial cover of K(H), we say that G is a simplicial cover of H

Simplicial Lifting Lemma

Simplicial Lifting Lemma

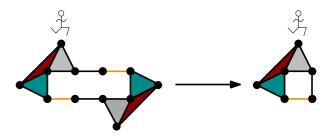
If K(G) is a simplicial cover of K(H), then an agent cannot decide if it starts on $v \in V(G)$ or on $\varphi(v) \in V(H)$



Simplicial Lifting Lemma

Simplicial Lifting Lemma

If K(G) is a simplicial cover of K(H), then an agent cannot decide if it starts on $v \in V(G)$ or on $\varphi(v) \in V(H)$



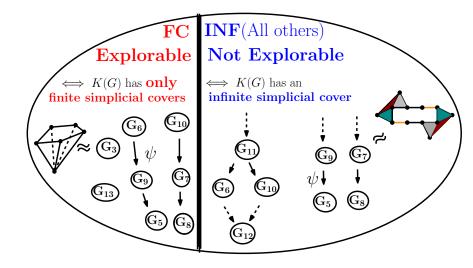
Corollary

If an exploration algorithm A stops in r steps in H, $r \ge |V(G)|$

GRASTA-MAC 2015

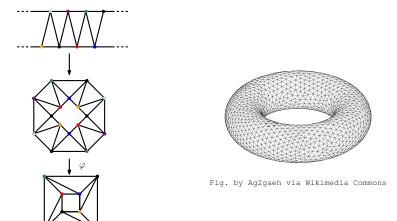
Anonymous Graph Exploration with Binoculars

Exploration with binoculars : Characterization



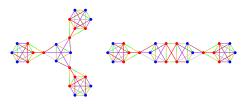
Examples

INF : K(G) has an infinite simplicial cover



Examples

SC : K(G) has a unique cover (itself)



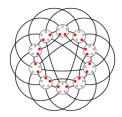
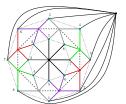
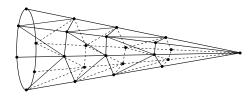


Fig. by Tilman Piesk via Wikimedia Commons

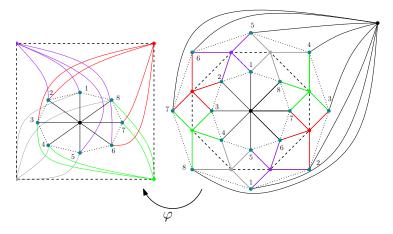




Examples

FC: K(G) has only finite covers

- in this case, K(G) has a finite number of covers
- ► SC \subsetneq FC



How to distinguish the two classes?

- ▶ INF : {*G* | *K*(*G*) has an infinite simplicial cover}
- FC : $\{G \mid K(G) \text{ has only finite simplicial covers}\}$
- SC : $\{G \mid K(G) \text{ has a unique finite simplicial cover}\}$

Proposition (from Topology)

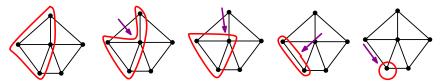
G is in FC \iff G has a finite simplicial cover in SC

Theorem (from Topology)

G is in SC $\iff K(G)$ is simply connected

Contractible Cycles

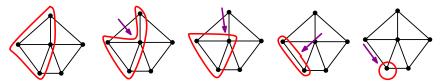
- a cycle is contractible if it is related with the empty cycle (a vertex) by a sequence s of elementary deformations :
 - Pushing across a triangle
 - Pushing across an isolated vertex



• c is k-contractible if $|s| \le k$

Contractible Cycles

- a cycle is contractible if it is related with the empty cycle (a vertex) by a sequence s of elementary deformations :
 - Pushing across a triangle
 - Pushing across an isolated vertex



• c is k-contractible if $|s| \le k$

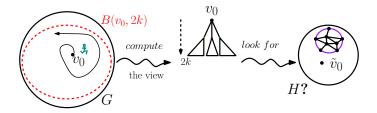
Simple Connectivity

K(G) is simply connected

- \implies all cycles of *G* are contractible
- $\implies K(G)$ has a unique simplicial cover

Our Exploration Algorithm

Explore $B(v_0, 2k)$ by computing the view $\mathcal{T}_G(v_0, 2k)$



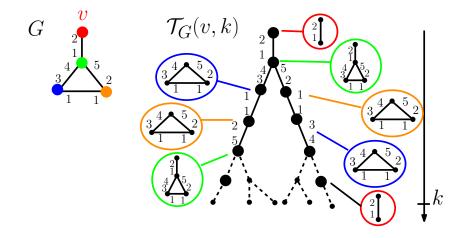
Look for a graph H such that

- $|V(H)| \leq k$
- ► $\exists \tilde{v}_0 \in V(H)$ s.t. $\mathcal{T}_H(\tilde{v}_0, 2k) \simeq \mathcal{T}_G(v_0, 2k)$
- simple cycles of *H* are k-contractible

If there is no such H, increment k and repeat the procedure

Views

We compute the view $T_G(v)$ of v in G where every node u is labeled with $B_G(u, 1)$



Correctness of the algorithm

When the algorithm stops

- $B_G(v_0, 2k)$ explored
- ► $\exists H$ is found s.t.
 - |V(H)| < k
 - ► $\exists \tilde{v}_0 \in V(H)$ s.t. $\mathcal{T}_H(\tilde{v}_0, 2k) \simeq \mathcal{T}_G(v_0, 2k)$
 - simple cycles of H are k-contractible

Lemma

K(H) is a simplicial cover of K(G)

Correctness

- coverings are surjective : $|V(G)| \le |V(H)| < k$
- all nodes of G have been visited
- we have an Exploration Algorithm

For $G \in FC$, consider a simplicial cover \widehat{G} of G such that $K(\widehat{G})$ is simply connected

- Ĝ is finite
- ▶ there exists $s(\hat{G})$ s.t. all cycles of \hat{G} are $s(\hat{G})$ -contractible
- If k ≥ |V(G)| and k ≥ s(G), then G satisfies the halting conditions

Theorem

Our algorithm is an Exploration Algorithm for FC

Lower bound for the exploration with binoculars

Our algorithm seems to be terribly inefficient but ...

Theorem

For any Exploration Algorithm \mathcal{A} for SC, for any computable function $f : \mathbb{N} \to \mathbb{N}$, there exists $G \in SC$ such that \mathcal{A} performs strictly more than f(|V(G)|) moves on G

By a reduction from the following problem that is undecidable [Haken, 1973]

- INPUT : A finite simplicial complex K
- QUESTION : Is K simply connected ?

Conclusion

Summary

- Binoculars are a natural and interesting enhancement
- A large class of explorable graphs
 - Triangulations of the sphere , Chordal graphs, Planar triangulation of the projective plane, ...
- An amazing but unavoidable complexity

Conclusion

Summary

- Binoculars are a natural and interesting enhancement
- A large class of explorable graphs
 - Triangulations of the sphere , Chordal graphs, Planar triangulation of the projective plane, ...
- An amazing but unavoidable complexity

Perspectives

- What happens if we enlarge the vision of the agent?
 - we believe the results would be qualitatively the same
- Find large subclasses that can be explored more efficiently (with a linear or polynomial number of moves)