
Further Connections between Contract-Scheduling
and Ray-Searching Problems

Spyros Angelopoulos

CNRS and University Pierre and Marie Curie

Friday, October 23, 15

Outline and motivation

Friday, October 23, 15

Outline and motivation

 Two well-studied problems:
 one from OR/TCS, the other from AI

Friday, October 23, 15

Outline and motivation

 Two well-studied problems:
 one from OR/TCS, the other from AI

 The first problem: searching on a star
 (unbounded domain)

Friday, October 23, 15

Outline and motivation

 Two well-studied problems:
 one from OR/TCS, the other from AI

 The first problem: searching on a star
 (unbounded domain)

 The second problem: how to obtain
 efficient anytime algorithms

Friday, October 23, 15

Outline and motivation

 Two well-studied problems:
 one from OR/TCS, the other from AI

 The first problem: searching on a star
 (unbounded domain)

 The second problem: how to obtain
 efficient anytime algorithms

 Objective: address variants of these
 problems with a common approach

Friday, October 23, 15

Outline and motivation

 Two well-studied problems:
 one from OR/TCS, the other from AI

 The first problem: searching on a star
 (unbounded domain)

 The second problem: how to obtain
 efficient anytime algorithms

 Objective: address variants of these
 problems with a common approach

Friday, October 23, 15

Outline and motivation

 Two well-studied problems:
 one from OR/TCS, the other from AI

 The first problem: searching on a star
 (unbounded domain)

 The second problem: how to obtain
 efficient anytime algorithms

 Objective: address variants of these
 problems with a common approach

Friday, October 23, 15

Outline and motivation

 Two well-studied problems:
 one from OR/TCS, the other from AI

 The first problem: searching on a star
 (unbounded domain)

 The second problem: how to obtain
 efficient anytime algorithms

 Objective: address variants of these
 problems with a common approach

Robots in this presentation
 are benign!*

*certain conditions may apply

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Friday, October 23, 15

The first problem: Ray searching

Performance evaluation: Competitive ratio

Friday, October 23, 15

The first problem: Ray searching

Performance evaluation: Competitive ratio

↵ = sup

total distance to find

distance of from origin

Friday, October 23, 15

The first problem: Ray searching

Performance evaluation: Competitive ratio

↵ = sup

total distance to find

distance of from origin

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

.
time

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

interruption at time t

.
time

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

interruption at time t

.
time

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

interruption at time t

.
time

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

interruption at time t
 contract execution
 of worst progress

.
time

Friday, October 23, 15

The second problem: Scheduling contract algorithms

Contract algorithms
 execution time given as input
 may return non-meaningful

 solutions if interrupted

Interruptible algorithms
 may be interrupted at will
 always return meaningful

 solutions (improving with time)

[Russell and Zilberstein 1991]: Interruptible algorithms via
 schedules of executions of contract algorithms

interruption at time t
 contract execution
 of worst progress

Performance evaluation: Acceleration ratio

.
time

� = sup

t

interruption time t

length of

Friday, October 23, 15

Some related previous work

Ray searching
m rays

Contract scheduling
n problems

 Early work by Bellman, Beck and
 Newman for m = 2

 Optimal strategies by [Gal 74]

 Re-discovered in CS context
 [Baeza-Yates et al. 93]

 Several other settings:
Randomization [Kao et al. 96]
Multiple searchers [Lopez-
Ortiz and Schuierer 04]
Turn cost [Demaine et al. 06],
 [A. et al. 14+]
New measures [Kirkpatrick 09]

 [Russell and Zilberstein 91]: n = 1

 [Zilberstein et al. 03]: , multiple
 processors

n = 1

 [Bernstein et al. 02]: general n

 [Bernstein et al. 03], [Lopez-Ortiz et al. 06]
 general n, multiple processors

 [A. and Lopez-Ortiz 08]: soft interruptions

 [A. and Lopez-Ortiz 09]: new measures

Friday, October 23, 15

Some related previous work

Ray searching
m rays

Contract scheduling
n problems

 Early work by Bellman, Beck and
 Newman for m = 2

 Optimal strategies by [Gal 74]

 Re-discovered in CS context
 [Baeza-Yates et al. 93]

 Several other settings:
Randomization [Kao et al. 96]
Multiple searchers [Lopez-
Ortiz and Schuierer 04]
Turn cost [Demaine et al. 06],
 [A. et al. 14+]
New measures [Kirkpatrick 09]

 [Russell and Zilberstein 91]: n = 1

 [Zilberstein et al. 03]: , multiple
 processors

n = 1

 [Bernstein et al. 02]: general n

 [Bernstein et al. 03], [Lopez-Ortiz et al. 06]
 general n, multiple processors

 [A. and Lopez-Ortiz 08]: soft interruptions

 [A. and Lopez-Ortiz 09]: new measures

[Bernstein et al. 03]: Connections between cyclic strategies
for the two problems

Friday, October 23, 15

Results

Friday, October 23, 15

Results

Ray searching
m rays

Contract scheduling
n problems

Friday, October 23, 15

Results

Ray searching
m rays

Contract scheduling
n problems

Stochastic
setting

Setting: Target detection
with probability

Results: Strategy with
competitive ratio
 +
No strategy is better than
 -competitive

p

⇥(m/p2)

Setting: Contracts are
Monte Carlo algorithms
with success prob.

Results: Schedule with
accel. ratio
 +
No schedule better than
 - acceleration

p

n/p

(e(n+ 1))/p

m/(2p)

Friday, October 23, 15

Results

Ray searching
m rays

Contract scheduling
n problems

Stochastic
setting

Fault
tolerance /
redundancy

Setting: Target detection
with probability

Results: Strategy with
competitive ratio
 +
No strategy is better than
 -competitive

p

⇥(m/p2)

Setting: Contracts are
Monte Carlo algorithms
with success prob.

Results: Schedule with
accel. ratio
 +
No schedule better than
 - acceleration

p

n/p

(e(n+ 1))/p

Setting: Target detection
on the -th visitr

Results: Strategy with
competitive ratio

+ no strategy better than
 -competitive

r(n+ 1)

✓
1 +

1

rn

◆rn

Setting: Output the
 -th smallest contractr

Results: Strategy with
acceleration ratio

+ no strategy better than
 -competitive

r(m� 1)

✓
m

m� 1

◆m

+ 2� r

rm/2 rn

m/(2p)

Friday, October 23, 15

Results

Ray searching
m rays

Contract scheduling
n problems

Stochastic
setting

Fault
tolerance /
redundancy

Methodology

Setting: Target detection
with probability

Results: Strategy with
competitive ratio
 +
No strategy is better than
 -competitive

p

⇥(m/p2)

Setting: Contracts are
Monte Carlo algorithms
with success prob.

Results: Schedule with
accel. ratio
 +
No schedule better than
 - acceleration

p

n/p

(e(n+ 1))/p

Setting: Target detection
on the -th visitr

Results: Strategy with
competitive ratio

+ no strategy better than
 -competitive

r(n+ 1)

✓
1 +

1

rn

◆rn

Setting: Output the
 -th smallest contractr

Results: Strategy with
acceleration ratio

+ no strategy better than
 -competitive

r(m� 1)

✓
m

m� 1

◆m

+ 2� r

rm/2 rn

Non-trivial analysis
 of cyclic strategies

Non-cyclic strategies
that improve upon
the best cyclic ones

m/(2p)

Friday, October 23, 15

Results (continued)

Friday, October 23, 15

Results (continued)

Ray searching
m rays

Contract scheduling
n problems

Randomized
scheduling

Known: Randomization
helps improve the
competitive ratio

[Kao et al. 96]

Result: Randomized
schedule of acceleration

ratio about 0.6 times
the

deterministic
acceleration ratio

Friday, October 23, 15

Results (continued)

Ray searching
m rays

Contract scheduling
n problems

Randomized
scheduling

Trade offs
between

performance
and turns /
executions

Known: Randomization
helps improve the
competitive ratio

[Kao et al. 96]

Result: Randomized
schedule of acceleration

ratio about 0.6 times
the

deterministic
acceleration ratio

Setting: we are interested
in the # of turns

Results: Optimal trade-
offs between competitive
ratio and # of turns

Setting: we are interested
in the # of executions

Results: Optimal trade-
offs between acceleration
ratio and # of executions

Friday, October 23, 15

Results (continued)

Ray searching
m rays

Contract scheduling
n problems

Randomized
scheduling

Trade offs
between

performance
and turns /
executions

Methodology

Known: Randomization
helps improve the
competitive ratio

[Kao et al. 96]

Result: Randomized
schedule of acceleration

ratio about 0.6 times
the

deterministic
acceleration ratio

Setting: we are interested
in the # of turns

Results: Optimal trade-
offs between competitive
ratio and # of turns

Setting: we are interested
in the # of executions

Results: Optimal trade-
offs between acceleration
ratio and # of executions

Similar strategies but
different analysis (no

closed form in the
case of contract

scheduling)

Combination of
uniform and
exponentially

increasing strategies

Friday, October 23, 15

The stochastic setting

Friday, October 23, 15

The stochastic setting

 Easy bound of ⌦(m/p)

Friday, October 23, 15

The stochastic setting

 Easy bound of ⌦(m/p)

 We analyze a round-robing strategy: search with lengths x1, x2, . . .

Friday, October 23, 15

The stochastic setting

 Easy bound of ⌦(m/p)

 We analyze a round-robing strategy: search with lengths x1, x2, . . .

1. Upper bound the expected cost of the strategy

 (we get an expression that contains the ’s and xi p

Friday, October 23, 15

The stochastic setting

 Easy bound of ⌦(m/p)

 We analyze a round-robing strategy: search with lengths x1, x2, . . .

1. Upper bound the expected cost of the strategy

 (we get an expression that contains the ’s and

2. Assume exponential strategies: for fixed
 In the resulting expression, there is a term of the form

xi p

xi = b

i b > 1 1X

j=2

((bm(1� p))j�1

Friday, October 23, 15

The stochastic setting

 Easy bound of ⌦(m/p)

 We analyze a round-robing strategy: search with lengths x1, x2, . . .

1. Upper bound the expected cost of the strategy

 (we get an expression that contains the ’s and

2. Assume exponential strategies: for fixed
 In the resulting expression, there is a term of the form

xi p

xi = b

i b > 1 1X

j=2

((bm(1� p))j�1

3. Setting and requiring that we obtain � := bm(1� p) � < 1

↵ 1 + 2
bm

bm � 1
· 1

1� �

Friday, October 23, 15

The stochastic setting

 Easy bound of ⌦(m/p)

 We analyze a round-robing strategy: search with lengths x1, x2, . . .

1. Upper bound the expected cost of the strategy

 (we get an expression that contains the ’s and

2. Assume exponential strategies: for fixed
 In the resulting expression, there is a term of the form

xi p

xi = b

i b > 1 1X

j=2

((bm(1� p))j�1

3. Setting and requiring that we obtain � := bm(1� p) � < 1

↵ 1 + 2
bm

bm � 1
· 1

1� �

4. Applying some calculus we show that ↵ 1 + 8m/p2

Friday, October 23, 15

Randomized scheduling of contract algorithms

Friday, October 23, 15

Randomized scheduling of contract algorithms

Algorithm

1. Choose a random permutation of
 the n problems and random ✏ 2 (0, 1)

2. In the i-th step schedule a contract for
 problem and of length i mod n bi+✏

Friday, October 23, 15

Randomized scheduling of contract algorithms

Algorithm

1. Choose a random permutation of
 the n problems and random ✏ 2 (0, 1)

2. In the i-th step schedule a contract for
 problem and of length i mod n bi+✏

Inspired by the randomized
ray-searching algorithm of

[Kao et al. 95]

Friday, October 23, 15

Randomized scheduling of contract algorithms

Algorithm

1. Choose a random permutation of
 the n problems and random ✏ 2 (0, 1)

2. In the i-th step schedule a contract for
 problem and of length i mod n bi+✏

Inspired by the randomized
ray-searching algorithm of

[Kao et al. 95]

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80

randomized
deterministic

140

120

100

80

60

40

20

20 40 60 8070503010

Randomized

Deterministic no

0 0

Figure 1: Plots of the randomized (�⇤
r

(n)) and the determin-
istic (�⇤

(n)) acceleration ratios, as functions of n.

6 Trade-offs between performance and

executions of searches/algorithms

Most previous work on ray searching assumes that the
searcher can switch directions at no cost. In practice, turn-
ing is a costly operation in robotics, and thus should not
be ignored. In a similar vein, we usually assume that there
is no setup cost upon execution of a contract algorithm,
however some initialization cost may be incurred in prac-
tice. One could address this requirement by incorporating
the turn/setup cost in the performance evaluation (see [De-
maine et al., 2006] for ray searching with turn cost). In this
section we follow a different approach by studying the trade-
off between performance and the number of searches and/or
executions of algorithms.

We will make a distinction between two possible settings.
In the first setting, we use the standard definitions of search
and scheduling as given in Section 1. Specifically, we address
the question: Given a target at distance t (resp. an interruption
t) what is the minimum number of turns (resp. executions of
contracts) so as to guarantee a certain competitive ratio (resp.
acceleration ratio)? We call this the standard model.

The second setting is motivated by applications in which
searching previously explored territory comes at no cost. One
such example is the expanding search paradigm [Alpern and
Lidbetter, 2013]. Another example is parallel linear searching
on arrays modeled as ray searching [Kirkpatrick, 2009], in
which the searcher can “jump” to the last-explored position.

While the latter setting does not have a true counterpart
in the realm of contract scheduling, it still gives rise to a
scheduling problem. Suppose we have n problems, each with
its own statement of an interruptible algorithm (as opposed
to a contract algorithm). In addition, we allow the use of pre-
emptions, in that we can preempt, and later resume the execu-
tion of an algorithm. In this context, we face the scheduling
problem of interleaving the executions of interruptible algo-
rithms. Note that we can still use the acceleration ratio, given
by (3)) as the performance measure, with the notable differ-
ence that here `

i,t

denotes the total (aggregate) time of algo-
rithm executions for problem i, by time t. We call the above
model the preemptive model.

Due to space limitations, we only present results on the

scheduling problems. We emphasize that similar results can
be obtained for ray searching, with only minor modifications.

6.1 Trade offs in the preemptive model

We consider first the problem of scheduling interleaved exe-
cutions of interruptible algorithms. Clearly, the optimal ac-
celeration ratio is n: simply assign each time unit uniformly
across all problems, in a round-robin fashion. However, this
optimal strategy results in a linear number of preemptions,
as function of time. We thus consider the following geomet-
ric round-robin strategy, which is a combination of uniform
and exponential strategies. The strategy works in phases;
namely, in phase i (i � 0), it executes algorithms for prob-
lems 0 . . . n�1 with each algorithm allotted a time span equal
to bi, for fixed b > 1 (we will call each algorithm execution
for problem i a job for problem i).
Lemma 11. The geometric strategy has (worst-case) accel-
eration ratio n(b+ 1), asymptotic acceleration ratio nb, and
for any t, the number of preemptions incurred up to t is at
most n log

b

⇣
t(b�1)

n

+ 1

⌘
+ n.

We will now show that the geometric strategy attains es-
sentially the optimal trade-offs.
Theorem 12. For any strategy with (worst-case) accelera-
tion ratio n(1 + b) � ✏ for any b > 1, and constant ✏ > 0,
there exists t such that the number of preemptions up to time
t is at least n log

b

⇣
t(b�1)

n

+ 1

⌘
� n. Moreover, any strategy

with asymptotic acceleration ratio nb(1�✏), for any constant

✏ > 0, incurs n log

b

⇣
t(b�1)

n

+ 1

⌘
�o

⇣
n log

b

⇣
t(b�1)

n

+ 1

⌘⌘

preemptions by time t > t0, for some t0.

Proof. First, suppose, that a strategy S has (worst-case) ac-
celeration ratio � = n(b + 1) � ✏, and incurs fewer than
n log

b

⇣
t(b�1)

n

+ 1

⌘
�n preemptions for any t. We can show

that there exists a strategy S0 of acceleration ratio at least
b(n+1), by considering at interruption at time t = b(n+1).
Moreover, we can show that S0 has at least as good an accel-
eration ratio as S, which is a contradiction.

For the second part of the theorem, fix a strategy S of
asymptotic acceleration ratio � = nb(1 � ✏). Consider a
partition of the timeline in phases, such that the i-th phase
(i � 0) spans the interval [n

P
i�1
j=0 b

j , n
P

i

j=0 b
j

), and thus
has length nbi. We will show that there exists i0 > 0 such that
for all i � i0, S must incur at least n preemptions in its i-th
phase. Since the geometric strategy with base b incurs exactly
n preemptions in this interval, for all i, this will imply that we
can partition the timeline t � i0 in intervals with the property
that in each interval, S incurs at least as many preemptions as
the geometric strategy, which suffices to prove the result.

Suppose, by way of contradiction, that S incurred at most
n � 1 preemptions within T = [n

P
i�1
j=0 b

j , n
P

i

j=0 b
j

].
Therefore, there exists at least one problem p with no execu-
tion in T . Consider an interruption at time t = n

P
i

j=0 b
j��,

for arbitrarily small � > 0. Thus, the aggregate job length for
p by time t in S is `

p,t

 n
P

i�1
j=0 b

j

= n b

i�1
b�1 . Since S

1521

n

�

Friday, October 23, 15

Randomized scheduling of contract algorithms

Algorithm

1. Choose a random permutation of
 the n problems and random ✏ 2 (0, 1)

2. In the i-th step schedule a contract for
 problem and of length i mod n bi+✏

Inspired by the randomized
ray-searching algorithm of

[Kao et al. 95]

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80

randomized
deterministic

140

120

100

80

60

40

20

20 40 60 8070503010

Randomized

Deterministic no

0 0

Figure 1: Plots of the randomized (�⇤
r

(n)) and the determin-
istic (�⇤

(n)) acceleration ratios, as functions of n.

6 Trade-offs between performance and

executions of searches/algorithms

Most previous work on ray searching assumes that the
searcher can switch directions at no cost. In practice, turn-
ing is a costly operation in robotics, and thus should not
be ignored. In a similar vein, we usually assume that there
is no setup cost upon execution of a contract algorithm,
however some initialization cost may be incurred in prac-
tice. One could address this requirement by incorporating
the turn/setup cost in the performance evaluation (see [De-
maine et al., 2006] for ray searching with turn cost). In this
section we follow a different approach by studying the trade-
off between performance and the number of searches and/or
executions of algorithms.

We will make a distinction between two possible settings.
In the first setting, we use the standard definitions of search
and scheduling as given in Section 1. Specifically, we address
the question: Given a target at distance t (resp. an interruption
t) what is the minimum number of turns (resp. executions of
contracts) so as to guarantee a certain competitive ratio (resp.
acceleration ratio)? We call this the standard model.

The second setting is motivated by applications in which
searching previously explored territory comes at no cost. One
such example is the expanding search paradigm [Alpern and
Lidbetter, 2013]. Another example is parallel linear searching
on arrays modeled as ray searching [Kirkpatrick, 2009], in
which the searcher can “jump” to the last-explored position.

While the latter setting does not have a true counterpart
in the realm of contract scheduling, it still gives rise to a
scheduling problem. Suppose we have n problems, each with
its own statement of an interruptible algorithm (as opposed
to a contract algorithm). In addition, we allow the use of pre-
emptions, in that we can preempt, and later resume the execu-
tion of an algorithm. In this context, we face the scheduling
problem of interleaving the executions of interruptible algo-
rithms. Note that we can still use the acceleration ratio, given
by (3)) as the performance measure, with the notable differ-
ence that here `

i,t

denotes the total (aggregate) time of algo-
rithm executions for problem i, by time t. We call the above
model the preemptive model.

Due to space limitations, we only present results on the

scheduling problems. We emphasize that similar results can
be obtained for ray searching, with only minor modifications.

6.1 Trade offs in the preemptive model

We consider first the problem of scheduling interleaved exe-
cutions of interruptible algorithms. Clearly, the optimal ac-
celeration ratio is n: simply assign each time unit uniformly
across all problems, in a round-robin fashion. However, this
optimal strategy results in a linear number of preemptions,
as function of time. We thus consider the following geomet-
ric round-robin strategy, which is a combination of uniform
and exponential strategies. The strategy works in phases;
namely, in phase i (i � 0), it executes algorithms for prob-
lems 0 . . . n�1 with each algorithm allotted a time span equal
to bi, for fixed b > 1 (we will call each algorithm execution
for problem i a job for problem i).
Lemma 11. The geometric strategy has (worst-case) accel-
eration ratio n(b+ 1), asymptotic acceleration ratio nb, and
for any t, the number of preemptions incurred up to t is at
most n log

b

⇣
t(b�1)

n

+ 1

⌘
+ n.

We will now show that the geometric strategy attains es-
sentially the optimal trade-offs.
Theorem 12. For any strategy with (worst-case) accelera-
tion ratio n(1 + b) � ✏ for any b > 1, and constant ✏ > 0,
there exists t such that the number of preemptions up to time
t is at least n log

b

⇣
t(b�1)

n

+ 1

⌘
� n. Moreover, any strategy

with asymptotic acceleration ratio nb(1�✏), for any constant

✏ > 0, incurs n log

b

⇣
t(b�1)

n

+ 1

⌘
�o

⇣
n log

b

⇣
t(b�1)

n

+ 1

⌘⌘

preemptions by time t > t0, for some t0.

Proof. First, suppose, that a strategy S has (worst-case) ac-
celeration ratio � = n(b + 1) � ✏, and incurs fewer than
n log

b

⇣
t(b�1)

n

+ 1

⌘
�n preemptions for any t. We can show

that there exists a strategy S0 of acceleration ratio at least
b(n+1), by considering at interruption at time t = b(n+1).
Moreover, we can show that S0 has at least as good an accel-
eration ratio as S, which is a contradiction.

For the second part of the theorem, fix a strategy S of
asymptotic acceleration ratio � = nb(1 � ✏). Consider a
partition of the timeline in phases, such that the i-th phase
(i � 0) spans the interval [n

P
i�1
j=0 b

j , n
P

i

j=0 b
j

), and thus
has length nbi. We will show that there exists i0 > 0 such that
for all i � i0, S must incur at least n preemptions in its i-th
phase. Since the geometric strategy with base b incurs exactly
n preemptions in this interval, for all i, this will imply that we
can partition the timeline t � i0 in intervals with the property
that in each interval, S incurs at least as many preemptions as
the geometric strategy, which suffices to prove the result.

Suppose, by way of contradiction, that S incurred at most
n � 1 preemptions within T = [n

P
i�1
j=0 b

j , n
P

i

j=0 b
j

].
Therefore, there exists at least one problem p with no execu-
tion in T . Consider an interruption at time t = n

P
i

j=0 b
j��,

for arbitrarily small � > 0. Thus, the aggregate job length for
p by time t in S is `

p,t

 n
P

i�1
j=0 b

j

= n b

i�1
b�1 . Since S

1521

 A closed formula does not appear to exist

 We can give analytical bounds for n ! 1

n

�

Friday, October 23, 15

Tradeoffs between performance and turns/executions

Friday, October 23, 15

Tradeoffs between performance and turns/executions

Ray searching
m rays

Contract scheduling
n problems

Friday, October 23, 15

Tradeoffs between performance and turns/executions

Ray searching
m rays

Contract scheduling
n problems

“Given a target at distance d what is the
minimum number of turns required to
guarantee a certain competitive ratio?”

“Given an interruption at time t what is the
minimum number of contracts required to
guarantee a certain acceleration ratio?”

Friday, October 23, 15

Tradeoffs between performance and turns/executions

Ray searching
m rays

Contract scheduling
n problems

“Given a target at distance d what is the
minimum number of turns required to
guarantee a certain competitive ratio?”

“Given an interruption at time t what is the
minimum number of contracts required to
guarantee a certain acceleration ratio?”

pathwise search expanding search

Friday, October 23, 15

Tradeoffs between performance and turns/executions

Ray searching
m rays

Contract scheduling
n problems

“Given a target at distance d what is the
minimum number of turns required to
guarantee a certain competitive ratio?”

“Given an interruption at time t what is the
minimum number of contracts required to
guarantee a certain acceleration ratio?”

pathwise search expanding search contract
scheduling

scheduling
with preemptions

Friday, October 23, 15

Tradeoffs between performance and turns/executions

Ray searching
m rays

Contract scheduling
n problems

“Given a target at distance d what is the
minimum number of turns required to
guarantee a certain competitive ratio?”

“Given an interruption at time t what is the
minimum number of contracts required to
guarantee a certain acceleration ratio?”

pathwise search expanding search contract
scheduling

scheduling
with preemptions

Friday, October 23, 15

Tradeoffs between performance and turns/executions

Ray searching
m rays

Contract scheduling
n problems

“Given a target at distance d what is the
minimum number of turns required to
guarantee a certain competitive ratio?”

“Given an interruption at time t what is the
minimum number of contracts required to
guarantee a certain acceleration ratio?”

pathwise search expanding search contract
scheduling

scheduling
with preemptions

Theorem: For any strategy with acceleration ratio , for and

there exists t such that the # of preemptions up to t is at least .

Furthermore, there is a strategy with acceleration ratio and at most

 preemptions.

n(b+ 1)� ✏ b > 1 ✏ > 0

n logb

✓
t(b� 1)

n
+ 1

◆
� n

n logb

✓
t(b� 1)

n
+ 1

◆
+ n

n(b+ 1)

Friday, October 23, 15

Conclusions and outlook

Friday, October 23, 15

Conclusions and outlook

 Connections between two well-studied problems

 Similarities in settings, common algorithmic approach

 The two problems are similar, but also have certain differences

Friday, October 23, 15

Conclusions and outlook

 Connections between two well-studied problems

 Similarities in settings, common algorithmic approach

 The two problems are similar, but also have certain differences

 More work needed on the stochastic setting (tight bounds for probabilistic
 searching, more elaborate study of stochastic contract scheduling)

 Heterogeneous environments? (e.g., every ray has its own probability of
 target location)

 Connections with other problems? (older work: speedup of Las Vegas
 algorithms [Luby et al. 93]; newer work: progressive algorithms [Alewijnse 15])

Friday, October 23, 15

Conclusions and outlook

 Connections between two well-studied problems

 Similarities in settings, common algorithmic approach

 The two problems are similar, but also have certain differences

 More work needed on the stochastic setting (tight bounds for probabilistic
 searching, more elaborate study of stochastic contract scheduling)

 Heterogeneous environments? (e.g., every ray has its own probability of
 target location)

 Connections with other problems? (older work: speedup of Las Vegas
 algorithms [Luby et al. 93]; newer work: progressive algorithms [Alewijnse 15])

Full version of the paper available at www.arxiv.org or at
www.lip6.fr/Spyros.Angelopoulos

Friday, October 23, 15

http://www.arxiv.org
http://www.arxiv.org
http://www.lip6.fr/Spyros.Angelopoulos
http://www.lip6.fr/Spyros.Angelopoulos

Conclusions and outlook

 Connections between two well-studied problems

 Similarities in settings, common algorithmic approach

 The two problems are similar, but also have certain differences

 More work needed on the stochastic setting (tight bounds for probabilistic
 searching, more elaborate study of stochastic contract scheduling)

 Heterogeneous environments? (e.g., every ray has its own probability of
 target location)

 Connections with other problems? (older work: speedup of Las Vegas
 algorithms [Luby et al. 93]; newer work: progressive algorithms [Alewijnse 15])

Thank you!

Full version of the paper available at www.arxiv.org or at
www.lip6.fr/Spyros.Angelopoulos

Friday, October 23, 15

http://www.arxiv.org
http://www.arxiv.org
http://www.lip6.fr/Spyros.Angelopoulos
http://www.lip6.fr/Spyros.Angelopoulos

