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Some related previous work

Ray searching
m rays

= Early work by Bellman, Beck and
Newman for m = 2

= Optimal strategies by [Gal 74]

= Re-discovered in CS context
[Baeza-Yates et al. 93]
= Several other settings:
Randomization [Kao et al. 96]

Multiple searchers [Lopez-
Ortiz and Schuierer 04]

Turn cost [Demaine et al. 06],
[A. et al. 14+]

New measures [Kirkpatrick 09]

Contract scheduling
n problems

[Russell and Zilberstein 91]: n=1

[Bernstein et al. 02]: general n

[Zilberstein et al. 03]: n =1, multiple
pProcessors

[Bernstein et al. 03], [Lopez-Ortiz et al. 06]
general n, multiple processors

[A. and Lopez-Ortiz 08]: soft interruptions

[A. and Lopez-Ortiz 09]: new measures
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Newman for m = 2
= QOptimal strategies by [Gal 74] = [Bernstein et al. 02]: general n
= Re-discovered in CS context = [Zilberstein et al. 03]: n =1, multiple
[Baeza-Yates et al. 93] processors
= Several other settings: = [Bernstein et al. 03], [Lopez-Ortiz et al. 06]
Randomization [Kao et al. 96] general n, multiple processors
Multiple searchers [Lopez- = [A. and Lopez-Ortiz 08]: soft interruptions
Ortiz and Schuierer 04]
Turn cost [Demaine et al. 06], = [A. and Lopez-Ortiz 09]: new measures
[A. et al. 14+]

New measures [Kirkpatrick 09]

[Bernstein et al. 03]: Connections between cyclic strategies
for the two problems
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Results
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Results (continued)

Ray searching
m rays

Contract scheduling
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Known: Randomization
helps improve the
competitive ratio

[Kao et al. 96]

Result: Randomized
schedule of acceleration
ratio about 0.6 times
the
deterministic
acceleration ratio
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Ray searching
m rays

Contract scheduling
n problems CI—TT ]

Randomized

Known: Randomization
helps improve the
competitive ratio

Result: Randomized
schedule of acceleration
ratio about 0.6 times

scheduling the
[Kao et al. 96] deterministic
acceleration ratio
Setting: we are interested |Setting: we are interested
in the # of turns in the # of executions
Trade offs
between | |
performance| Results: Optimal trade- Results: Optimal trade-
and turns / offs between competitive |offs between acceleration
executions | ratio and # of turns ratio and # of executions

Methodology

Similar strategies but
different analysis (no
closed form in the
case of contract
scheduling)

Combination of
uniform and
exponentially

InCreasing strategies
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= Easy bound of Q(m/p)
= We analyze a round-robing strategy: search with lengths =1, 72,...

1. Upper bound the expected cost of the strategy

(we get an expression that contains the x;’s and p

2. Assume exponential strategies: z; = b" for fixed b > 1

m ) —1
In the resulting expression, there is a term of the form E (™ (1=p)y
71=2

3. Setting A :=0"(1 —p) and requiring that \ <1 we obtain

b 1

<149 -
il R T Y

4. Applying some calculus we show that o <1+ 8m/p”
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ray-searching algorithm of
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Algorithm
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Inspired by the randomized
ray-searching algorithm of
[Kao et al. 95]

= A closed formula does not appear to exist

= We can give analytical bounds for n — o
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Tradeoffs between performance and turns/executions

Ray searching Contract scheduling
m rays n problems CI—TT—]
"Given a target at distance d what is the “"Given an interruption at time t what is the
minimum number of turns required to minimum number of contracts required to
guarantee a certain competitive ratio?” guarantee a certain acceleration ratio?”
pathwise search expanding search contract ~ scheduling
scheduling with preemptions
4 )

Theorem: For any strategy with acceleration ratio n(b+1) —¢, for v >1and ¢ > 0

t(b—1
there exists t such that the # of preemptions up to t is at least nlog, ( ( - ) + 1) —n.

Furthermore, there is a strategy with acceleration ratio n(b+ 1) and at most

t(b—1) _
n log, — L] +n preemptions.
-

Friday, October 23, 15




Friday, October 23, 15



Conclusions and outlook

= Connections between two well-studied problems
= Similarities in settings, common algorithmic approach

= The two problems are similar, but also have certain differences

Friday, October 23, 15



Conclusions and outlook

= Connections between two well-studied problems
a Similarities in settings, common algorithmic approach
= The two problems are similar, but also have certain differences

® More work needed on the stochastic setting (tight bounds for probabilistic
searching, more elaborate study of stochastic contract scheduling)

m Heterogeneous environments? (e.g., every ray has its own probability of
target location)

m Connections with other problems? (older work: speedup of Las Vegas
algorithms [Luby et al. 93]; newer work: progressive algorithms [Alewijnse 15])

Friday, October 23, 15



Conclusions and outlook

= Connections between two well-studied problems
= Similarities in settings, common algorithmic approach
= The two problems are similar, but also have certain differences

® More work needed on the stochastic setting (tight bounds for probabilistic
searching, more elaborate study of stochastic contract scheduling)

® Heterogeneous environments? (e.g., every ray has its own probability of
target location)

® Connections with other problems? (older work: speedup of Las Vegas
algorithms [Luby et al. 93]; newer work: progressive algorithms [Alewijnse 15])

Full version of the paper available at www.arxiv.org or at
www.lip6.fr/Spyros.Angelopoulos

Friday, October 23, 15


http://www.arxiv.org
http://www.arxiv.org
http://www.lip6.fr/Spyros.Angelopoulos
http://www.lip6.fr/Spyros.Angelopoulos

Conclusions and outlook

Thank you!

= Connections between two well-studied problems
= Similarities in settings, common algorithmic approach
= The two problems are similar, but also have certain differences

® More work needed on the stochastic setting (tight bounds for probabilistic
searching, more elaborate study of stochastic contract scheduling)

m Heterogeneous environments? (e.g., every ray has its own probability of
target location)

m Connections with other problems? (older work: speedup of Las Vegas
algorithms [Luby et al. 93]; newer work: progressive algorithms [Alewijnse 15])

Full version of the paper available at www.arxiv.org or at
www.lip6.fr/Spyros.Angelopoulos

Friday, October 23, 15


http://www.arxiv.org
http://www.arxiv.org
http://www.lip6.fr/Spyros.Angelopoulos
http://www.lip6.fr/Spyros.Angelopoulos

