Further Connections between Contract-Scheduling and Ray-Searching Problems

Spyros Angelopoulos

CNRS and University Pierre and Marie Curie

Friday, October 23, 15

Two well-studied problems: one from OR/TCS, the other from AI

- Two well-studied problems: one from OR/TCS, the other from AI
- The first problem: searching on a star (unbounded domain)

- Two well-studied problems: one from OR/TCS, the other from AI
- The first problem: searching on a star (unbounded domain)
- The second problem: how to obtain efficient anytime algorithms

- Two well-studied problems: one from OR/TCS, the other from AI
- The first problem: searching on a star (unbounded domain)
- The second problem: how to obtain efficient anytime algorithms
- Objective: address variants of these problems with a common approach

- Two well-studied problems: one from OR/TCS, the other from AI
- The first problem: searching on a star (unbounded domain)
- The second problem: how to obtain efficient anytime algorithms
- Objective: address variants of these problems with a common approach

Musk, Hawking Call to Ban Robots That Could Kill You All by Themselves

A massive coalition of leading thinkers and innovators has a chilling warning about the future of warfare.

An unmanned Predator drone files over Afghanistan in 2009. A group of thought leaders wants to prevent the development of artificially intelligent machines that could attack with much more autonomy.

By Tom Risen July 27, 2015 | 5:52 p.m. EDT

f 😵 🍏 + More

The U.S. military is investing heavily in drones as the future of war, but a group of 1,000 scientific leaders wants to draw the line at developing weapons that essentially can think for themselves.

Futurists like Elon Musk, scientists like Stephen Hawking and innovators like Apple co-founder Steve Wozniak have signed an open letter calling for a ban on the use of autonomous weapons, with the petition scheduled to be unveiled at the opening of this week's International Joint Conference on Artificial Intelligence in Argentina. Hawking and Musk have previously urged scientists to be wary while developing artificial intelligence, cautioning that autonomous machines may not be able to understand the possible good and evil consequences of their actions.

- Two well-studied problems: one from OR/TCS, the other from AI
- The first problem: searching on a star (unbounded domain)
- The second problem: how to obtain efficient anytime algorithms
- Objective: address variants of these problems with a common approach

Musk, Hawking Call to Ban Robots That Could Kill You All by Themselves

A massive coalition of leading thinkers and innovators has a chilling warning about the future of warfare.

An unmanned Predator drone files over Afghanistan in 2009. A group of thought leaders wants to prevent the development of artificially intelligent machines that could attack with much more autonomy.

By Tom Risen July 27, 2015 | 5:52 p.m. EDT

🖇 🎐 + More

The U.S. military is investing heavily in drones as the future of war, but a group of 1,000 scientific leaders wants to draw the line at developing weapons that essentially can think for themselves.

Futurists like Elon Musk, scientists like Stephen Hawking and innovators like Apple co-founder Steve Wozniak have signed an open letter calling for a ban on the use of autonomous weapons, with the petition scheduled to be unveiled at the opening of this week's International Joint Conference on Artificial Intelligence in Argentina. Hawking and Musk have previously urged scientists to be wary while developing artificial intelligence, cautioning that autonomous machines may not be able to understand the possible good and evil consequences of their actions.

- Two well-studied problems: one from OR/TCS, the other from AI
- The first problem: searching on a star (unbounded domain)
- The second problem: how to obtain efficient anytime algorithms
- Objective: address variants of these problems with a common approach

Robots in this presentation are benign!*

*certain conditions may apply

Musk, Hawking Call to Ban Robots That Could Kill You All by Themselves

A massive coalition of leading thinkers and innovators has a chilling warning about the future of warfare.

An unmanned Predator drone files over Afghanistan in 2009. A group of thought leaders wants to prevent the development of artificially intelligent machines that could attack with much more autonomy.

By Tom Risen July 27, 2015 | 5:52 p.m. ED1

F 😵 🎐 + More

The U.S. military is investing heavily in drones as the future of war, but a group of 1,000 scientific leaders wants to draw the line at developing weapons that essentially can think for themselves.

Futurists like Elon Musk, scientists like Stephen Hawking and innovators like Apple co-founder Steve Wozniak have signed an open letter calling for a ban on the use of autonomous weapons, with the petition scheduled to be unveiled at the opening of this week's International Joint Conference on Artificial Intelligence in Argentina. Hawking and Musk have previously urged scientists to be wary while developing artificial intelligence, cautioning that autonomous machines may not be able to understand the possible good and evil consequences of their actions.

Performance evaluation: Competitive ratio

Performance evaluation: Competitive ratio

 $\alpha = \sup_{\bigstar} \frac{\text{total distance to find } \bigstar}{\text{distance of } \bigstar}$ from origin

Performance evaluation: Competitive ratio

 $\alpha = \sup_{\bigstar} \frac{\text{total distance to find } \bigstar}{\text{distance of } \bigstar}$ from origin

Contract algorithms

- execution time given as input
- may return non-meaningful solutions if interrupted

Contract algorithms

- execution time given as input
- may return non-meaningful solutions if interrupted

Interruptible algorithms

- may be interrupted at will
- always return meaningful solutions (improving with time)

Contract algorithms

- execution time given as input
- may return non-meaningful solutions if interrupted

Interruptible algorithms

- may be interrupted at will
- always return meaningful solutions (improving with time)

Some related previous work

- Early work by Bellman, Beck and Newman for m=2
- Optimal strategies by [Gal 74]
- Re-discovered in CS context [Baeza-Yates et al. 93]
- Several other settings:

Randomization [Kao et al. 96] Multiple searchers [Lopez-Ortiz and Schuierer 04] Turn cost [Demaine et al. 06], [A. et al. 14+] New measures [Kirkpatrick 09] **Contract scheduling** *n* problems

- [Russell and Zilberstein 91]: n = 1
- [Bernstein et al. 02]: general n
- [Zilberstein et al. 03]: n = 1, multiple processors
- [Bernstein et al. 03], [Lopez-Ortiz et al. 06] general n, multiple processors
- [A. and Lopez-Ortiz 08]: soft interruptions
- [A. and Lopez-Ortiz 09]: new measures

Some related previous work

- Early work by Bellman, Beck and Newman for m=2
- Optimal strategies by [Gal 74]
- Re-discovered in CS context [Baeza-Yates et al. 93]
- Several other settings:

Randomization [Kao et al. 96] Multiple searchers [Lopez-Ortiz and Schuierer 04] Turn cost [Demaine et al. 06], [A. et al. 14+] New measures [Kirkpatrick 09] **Contract scheduling** *n* problems

- [Russell and Zilberstein 91]: n = 1
- [Bernstein et al. 02]: general n
- [Zilberstein et al. 03]: n = 1, multiple processors
- [Bernstein et al. 03], [Lopez-Ortiz et al. 06] general n, multiple processors
- [A. and Lopez-Ortiz 08]: soft interruptions
- [A. and Lopez-Ortiz 09]: new measures

[Bernstein et al. 03]: Connections between cyclic strategies for the two problems

Contract scheduling n problems

	$\begin{array}{c} \textbf{Ray searching} \\ m \text{ rays} \end{array} \qquad \checkmark \qquad \checkmark$	Contract scheduling <i>n</i> problems
	Setting : Target detection with probability <i>p</i>	Setting : Contracts are Monte Carlo algorithms with success prob. <i>p</i>
Stochastic setting	Results : Strategy with competitive ratio $\Theta(m/p^2)$ + No strategy is better than m/(2p) –competitive	Results : Schedule with accel. ratio $(e(n + 1))/p$ + No schedule better than n/p – acceleration

	$\begin{array}{c} \textbf{Ray searching} \\ m \text{ rays} \end{array} \qquad \checkmark \qquad \checkmark$	Contract scheduling <i>n</i> problems
Stochastic setting	Setting: Target detection with probability p	Setting : Contracts are Monte Carlo algorithms with success prob. <i>p</i>
	Results : Strategy with competitive ratio $\Theta(m/p^2)$ + No strategy is better than m/(2p) –competitive	Results : Schedule with accel. ratio $(e(n + 1))/p$ + No schedule better than n/p – acceleration
	Setting: Target detection	Setting : Output the
	on the <i>r</i> –th visit	<i>r</i> –th smallest contract
Fault tolerance / redundancy	Results : Strategy with competitive ratio $r(m-1)\left(\frac{m}{m-1}\right)^m + 2 - r$ + no strategy better than rm/2 –competitive	Results : Strategy with acceleration ratio $r(n+1)\left(1+\frac{1}{rn}\right)^{rn}$ + no strategy better than rn -competitive

	$\begin{array}{c} \textbf{Ray searching} \\ m \text{ rays} \end{array} \qquad \checkmark \qquad \checkmark$	Contract scheduling <i>n</i> problems	Methodology
Stochastic	Setting : Target detection with probability <i>p</i>	Setting : Contracts are Monte Carlo algorithms with success prob. <i>p</i>	Non-trivial analysis
setting	No strategy with $\Theta(m/p^2)$ + $m/(2p)$ –competitive	accel. ratio $(e(n + 1))/p$ + No schedule better than n/p – acceleration	of cyclic strategies
Fault tolerance / redundancy	Setting: Target detection on the r -th visit Results: Strategy with competitive ratio $r(m-1)\left(\frac{m}{m-1}\right)^m + 2 - r$ + no strategy better than rm/2 -competitive	Setting: Output the r-th smallest contract Results: Strategy with acceleration ratio $r(n+1)\left(1+\frac{1}{rn}\right)^{rn}$ + no strategy better than rn -competitive	Non-cyclic strategies that improve upon the best cyclic ones

	Ray searching M rays	Contract scheduling <i>n</i> problems
Randomized scheduling	Known: Randomization helps improve the competitive ratio [Kao et al. 96]	Result: Randomized schedule of acceleration ratio about 0.6 times the deterministic acceleration ratio

	$\begin{array}{c} \textbf{Ray searching} \\ m \text{ rays} \end{array} \qquad \checkmark \qquad \checkmark$	Contract scheduling <i>n</i> problems	
Randomized scheduling	Known: Randomization helps improve the competitive ratio [Kao et al. 96]	Result: Randomized schedule of acceleration ratio about 0.6 times the deterministic acceleration ratio	
Trade offs	Setting : we are interested in the # of turns	Setting : we are interested in the # of executions	
between performance and turns / executions	Results : Optimal trade- offs between competitive ratio and <i>#</i> of turns	Results : Optimal trade- offs between acceleration ratio and # of executions	

	Ray searching M rays	Contract scheduling <i>n</i> problems	Methodology
Randomized scheduling	Known: Randomization helps improve the competitive ratio [Kao et al. 96]	Result: Randomized schedule of acceleration ratio about 0.6 times the deterministic acceleration ratio	Similar strategies but different analysis (no closed form in the case of contract scheduling)
Trade offs between performance and turns / executions	Setting: we are interested in the # of turns Results: Optimal trade- offs between competitive ratio and # of turns	Setting: we are interested in the # of executions Results: Optimal trade- offs between acceleration ratio and # of executions	Combination of uniform and exponentially increasing strategies

• Easy bound of $\Omega(m/p)$

- Easy bound of $\Omega(m/p)$
- We analyze a round-robing strategy: search with lengths x_1, x_2, \ldots

- Easy bound of $\Omega(m/p)$
- We analyze a round-robing strategy: search with lengths x_1, x_2, \ldots
 - 1. Upper bound the expected cost of the strategy (we get an expression that contains the x_i 's and p

- Easy bound of $\Omega(m/p)$
- We analyze a round-robing strategy: search with lengths x_1, x_2, \ldots
 - 1. Upper bound the expected cost of the strategy (we get an expression that contains the x_i 's and p
 - 2. Assume exponential strategies: $x_i = b^i$ for fixed b > 1In the resulting expression, there is a term of the form $\sum_{j=2}^{\infty} ((b^m(1-p))^{j-1})^{j-1}$

- Easy bound of $\Omega(m/p)$
- We analyze a round-robing strategy: search with lengths x_1, x_2, \ldots
 - 1. Upper bound the expected cost of the strategy (we get an expression that contains the x_i 's and p
 - 2. Assume exponential strategies: $x_i = b^i$ for fixed b > 1In the resulting expression, there is a term of the form $\sum_{j=2}^{\infty} ((b^m(1-p))^{j-1})^{j-1})^{j-1}$
 - 3. Setting $\lambda := b^m(1-p)$ and requiring that $\lambda < 1$ we obtain

$$\alpha \le 1 + 2\frac{b^m}{b^m - 1} \cdot \frac{1}{1 - \lambda}$$

- Easy bound of $\Omega(m/p)$
- We analyze a round-robing strategy: search with lengths x_1, x_2, \ldots
 - 1. Upper bound the expected cost of the strategy (we get an expression that contains the x_i 's and p
 - 2. Assume exponential strategies: $x_i = b^i$ for fixed b > 1In the resulting expression, there is a term of the form $\sum_{i=2}^{\infty} ((b^m(1-p))^{j-1})^{j-1})^{j-1}$
 - 3. Setting $\lambda := b^m(1-p)$ and requiring that $\lambda < 1$ we obtain

$$\alpha \leq 1 + 2\frac{b^m}{b^m-1} \cdot \frac{1}{1-\lambda}$$

4. Applying some calculus we show that $\alpha \leq 1 + 8m/p^2$

Algorithm

- 1. Choose a random permutation of the n problems and random $\epsilon \in (0, 1)$
- 2. In the i-th step schedule a contract for problem $i \mod n$ and of length $b^{i+\epsilon}$

Algorithm

- 1. Choose a random permutation of the n problems and random $\epsilon \in (0, 1)$
- 2. In the i-th step schedule a contract for problem $i \mod n$ and of length $b^{i+\epsilon}$

Inspired by the randomized ray-searching algorithm of [Kao et al. 95]

Algorithm

- 1. Choose a random permutation of the n problems and random $\epsilon \in (0, 1)$
- 2. In the i-th step schedule a contract for problem $i \mod n$ and of length $b^{i+\epsilon}$

Inspired by the randomized ray-searching algorithm of [Kao et al. 95]

Algorithm

- 1. Choose a random permutation of the n problems and random $\epsilon \in (0, 1)$
- 2. In the i-th step schedule a contract for problem $i \mod n$ and of length $b^{i+\epsilon}$

Inspired by the randomized ray-searching algorithm of [Kao et al. 95]

- A closed formula does not appear to exist
- We can give analytical bounds for $n \to \infty$

"Given a target at distance d what is the minimum number of turns required to guarantee a certain competitive ratio?"

"Given an interruption at time t what is the minimum number of contracts required to guarantee a certain acceleration ratio?"

"Given a target at distance d what is the minimum number of turns required to guarantee a certain competitive ratio?"

pathwise search

expanding search

Contract scheduling
n problems

"Given an interruption at time t what is the minimum number of contracts required to guarantee a certain acceleration ratio?"

Conclusions and outlook
- Connections between two well-studied problems
- Similarities in settings, common algorithmic approach
- The two problems are similar, but also have certain differences

- Connections between two well-studied problems
- Similarities in settings, common algorithmic approach
- The two problems are similar, but also have certain differences
- More work needed on the stochastic setting (tight bounds for probabilistic searching, more elaborate study of stochastic contract scheduling)
- Heterogeneous environments? (e.g., every ray has its own probability of target location)
- Connections with other problems? (older work: speedup of Las Vegas algorithms [Luby et al. 93]; newer work: progressive algorithms [Alewijnse 15])

- Connections between two well-studied problems
- Similarities in settings, common algorithmic approach
- The two problems are similar, but also have certain differences
- More work needed on the stochastic setting (tight bounds for probabilistic searching, more elaborate study of stochastic contract scheduling)
- Heterogeneous environments? (e.g., every ray has its own probability of target location)
- Connections with other problems? (older work: speedup of Las Vegas algorithms [Luby et al. 93]; newer work: progressive algorithms [Alewijnse 15])

Full version of the paper available at <u>www.arxiv.org</u> or at <u>www.lip6.fr/Spyros.Angelopoulos</u>

Thank you!

- Connections between two well-studied problems
- Similarities in settings, common algorithmic approach
- The two problems are similar, but also have certain differences
- More work needed on the stochastic setting (tight bounds for probabilistic searching, more elaborate study of stochastic contract scheduling)
- Heterogeneous environments? (e.g., every ray has its own probability of target location)
- Connections with other problems? (older work: speedup of Las Vegas algorithms [Luby et al. 93]; newer work: progressive algorithms [Alewijnse 15])

Full version of the paper available at <u>www.arxiv.org</u> or at <u>www.lip6.fr/Spyros.Angelopoulos</u>