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Robots in this presentation
 are benign!*

*certain conditions may apply
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4. Applying some calculus we show that ↵  1 + 8m/p2
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6 Trade-offs between performance and

executions of searches/algorithms

Most previous work on ray searching assumes that the
searcher can switch directions at no cost. In practice, turn-
ing is a costly operation in robotics, and thus should not
be ignored. In a similar vein, we usually assume that there
is no setup cost upon execution of a contract algorithm,
however some initialization cost may be incurred in prac-
tice. One could address this requirement by incorporating
the turn/setup cost in the performance evaluation (see [De-
maine et al., 2006] for ray searching with turn cost). In this
section we follow a different approach by studying the trade-
off between performance and the number of searches and/or
executions of algorithms.

We will make a distinction between two possible settings.
In the first setting, we use the standard definitions of search
and scheduling as given in Section 1. Specifically, we address
the question: Given a target at distance t (resp. an interruption
t) what is the minimum number of turns (resp. executions of
contracts) so as to guarantee a certain competitive ratio (resp.
acceleration ratio)? We call this the standard model.

The second setting is motivated by applications in which
searching previously explored territory comes at no cost. One
such example is the expanding search paradigm [Alpern and
Lidbetter, 2013]. Another example is parallel linear searching
on arrays modeled as ray searching [Kirkpatrick, 2009], in
which the searcher can “jump” to the last-explored position.

While the latter setting does not have a true counterpart
in the realm of contract scheduling, it still gives rise to a
scheduling problem. Suppose we have n problems, each with
its own statement of an interruptible algorithm (as opposed
to a contract algorithm). In addition, we allow the use of pre-
emptions, in that we can preempt, and later resume the execu-
tion of an algorithm. In this context, we face the scheduling
problem of interleaving the executions of interruptible algo-
rithms. Note that we can still use the acceleration ratio, given
by (3)) as the performance measure, with the notable differ-
ence that here `

i,t

denotes the total (aggregate) time of algo-
rithm executions for problem i, by time t. We call the above
model the preemptive model.

Due to space limitations, we only present results on the

scheduling problems. We emphasize that similar results can
be obtained for ray searching, with only minor modifications.

6.1 Trade offs in the preemptive model

We consider first the problem of scheduling interleaved exe-
cutions of interruptible algorithms. Clearly, the optimal ac-
celeration ratio is n: simply assign each time unit uniformly
across all problems, in a round-robin fashion. However, this
optimal strategy results in a linear number of preemptions,
as function of time. We thus consider the following geomet-
ric round-robin strategy, which is a combination of uniform
and exponential strategies. The strategy works in phases;
namely, in phase i (i � 0), it executes algorithms for prob-
lems 0 . . . n�1 with each algorithm allotted a time span equal
to bi, for fixed b > 1 (we will call each algorithm execution
for problem i a job for problem i).
Lemma 11. The geometric strategy has (worst-case) accel-
eration ratio n(b+ 1), asymptotic acceleration ratio nb, and
for any t, the number of preemptions incurred up to t is at
most n log

b

⇣
t(b�1)

n

+ 1

⌘
+ n.

We will now show that the geometric strategy attains es-
sentially the optimal trade-offs.
Theorem 12. For any strategy with (worst-case) accelera-
tion ratio n(1 + b) � ✏ for any b > 1, and constant ✏ > 0,
there exists t such that the number of preemptions up to time
t is at least n log

b

⇣
t(b�1)

n

+ 1

⌘
� n. Moreover, any strategy

with asymptotic acceleration ratio nb(1�✏), for any constant

✏ > 0, incurs n log

b

⇣
t(b�1)

n

+ 1

⌘
�o

⇣
n log

b

⇣
t(b�1)

n

+ 1

⌘⌘

preemptions by time t > t0, for some t0.

Proof. First, suppose, that a strategy S has (worst-case) ac-
celeration ratio � = n(b + 1) � ✏, and incurs fewer than
n log

b

⇣
t(b�1)

n

+ 1

⌘
�n preemptions for any t. We can show

that there exists a strategy S0 of acceleration ratio at least
b(n+1), by considering at interruption at time t = b(n+1).
Moreover, we can show that S0 has at least as good an accel-
eration ratio as S, which is a contradiction.

For the second part of the theorem, fix a strategy S of
asymptotic acceleration ratio � = nb(1 � ✏). Consider a
partition of the timeline in phases, such that the i-th phase
(i � 0) spans the interval [n

P
i�1
j=0 b

j , n
P

i

j=0 b
j

), and thus
has length nbi. We will show that there exists i0 > 0 such that
for all i � i0, S must incur at least n preemptions in its i-th
phase. Since the geometric strategy with base b incurs exactly
n preemptions in this interval, for all i, this will imply that we
can partition the timeline t � i0 in intervals with the property
that in each interval, S incurs at least as many preemptions as
the geometric strategy, which suffices to prove the result.

Suppose, by way of contradiction, that S incurred at most
n � 1 preemptions within T = [n

P
i�1
j=0 b

j , n
P

i

j=0 b
j

].
Therefore, there exists at least one problem p with no execu-
tion in T . Consider an interruption at time t = n

P
i

j=0 b
j��,

for arbitrarily small � > 0. Thus, the aggregate job length for
p by time t in S is `

p,t

 n
P

i�1
j=0 b

j

= n b

i�1
b�1 . Since S

1521

n

�
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for problem i a job for problem i).
Lemma 11. The geometric strategy has (worst-case) accel-
eration ratio n(b+ 1), asymptotic acceleration ratio nb, and
for any t, the number of preemptions incurred up to t is at
most n log

b

⇣
t(b�1)

n

+ 1

⌘
+ n.

We will now show that the geometric strategy attains es-
sentially the optimal trade-offs.
Theorem 12. For any strategy with (worst-case) accelera-
tion ratio n(1 + b) � ✏ for any b > 1, and constant ✏ > 0,
there exists t such that the number of preemptions up to time
t is at least n log

b

⇣
t(b�1)

n

+ 1

⌘
� n. Moreover, any strategy

with asymptotic acceleration ratio nb(1�✏), for any constant

✏ > 0, incurs n log

b

⇣
t(b�1)

n

+ 1

⌘
�o

⇣
n log

b

⇣
t(b�1)

n

+ 1

⌘⌘

preemptions by time t > t0, for some t0.

Proof. First, suppose, that a strategy S has (worst-case) ac-
celeration ratio � = n(b + 1) � ✏, and incurs fewer than
n log

b

⇣
t(b�1)

n

+ 1

⌘
�n preemptions for any t. We can show

that there exists a strategy S0 of acceleration ratio at least
b(n+1), by considering at interruption at time t = b(n+1).
Moreover, we can show that S0 has at least as good an accel-
eration ratio as S, which is a contradiction.

For the second part of the theorem, fix a strategy S of
asymptotic acceleration ratio � = nb(1 � ✏). Consider a
partition of the timeline in phases, such that the i-th phase
(i � 0) spans the interval [n

P
i�1
j=0 b

j , n
P

i

j=0 b
j

), and thus
has length nbi. We will show that there exists i0 > 0 such that
for all i � i0, S must incur at least n preemptions in its i-th
phase. Since the geometric strategy with base b incurs exactly
n preemptions in this interval, for all i, this will imply that we
can partition the timeline t � i0 in intervals with the property
that in each interval, S incurs at least as many preemptions as
the geometric strategy, which suffices to prove the result.

Suppose, by way of contradiction, that S incurred at most
n � 1 preemptions within T = [n

P
i�1
j=0 b

j , n
P

i

j=0 b
j

].
Therefore, there exists at least one problem p with no execu-
tion in T . Consider an interruption at time t = n

P
i

j=0 b
j��,

for arbitrarily small � > 0. Thus, the aggregate job length for
p by time t in S is `

p,t

 n
P

i�1
j=0 b

j

= n b

i�1
b�1 . Since S

1521

  A closed formula does not appear to exist 

  We can give analytical bounds for  n ! 1

n
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Tradeoffs between performance and turns/executions

Ray searching
m rays

Contract scheduling
n problems

“Given a target at distance d what is the 
minimum number of turns required to 
guarantee a certain competitive ratio?” 

“Given an interruption at time t what is the 
minimum number of contracts required to 
guarantee a certain acceleration ratio?” 

pathwise search expanding search contract 
scheduling

scheduling 
with preemptions

Theorem: For any strategy with acceleration ratio                   , for          and           

there exists t such that the # of preemptions up to t is at least                                      .

Furthermore, there is a strategy with acceleration ratio               and at most 

                                     preemptions.

n(b+ 1)� ✏ b > 1 ✏ > 0

n logb

✓
t(b� 1)

n
+ 1

◆
� n

n logb

✓
t(b� 1)

n
+ 1

◆
+ n

n(b+ 1)
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Thank you!
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