A computer-assisted discharging procedure: application to 2-distance coloring

Hoang LA, Petru VALICOV

LIRMM, University of Montpellier

November, 2020
2-distance coloring

<table>
<thead>
<tr>
<th>A 2-distance k-coloring (Kramer and Kramer, 1969)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A k-coloring such that no pair of vertices at distance at most 2 is monochromatic.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The 2-distance chromatic number</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2(G)$: the smallest integer k so that G has a 2-distance k-coloring.</td>
</tr>
</tbody>
</table>
2-distance coloring

A 2-distance k-coloring (Kramer and Kramer, 1969)

A k-coloring such that no pair of vertices at distance at most 2 is monochromatic.

The 2-distance chromatic number

$\chi^2(G)$: the smallest integer k so that G has a 2-distance k-coloring.
2-distance coloring

A 2-distance k-coloring (Kramer and Kramer, 1969)

A k-coloring such that no pair of vertices at distance at most 2 is monochromatic.

The 2-distance chromatic number

$\chi^2(G)$: the smallest integer k so that G has a 2-distance k-coloring.

Not a 2-distance coloring.
2-distance coloring

A 2-distance k-coloring (Kramer and Kramer, 1969)

A k-coloring such that no pair of vertices at distance at most 2 is monochromatic.

The 2-distance chromatic number

$\chi^2(G)$: the smallest integer k so that G has a 2-distance k-coloring.

$\chi^2(G) = 6$.

Not a 2-distance coloring.

An optimal 2-distance 6-coloring.
Observation

For any graph G with maximum degree Δ, $\Delta + 1 \leq \chi^2(G) \leq \Delta^2 + 1$.

2-distance coloring
2-distance coloring

Observation
For any graph G with maximum degree Δ, $\Delta + 1 \leq \chi^2(G) \leq \Delta^2 + 1$.

\[\chi^2(G) = \Delta^2 + 1.\]
Wegner’s conjecture, 1977

Let G be a planar graph. Then,

$$\chi^2(G) \leq \begin{cases}
7, & \text{if } \Delta \leq 3, \\
\Delta + 5, & \text{if } 4 \leq \Delta \leq 7, \\
\left\lfloor \frac{3\Delta}{2} \right\rfloor + 1, & \text{if } \Delta \geq 8.
\end{cases}$$
2-distance coloring of planar graphs

Wegner’s conjecture, 1977

Let G be a planar graph. Then,

$$\chi^2(G) \leq \begin{cases}
7, & \text{if } \Delta \leq 3, \\
\Delta + 5, & \text{if } 4 \leq \Delta \leq 7, \\
\left\lceil \frac{3\Delta}{2} \right\rceil + 1, & \text{if } \Delta \geq 8.
\end{cases}$$

Results on planar graphs with high girth:

If G is a planar graph with girth $g \geq g_0$ and maximum degree $\Delta \geq \Delta_0$, then $\chi^2(G) \leq \Delta(G) + c_0$.

Bu et al., 2015

If G is a planar graph with $g \geq 8$ and $\Delta = 5$, then $\chi^2(G) \leq \Delta + 3$.

La and Valicov, 2020

If G is a planar graph with $g \geq 8$ and $\Delta \geq 3$, then $\chi^2(G) \leq \Delta + 3$.

Cranston and Kim, 2008

If G is a planar graph with $g \geq 9$ and $\Delta = 3$, then $\chi^2(G) \leq \Delta + 3$.

Hoang LA (LIRMM)
2-distance coloring of planar graphs

Wegner’s conjecture, 1977

Let G be a planar graph. Then,

$$
\chi_2^2(G) \leq \begin{cases}
7, & \text{if } \Delta \leq 3, \\
\Delta + 5, & \text{if } 4 \leq \Delta \leq 7, \\
\left\lfloor \frac{3\Delta}{2} \right\rfloor + 1, & \text{if } \Delta \geq 8.
\end{cases}
$$

Results on planar graphs with high girth:

If G is a planar graph with girth $g \geq g_0$ and maximum degree $\Delta \geq \Delta_0$, then $\chi_2^2(G) \leq \Delta(G) + c_0$.

Cranston and Kim, 2008

If G is a planar graph with $g \geq 9$ and $\Delta = 3$, then $\chi_2^2(G) \leq \Delta + 3$.

Bu et al., 2015

If G is a planar graph with $g \geq 8$ and $\Delta = 5$, then $\chi_2^2(G) \leq \Delta + 3$.
2-distance coloring of planar graphs

Wegner’s conjecture, 1977
Let G be a planar graph. Then,

$$\chi^2(G) \leq \begin{cases}
7, & \text{if } \Delta \leq 3, \\
\Delta + 5, & \text{if } 4 \leq \Delta \leq 7, \\
\left\lceil \frac{3\Delta}{2} \right\rceil + 1, & \text{if } \Delta \geq 8.
\end{cases}$$

Results on planar graphs with high girth:
If G is a planar graph with girth $g \geq g_0$ and maximum degree $\Delta \geq \Delta_0$, then $\chi^2(G) \leq \Delta(G) + c_0$.

Cranston and Kim, 2008
If G is a planar graph with $g \geq 9$ and $\Delta = 3$, then $\chi^2(G) \leq \Delta + 3$.

Bu et al., 2015
If G is a planar graph with $g \geq 8$ and $\Delta = 5$, then $\chi^2(G) \leq \Delta + 3$.

La and Valicov, 2020
If G is a planar graph with $g \geq 8$ and $\Delta \geq 3$, then $\chi^2(G) \leq \Delta + 3$.
2-distance coloring of planar graphs

<table>
<thead>
<tr>
<th>$\chi^2(G)$</th>
<th>$\Delta + 1$</th>
<th>$\Delta + 2$</th>
<th>$\Delta + 3$</th>
<th>$\Delta + 4$</th>
<th>$\Delta + 5$</th>
<th>$\Delta + 6$</th>
<th>$\Delta + 7$</th>
<th>$\Delta + 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\Delta = 3$</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$\Delta \geq 10^7$</td>
<td>$\Delta \geq 339$</td>
<td>$\Delta \geq 312$</td>
<td>$\Delta \geq 15$</td>
<td>$\Delta \geq 12$</td>
<td>$\Delta \neq 7, 8$</td>
<td>all Δ</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>$\Delta \geq 17$</td>
<td>$\Delta \geq 9$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$\Delta \geq 16$</td>
<td>$\Delta = 4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$\Delta \geq 9$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$\Delta \geq 8$</td>
<td>$\Delta = 5$</td>
<td>$\Delta \geq 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$\Delta \geq 6$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\Delta = 4$</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$\Delta = 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\Delta \geq 4$</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\Delta = 3$</td>
</tr>
</tbody>
</table>

Results from almost 20 different papers.
The discharging method (on planar graphs):

1. Suppose that there exists a counter-example G and suppose that G has the smallest number of vertices.
2. Study the structural properties of G.
3. Assign charges to vertices and faces so that the sum of all charges is negative thanks to Euler's formula ($|V| - |E| + |F| = 2$).
4. Redistribute the charges without changing the total sum, and show that we obtain a non-negative final amount, thanks to the structural properties, which is a contradiction.
The discharging method (on planar graphs):

1: Suppose that there exists a counter-example G and suppose that G has the smallest number of vertices.
The discharging method (on planar graphs):

1: Suppose that there exists a counter-example G and suppose that G has the smallest number of vertices.

2: Study the structural properties of G.
The discharging method (on planar graphs):

1: Suppose that there exists a counter-example G and suppose that G has the smallest number of vertices.

2: Study the structural properties of G.

3: Assign charges to vertices and faces so that the sum of all charges is negative thanks to the Euler’s formula ($|V| - |E| + |F| = 2$).
The discharging method (on planar graphs):

1: Suppose that there exists a counter-example G and suppose that G has the smallest number of vertices.

2: Study the structural properties of G.

3: Assign charges to vertices and faces so that the sum of all charges is negative thanks to the Euler’s formula ($|V| - |E| + |F| = 2$).

4: Redistribute the charges without changing the total sum, and show that we obtain a non-negative final amount, thanks to the structural properties, which is a contradiction.
The discharging method: Step 1

Theorem
If G is a planar graph with girth $g \geq 8$ and maximum degree $\Delta = 3$, then $\chi^2(G) \leq 6$.

Step 1: Take a minimal counter-example G, with $\Delta = 3$, $g \geq 8$, and $\chi^2(G) \geq 7$.
The discharging method: Step 2

Step 2: Structural properties of G.

Some trivial properties:
- G is connected
- G has no
- And almost 50 other complicated reducible configurations...
The discharging method: Step 2

Step 2: Structural properties of G.

- Some trivial properties:
 - G is connected
Step 2: Structural properties of G.

- Some trivial properties:
 - G is connected
 - G has no

Hoang LA (LIRMM)
The discharging method: Step 2

Step 2: Structural properties of G.

- Some trivial properties:
 - G is connected
 - G has no
 - G has no

And almost 50 other complicated reducible configurations...
Step 2: Structural properties of G.

- Some trivial properties:
 - G is connected
 - G has no
 - G has no

- And almost 50 other complicated reducible configurations...
Step 3: Assign charges to vertices.

Charge assignment

\[\mu : v \mapsto 3.5d(v) - 9 \quad \text{and} \quad \mu : f \mapsto d(f) - 9 \]
Step 3: Assign charges to vertices.

Charge assignment

\[\mu : v \mapsto 3.5d(v) - 9 \text{ and } \mu : f \mapsto d(f) - 9 \]

Since \(|V| - |E| + |F| = 2\),

\[\sum_{v \in V} (3.5d(v) - 9) + \sum_{f \in F} (d(f) - 9) = -18 < 0 \]
Comparison

<table>
<thead>
<tr>
<th>Reducible configurations</th>
<th>"Human" proof $g \geq 9$</th>
<th>"Human" proof? $g \geq 8$</th>
<th>Our proof $g \geq 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Few "local" configs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Charge distribution

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>≥0</td>
<td></td>
</tr>
</tbody>
</table>

\[
\mu(v) = 3.5d(v) \\
\mu(f) = d(f) - 9
\]
Comparison

<table>
<thead>
<tr>
<th></th>
<th>"Human" proof (g \geq 9)</th>
<th>"Human" proof ? (g \geq 8)</th>
<th>Our proof (g \geq 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducible configurations</td>
<td>Few "local" configs</td>
<td>Few "local" configs</td>
<td></td>
</tr>
<tr>
<td>Charge distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu(v) = 3.5d(v))</td>
<td>(\mu'(v) = 3d(v))</td>
<td>(\mu'(f) = d(f) - 8)</td>
<td></td>
</tr>
<tr>
<td>(\mu(f) = d(f) - 9)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\mu'(v) = 3d(v) \) for \(g \geq 8 \)
Comparison

<table>
<thead>
<tr>
<th></th>
<th>"Human" proof (g \geq 9)</th>
<th>"Human" proof? (g \geq 8)</th>
<th>Our proof (g \geq 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducible</td>
<td>Few "local" configs</td>
<td>Few "local" configs</td>
<td>Need "global" configs!</td>
</tr>
<tr>
<td>configurations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bullet) : -2</td>
<td></td>
<td>(\bullet) : -2</td>
<td></td>
</tr>
<tr>
<td>(\nearrow \bullet) : 1.5</td>
<td></td>
<td>(\nearrow \bullet) : 1</td>
<td></td>
</tr>
<tr>
<td>face (\geq 9) : (\geq 0)</td>
<td></td>
<td>face (\geq 8) : (\geq 0)</td>
<td></td>
</tr>
</tbody>
</table>

\[
\mu(v) = 3.5d(v) \]

\[
\mu(f) = d(f) - 9
\]

\[
\mu'(v) = 3d(v) \]

\[
\mu'(f) = d(f) - 8
\]
Comparison

<table>
<thead>
<tr>
<th></th>
<th>"Human" proof (g \geq 9)</th>
<th>"Human" proof ? (g \geq 8)</th>
<th>Our proof (g \geq 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducible</td>
<td>Few "local" configs</td>
<td>Few "local" configs</td>
<td>Few "local" configs</td>
</tr>
<tr>
<td>configurations</td>
<td></td>
<td>Need "global" configs !</td>
<td></td>
</tr>
<tr>
<td>Charge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>face (\geq 9)</td>
<td>(\geq 0)</td>
<td>face (\geq 8) (\geq 0)</td>
<td>face (\geq 9) (\geq 0)</td>
</tr>
<tr>
<td>(\mu(v) = 3.5d(v))</td>
<td></td>
<td>(\mu'(v) = 3d(v))</td>
<td></td>
</tr>
<tr>
<td>(\mu(f) = d(f) - 9)</td>
<td></td>
<td>(\mu'(f) = d(f) - 8)</td>
<td></td>
</tr>
</tbody>
</table>

Diagrams

- **"Human" proof \(g \geq 9 \):**
 - \(\mu(v) = 3.5d(v) \)
 - \(\mu(f) = d(f) - 9 \)

- **"Human" proof ? \(g \geq 8 \):**
 - \(\mu'(v) = 3d(v) \)
 - \(\mu'(f) = d(f) - 8 \)

- **Our proof \(g \geq 8 \):**
 - \(\mu(v) = 3.5d(v) \)
 - \(\mu(f) = d(f) - 9 \)
Comparison

<table>
<thead>
<tr>
<th>Reducible configurations</th>
<th>"Human" proof (g \geq 9)</th>
<th>"Human" proof ? (g \geq 8)</th>
<th>Our proof (g \geq 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Few "local"configs</td>
<td>Few "local" configs</td>
<td>Need "global" configs!</td>
<td></td>
</tr>
<tr>
<td>Charge distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\mu(v) = 3.5d(v) \\
\mu(f) = d(f) - 9 \\
\mu'(v) = 3d(v) \\
\mu'(f) = d(f) - 8 \\
\]

Face condition:

- \(\mu(v) = \sum_{f \text{ incident to } v} \mu'(f) \)
- \(\mu(f) = \sum_{v \text{ incident to } f} \mu'(v) \)

For face \(\geq 9 \):

- \(\mu(v) \geq 0 \)
- \(\mu'(v) \geq 0 \)
- \(\mu' = 3d - 9 \)
- \(\mu = 3d - 8 \)

For face \(\geq 8 \):

- \(\mu(v) \geq 0 \)
- \(\mu'(v) \geq 0 \)
- \(\mu' = 3d - 9 \)
- \(\mu = 3d - 8 \)

For face \(= 8 \):

- \(\mu(v) = -1 \)
- \(\mu'(v) = -1 \)

\(\mu(v) = 3.5d(v) \)

\(\mu(f) = d(f) - 9 \)
Comparison

<table>
<thead>
<tr>
<th></th>
<th>"Human" proof (g \geq 9)</th>
<th>"Human" proof ? (g \geq 8)</th>
<th>Our proof (g \geq 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducible configurations</td>
<td>Few "local" configs</td>
<td>Few "local" configs Need "global" configs !</td>
<td>Lots of "local" configs</td>
</tr>
<tr>
<td>Charge distribution</td>
<td> (\mu(v) = 3.5d(v)) (\mu(f) = d(f) - 9)</td>
<td> (\mu'(v) = 3d(v)) (\mu'(f) = d(f) - 8)</td>
<td> (\mu'(v) = 3d(v)) (\mu'(f) = d(f) - 8)</td>
</tr>
<tr>
<td></td>
<td> (\mu(v) = 3.5d(v)) (\mu(f) = d(f) - 9)</td>
<td> (\mu'(v) = 3d(v)) (\mu'(f) = d(f) - 8)</td>
<td> (\mu'(v) = 3d(v)) (\mu'(f) = d(f) - 8)</td>
</tr>
</tbody>
</table>

\(\mu'(v) = d(f) - 8 \) \(\mu'(f) = d(f) - 8 \)
Step 4: Redistribute the charges to obtain a non-negative sum (via discharging rules).
Step 4: Redistribute the charges to obtain a non-negative sum (via discharging rules).

Choose rules to assure the vertices have non-negative charges.

For example, here, we can reuse the same rules as Cranston and Kim for $g \geq 9$.

Choose rules to assure the 8-faces have non-negative charges.

\[-2 : \quad 1.5 \quad \text{face } \geq 9 : \quad \geq 0 \quad \text{face } = 8 : \quad = -1\]
The discharging method: Step 4

Step 4: Redistribute the charges to obtain a non-negative sum (via discharging rules).

- \(-2\):
- \(1.5\):
- \(\geq 9\):
- \(\geq 0\):
- \(\text{face } = 8\):
- \(= -1\)

Choose rules to assure the vertices have non-negative charges.
Step 4: Redistribute the charges to obtain a non-negative sum (via discharging rules).

Choose rules to assure the vertices have non-negative charges.

For example,
Step 4: Redistribute the charges to obtain a non-negative sum (via discharging rules).

Choose rules to assure the vertices have non-negative charges.

For example, Here, we can reuse the same rules as Cranston and Kim for $g \geq 9$.
Step 4: Redistribute the charges to obtain a non-negative sum (via discharging rules).

Choose rules to assure the vertices have non-negative charges.

1. For example,

2. Here, we can reuse the same rules as Cranston and Kim for \(g \geq 9 \).

Choose rules to assure the 8-faces have non-negative charges.
Identify the 3-vertices.

Count the 2-vertices in between.

Encode the neighborhood of each 3-vertex.

We obtain: 1a1a0b0c0a0c.
Identify the 3-vertices. Count the 2-vertices in between.
Identify the 3-vertices.
Count the 2-vertices in between.
Encode the neighborhood of each 3-vertex.
Identify the 3-vertices.
Count the 2-vertices in between.
Encode the neighborhood of each 3-vertex.

We obtain: 1a1a0b0c0a0c.
Identify the 3-vertices.
Count the 2-vertices in between.
Encode the neighborhood of each 3-vertex.
Computer Assistance: Encoding Cycles

Identify the 3-vertices.
Count the 2-vertices in between.
Encode the neighborhood of each 3-vertex.

We obtain: 1a1a0b0c0a0c.
Identify the 3-vertices.
Count the 2-vertices in between.
Encode the neighborhood of each 3-vertex.
Identify the 3-vertices.
Count the 2-vertices in between.
Encode the neighborhood of each 3-vertex.
We obtain: \textit{1a1a0b0c0a0c}.
Encode a tree from all incident faces
Encode a tree from all incident faces
Encode a tree from all incident faces:

- \(f_0, f_2 : 1c0c1 \)
Encode a tree from all incident faces

- \(f_0, f_2 : 1c0c1 \)
- \(f_1, f_3 : 1b1 \)
How to verify our proof with the computer assistance:

1. Generate all possible words on \{0, 1, a, b, c\} corresponding to the 8-faces (more than 10,000 words).
2. Filter the list with encoded reducible configurations.
3. Calculate the charges of the remaining faces/words.
4. Define a dictionary of charges for each subword.
5. Calculate the charge of each word by its subwords.
How to verify our proof with the computer assistance:

- Generate all possible words on \(\{0, 1, a, b, c\}\) corresponding to the 8-faces (more than 10 000 words).

- Filter the list with encoded reducible configurations.

- Calculate the charges of the remaining faces/words.

- Define a dictionary of charges for each subword.

- Calculate the charge of each word by its subwords.
How to verify our proof with the computer assistance:

- Generate all possible words on \{0, 1, a, b, c\} corresponding to the 8-faces (more than 10 000 words).
- Filter the list with encoded reducible configurations.
How to verify our proof with the computer assistance:

- Generate all possible words on \{0, 1, a, b, c\} corresponding to the 8-faces (more than 10 000 words).
- Filter the list with encoded reducible configurations.
- Calculate the charges of the remaining faces/words.
How to verify our proof with the computer assistance:

- Generate all possible words on \{0, 1, a, b, c\} corresponding to the 8-faces (more than 10 000 words).
- Filter the list with encoded reducible configurations.
- Calculate the charges of the remaining faces/words.
 - Define a dictionary of charges for each subword.
How to verify our proof with the computer assistance:

- Generate all possible words on \{0, 1, a, b, c\} corresponding to the 8-faces (more than 10,000 words).
- Filter the list with encoded reducible configurations.
- Calculate the charges of the remaining faces/words.
 - Define a dictionary of charges for each subword.
 - Calculate the charge of each word by its subwords.
Why use computer assistance?

- Solve the problem of verifying a huge amount of configurations.
- Find problematic configurations (non-reducible and non-dischargeable) immediately.
- Verify a proof quickly.
Conclusion

Why use computer assistance?

- Solve the problem of the verifying a huge amount of configurations.
Conclusion

Why use computer assistance?

- Solve the problem of the verifying a huge amount of configurations.
- Find problematic configurations (non reducible and non dischargeable) immediately.
Conclusion

Why use computer assistance?

- Solve the problem of the verifying a huge amount of configurations.
- Find problematic configurations (non reducible and non dischargeable) immediately.
- Verify a proof quickly.