Requêtes d'appartenance et autres méthodes "géométriques" pour trouver le diamètre d'un graphe

G. Ducoffe

Université de Bucarest & I.C.I. Bucarest, Roumanie

18 Novembre 2020

Travail réalisé en collaboration avec David Coudert, Feodor Dragan, Michel Habib, Alexandru Popa et Laurent Viennot.

22^e Journées Graphes et Algorithmes (JGA 2020)

Problem considered

Problem (DIAMETER)

Input: A connected <u>unweighted</u> graph G = (V, E). Output: diam(G) = max. # of edges on a shortest path.

- In $\mathcal{O}(nm)$ using *n* BFS [folklore] Seems to require $\Theta(n)$ BFS to be solved on general graphs
- In $\tilde{\mathcal{O}}(n^{2.373})$ time using fast matrix multiplication [Seidel, STOC'92]

In both cases it is a reduction to APSP: $\Omega(n^2)$ time, even on sparse graphs.

Can we do better?

Lower bound [Roditty and V. Williams, STOC'13]

Under SETH we cannot solve DIAMETER in $\mathcal{O}(n^{2-\epsilon})$ time

Partition variables in two halves A, B

 S_A : all $2^{n/2}$ truth tables for A S_B : all $2^{n/2}$ truth tables for B

Graph $G = (S_A \cup S_B \cup C, E)$

• C: clauses

c ∈ C and a ∈ S_A adjacent iff a does not satisfy c

 $(x_1 \mathbf{v} \ \overline{x}_2 \mathbf{v} x_4) \mathbf{\wedge} (x_1 \mathbf{v} \overline{x}_3 \mathbf{v} \overline{x}_4) \mathbf{\wedge} (x_2 \mathbf{v} \overline{x}_3 \mathbf{v} x_4)$

DIAMETER in $\mathcal{O}(N^{2-\epsilon}) \Longrightarrow \text{SAT}$ in $\mathcal{O}((2^{n/2})^{2-\epsilon}) = \mathcal{O}(2^{(1-\epsilon')n})$

Lower bound cont'd

• We may reinterpret this construction as a "'disjoint sets" problem, sometimes called ORTHOGONAL VECTORS (OV). longtime-known relationship with DIAMETER [Chepoi and Dragan, 1992]

- Hardness results obtained for constant diameter (2 vs. 3)
- The construction works for **bipartite graphs** and **split graphs**[Borassi et al., *ETCS'16*]

• (Using Sparsification Lemma) $\forall \varepsilon, \exists c \text{ s.t.}$ we cannot solve DIAMETER in $\mathcal{O}(n^{2-\varepsilon})$ -time on split graphs with clique-number $\leq c \cdot \log n$.

Breaking the quadratic barrier

- (Almost) all conditional lower bounds for $\mathrm{DIAMETER}$ start with a reduction from OV

(Open problem: find other obstructions to fast diameter computation)

• There are several graph classes where we can solve OV efficiently.

 \implies Does it imply fast diameter computation?

• Can we find a *unifying framework* in order to address this question for many graph classes at once?

(based on a few methods or properties)

Special graph classes – quest for (almost) linear-time algorithms

- Trees [Jordan, 1869]
- Outerplanar graphs [Farley and Proskurowski., DAM'80]
- Interval graphs [Olariu, IJCM'90]
- Dually chordal graphs [Brandstädt et al., DAM'98]
- Distance-hereditary graphs [Dragan and Nicolai, DAM'00]
- {claw,AT}-free graphs [Corneil et al., DAM'01]
- Plane triangulations and quadrangulations [Chepoi et al., SODA'02]
- Cactii [Ben-Moshe et al., TCS'07]

Special graph classes – quest for (almost) linear-time algorithms More recently: algorithms in $O(n^{2-\varepsilon})$ and $f(k)n^{1+o(1)}$ time – "FPT in P"

- Trees [Jordan, 1869]
- Outerplanar graphs [Farley and Proskurowski., DAM'80]
- Interval graphs [Olariu, IJCM'90]
- Dually chordal graphs [Brandstädt et al., DAM'98]
- Distance-hereditary graphs [Dragan and Nicolai, DAM'00]
- {claw,AT}-free graphs [Corneil et al., DAM'01]
- Plane triangulations and quadrangulations [Chepoi et al., SODA'02]
- Cactii [Ben-Moshe et al., TCS'07]

- Graphs of constant treewidth [Abboud et al., SODA'16]
- Planar graphs [Cabello, TALG'18]
- Graphs of constant modular-width/split-width [Coudert et al., SODA'18]
- (q, q 3)-graphs [Coudert et al., SODA'18]
- Graphs of diameter Θ(n) [Ducoffe, SOSA'19]

Special graph classes – quest for (almost) linear-time algorithms More recently: algorithms in $\mathcal{O}(n^{2-\varepsilon})$ and $f(k)n^{1+o(1)}$ time – "FPT in P"

- Trees [Jordan, 1869]
- Outerplanar graphs [Farley and Proskurowski., DAM'80]
- Interval graphs [Olariu, IJCM'90]
- Dually chordal graphs [Brandstädt et al., DAM'98]
- Distance-hereditary graphs [Dragan and Nicolai, DAM'00]
- {claw,AT}-free graphs [Corneil et al., DAM'01]
- Plane triangulations and quadrangulations [Chepoi et al., SODA'02]
- Cactii [Ben-Moshe et al., TCS'07]

- Graphs of constant treewidth [Abboud et al., SODA'16]
- Planar graphs [Cabello, TALG'18]
- Graphs of constant modular-width/split-width [Coudert et al., SODA'18]
- (q, q 3)-graphs [Coudert et al., SODA'18]
- Graphs of diameter Θ(n) [Ducoffe, SOSA'19]

Is there a common (exploitable) property to all/most positive cases?

Special graph classes – quest for (almost) linear-time algorithms More recently: algorithms in $O(n^{2-\varepsilon})$ and $f(k)n^{1+o(1)}$ time – "FPT in P"

- Trees [Jordan, 1869]
- Outerplanar graphs [Farley and Proskurowski., DAM'80]
- Interval graphs [Olariu, IJCM'90]
- Dually chordal graphs [Brandstädt et al., DAM'98]
- Distance-hereditary graphs [Dragan and Nicolai, DAM'00]
- {claw,AT}-free graphs [Corneil et al., DAM'01]
- Plane triangulations and quadrangulations [Chepoi et al., SODA'02]
- Cactii [Ben-Moshe et al., TCS'07]

- Graphs of constant treewidth [Abboud et al., SODA'16]
- Planar graphs [Cabello, TALG'18]
- Graphs of constant modular-width/split-width [Coudert et al., SODA'18]
- (q, q 3)-graphs [Coudert et al., SODA'18]
- Graphs of diameter Θ(n) [Ducoffe, SOSA'19]

Is there a common (exploitable) property to all/most positive cases?

22^e Journées Graphes et Algorithmes (JGA 2020)

Special graph classes – quest for (almost) linear-time algorithms More recently: algorithms in $O(n^{2-\varepsilon})$ and $f(k)n^{1+o(1)}$ time – "FPT in P"

- Trees [Jordan, 1869]
- Outerplanar graphs [Farley and Proskurowski., DAM'80]
- Interval graphs [Olariu, IJCM'90]
- Dually chordal graphs [Brandstädt et al., DAM'98]
- Distance-hereditary graphs [Dragan and Nicolai, DAM'00]
- {claw,AT}-free graphs [Corneil et al., DAM'01]
- Plane triangulations and quadrangulations [Chepoi et al., SODA'02]
- Cactii [Ben-Moshe et al., TCS'07]

- Graphs of constant treewidth [Abboud et al., SODA'16]
- Planar graphs [Cabello, TALG'18]
- Graphs of constant modular-width/split-width [Coudert et al., SODA'18]
- (q, q 3)-graphs [Coudert et al., SODA'18]
- Graphs of diameter ⊖(n) [Ducoffe, SOSA'19]

Is there a common (exploitable) property to all/most linear-time solvable cases?

22^e Journées Graphes et Algorithmes (JGA 2020)

Range searching Geometrical point of view

Global input: a collection P of objects in some space E^d

(points, lines, ...)

Range query: for some region $q \subseteq E^d$, report/count the objects in $P \cap q$

Range searching

Combinatorial point of view

Global input: hypergraph $\mathcal{H} = (V, E)$

- possibly infinite
- region = hyperedge

Vertex-weights $(w_v)_{v \in V}$ taken in a (semi)group (A, \oplus)

Range query: for $e \in E$, compute the sum $\sum_{v \in e} w_v = w_{v_1} \oplus w_{v_2} \oplus \ldots$

Classic examples of range queries

- **Counting**: for $e \in E$, compute |e|
 - $\forall v \in V, w_v = 1.$
 - Semigroup $(\mathbb{N}, +)$.
- **Sum**: for $e \in E$, compute $\sum_{v \in e} w_v$
 - Semigroup $(\mathbb{N}, +)$.
- **Maximum**: for $e \in E$, compute $v \in E$ s.t. w_v is maximized
 - Semigroup (ℕ, max).

$DIAMETER \propto Range searching$

Define: $N^k[v] = \{u \in V \mid dist_G(v, u) \le k\}.$

The **ball hypergraph** of G is: $\mathcal{B}(G) = (V, \{N^k[v] \mid v \in V, k \ge 0\}).$

• Decide whether $diam(G) \leq k$?

$$\longrightarrow orall v \in V$$
, check if $|N^k(v)| = n$

 \longrightarrow reduces to *n* **counting** range queries

<u>Remark</u>: no direct access to $\mathcal{B}(G)$ (only to G)

VC-dimension

Let $\mathcal{H} = (X, \mathcal{R})$ be a hypergraph/range space/set family (possibly infinite)

- $S \subseteq X$ is shattered if $\{S \cap R \mid R \in \mathcal{R}\} = 2^{S}$
- The VC-dimension of \mathcal{H} is the largest cardinality of a shattered subset [Vapnik and Chervonenkis, 1971].

 $S = \{A, E\}$ is shattered, VC-dim = 2

• Several applications in Learning Theory and Computational Geometry.

Theorem (Chazelle and Welzl, D & CG 1989)

If $VCdim(\mathcal{H}) = d$ then, after polytime pre-processing, range queries can be answered in $\tilde{\mathcal{O}}(n^{1-2^{-d}})$ time.

VC-dimension of graphs

A graph is a hypergraph of VC-dimension $\leq 2 \dots$

The **neighbourhood hypergraph** of G = (V, E) is defined as $\mathcal{N}(G) = (V, \{N_G[v] \mid v \in V\}).$

$$\mathsf{VC} ext{-dim}({\mathcal{G}}) =^{def} \mathsf{VC} ext{-dim}(\mathcal{N}({\mathcal{G}}))$$

VC-dimension of graphs

Related work

- First introduced by [Haussler and Welzl, DCG'87]
- At most log *n* for any *n*-vertex graph.
- Computation is LogNP-hard [Papadimitriou and Yannakakis, JCSS'96] and W[1]-hard [Downey et al., COLT'93].
- Constant for many graph classes:
 - proper minor-closed [Anthony et al., DM'95]
 - interval, girth \geq 5, unit disk, ... [Bousquet et al., SIDMA'15]
 - graphs of constant interval number [Ducoffe et al., COCOA'19]
- Also studied for other remarkable subsets such as cliques, matchings, cycles, etc. [Kranakis et al., DAM'87]

(more on that on next slide...)

Generalization: distance VC-dimension

Recall:
$$N^k[v] = \{u \in V \mid dist_G(v, u) \le k\}.$$

• The **k-neighbourhood hypergraph** of *G* is: $\mathcal{N}_k(G) = (V, \{N^k[v] \mid v \in V\}).$

k-dist-VC-dim(G) = def VC-dim($\mathcal{N}_k(G)$)

• The **ball hypergraph** of *G* is: $\mathcal{B}(G) = (V, \{N^k[v] \mid v \in V, k \ge 0\}).$

dist-VC-dim(G) = def VC-dim($\mathcal{B}(G)$)

Generalization: distance VC-dimension

Related work

Notion first studied by [Chepoi et al., DCG'07]

- Constant distance VC-dimension for:
 - \longrightarrow proper minor-closed graph classes [Chepoi et al., DCG'07].
 - \longrightarrow bounded clique-width graph classes [Bousquet and Thomassé, DM'15].
- A monotone graph class \mathcal{G} is <u>nowhere dense</u> iff $\forall k$, $\sup_{G \in \mathcal{G}} k$ -dist-VC-dim $(G) < +\infty$ [Nešetřil and Ossona de Mendez, RMS'16]
- Erdös-Posa property for the hereditary classes \mathcal{G} of constant distance VC-dimension [Bousquet and Thomassé, DM'15]. In particular, if $G \in \mathcal{G}$ and $diam(G) \leq 2R$, then V(G) can be covered by $\mathcal{O}(1)$ balls of radius R.
- Applications in distributed distance computations in planar graphs [Li and Parter, STOC'19].

Our results

[D., Habib, Viennot; SODA'20]

Theorem

For every d > 0, there exists a constant $\varepsilon_d \in (0; 1)$ such that in <u>deterministic</u> time $\tilde{\mathcal{O}}(mn^{1-\varepsilon_d})$ we can decide whether a graph of **VC-dimension** at most d has diameter two.

Our results

[D., Habib, Viennot; SODA'20]

Theorem

For every d > 0, there exists a constant $\varepsilon_d \in (0; 1)$ such that in <u>deterministic</u> time $\tilde{\mathcal{O}}(mn^{1-\varepsilon_d})$ we can decide whether a graph of **VC-dimension** at most d has diameter two.

Theorem

There exists a <u>Monte Carlo</u> algorithm such that, for every positive integers d and k, we can decide whether a graph of **distance VC-dimension** at most d has diameter at most k. The running time is in $\tilde{\mathcal{O}}(k \cdot mn^{1-\varepsilon_d})$, where $\varepsilon_d \in (0; 1)$ only depends on d.

Our results

[D., Habib, Viennot; SODA'20]

Theorem

For every d > 0, there exists a constant $\varepsilon_d \in (0; 1)$ such that in <u>deterministic</u> time $\tilde{\mathcal{O}}(mn^{1-\varepsilon_d})$ we can decide whether a graph of **VC-dimension** at most d has diameter two.

Theorem

There exists a <u>Monte Carlo</u> algorithm such that, for every positive integers d and k, we can decide whether a graph of **distance VC-dimension** at most d has diameter at most k. The running time is in $\tilde{\mathcal{O}}(k \cdot mn^{1-\varepsilon_d})$, where $\varepsilon_d \in (0; 1)$ only depends on d.

Theorem (simplified)

The diameter of a H-minor free graph can be computed in time $\tilde{O}(n^{2-\varepsilon_H})$, with a <u>Monte Carlo</u> algorithm, where $\varepsilon_H \in (0; 1)$ is a constant that only depends on H.

Some Remarks

- All our results also hold for radius computation.
- Our algorithms are "combinatorial" (basically, only using BFS and binary research trees).
- We do not need to know the (distance) VC-dimension!
- We only use randomization for computing ε -nets (more on that later).
- $\varepsilon_d \rightarrow 0$ exponentially fast (e.g., $\varepsilon_4 \leq 1/287 \ll 1/3$).

Consider a split graph $G = (K \cup S, E)$ of clique-number $|K| = \log^{\mathcal{O}(1)}(n)$.

Consider a split graph $G = (K \cup S, E)$ of clique-number $|K| = \log^{\mathcal{O}(1)}(n)$.

• Two vertices $s, t \in S$ are *twins* if N(u) = N(v).

Consider a split graph $G = (K \cup S, E)$ of clique-number $|K| = \log^{\mathcal{O}(1)}(n)$.

- Two vertices $s, t \in S$ are *twins* if N(u) = N(v).
- We can keep one vertex per twin class [Coudert et al., SODA'18].

Consider a split graph $G = (K \cup S, E)$ of clique-number $|K| = \log^{\mathcal{O}(1)}(n)$.

- Two vertices $s, t \in S$ are *twins* if N(u) = N(v).
- We can keep one vertex per twin class [Coudert et al., SODA'18].

(Sauer-Shelah-Perles) VC-dim $(\mathcal{H}) = d \implies \#\{Y \cap R \mid R \in \mathcal{R}\} = \mathcal{O}(|Y|^d).$ \longrightarrow There are only $\mathcal{O}(|\mathcal{K}|^d) = \log^{\mathcal{O}(d)}(n)$ twin classes!

For a hypergraph $\mathcal{H} = (X, \mathcal{R})$, a spanning path = a total order over X.

For a hypergraph $\mathcal{H} = (X, \mathcal{R})$, a spanning path = a total order over X.

For a hypergraph $\mathcal{H} = (X, \mathcal{R})$, a spanning path = a total order over X.

For a hypergraph $\mathcal{H} = (X, \mathcal{R})$, a spanning path = a total order over X.

For a hypergraph $\mathcal{H} = (X, \mathcal{R})$, a spanning path = a total order over X.

For a hypergraph $\mathcal{H} = (X, \mathcal{R})$, a spanning path = a total order over X.

For a hypergraph $\mathcal{H} = (X, \mathcal{R})$, a spanning path = a total order over X.

For a hypergraph $\mathcal{H} = (X, \mathcal{R})$, a spanning path = a total order over X.

- stabbing number \sim max. # of intervals to represent a hyperedge

Every hypergraph of VC-dim $\leq d$ has a spanning path of stabbing number $\tilde{\mathcal{O}}(n^{1-1/2^d})$ [Chazelle and Welzl, DCG'89]

• Compute a spanning path of stabbing number t for $\mathcal{N}(G)$.

- Compute a spanning path of stabbing number t for $\mathcal{N}(G)$.
- Every vertex v collects the ends I(v) of the O(t) intervals for N[v].

- Compute a spanning path of stabbing number t for $\mathcal{N}(G)$.
- Every vertex v collects the ends I(v) of the O(t) intervals for N[v].
- Every vertex v collects the sets $I(u), \forall u \in N[v]$.

- Compute a spanning path of stabbing number t for $\mathcal{N}(G)$.
- Every vertex v collects the ends I(v) of the O(t) intervals for N[v].
- Every vertex v collects the sets $I(u), \forall u \in N[v]$.
- Check whether
- $\forall v \in V, \bigcup_{u \in N[v]} I(u) = V.$

- Compute a spanning path of stabbing number t for $\mathcal{N}(G)$.
- Every vertex v collects the ends I(v) of the O(t) intervals for N[v].
- Every vertex v collects the sets $I(u), \forall u \in N[v]$.
- Check whether $\forall v \in V, \bigcup_{u \in N[v]} I(u) = V.$

Complexity: Spanning Path Computation $+ \sum_{v} (deg(v) + 1) \cdot O(t)$ = Spanning Path Computation + O(tm).

Fast Computation of a Suboptimal Spanning Path For the neighbourhood hypergraph

• The proof of [Chazelle and Welzl, DCG'89] is constructive but leads to an $\tilde{\mathcal{O}}(n^3m)$ -time algorithm.

• A "classic" trick: arbitrarily partition V into $\mathcal{O}(n^{\eta})$ -size subsets V_1, V_2, \ldots, V_p , for some $p = \mathcal{O}(n^{1-\eta})$.

 \longrightarrow Apply the previous algorithm to each of the subhypergraphs $\mathcal{H}_i = {}^{def} (V_i, \{N_G[v] \cap V_i \mid v \in V\}).$

- Every \mathcal{H}_i has VC-dim $\leq d \Longrightarrow$ Stabbing number in $\mathcal{O}(n^{1-\eta}) \times \tilde{\mathcal{O}}(n^{\eta(1-1/2^d)}) = \tilde{\mathcal{O}}(n^{1-\eta/2^d}).$
- (Sauer's Lemma) Every \mathcal{H}_i has only $\mathcal{O}(n^{\eta \cdot d})$ distinct hyperedges \Longrightarrow lower running time.

Generalization to k-neighbourhood hypergraphs

Main Issue: we cannot compute $\mathcal{N}_k(G)$.

Theorem (ε -net)

If VC-dim(\mathcal{H}) $\leq d$, then any random subset of size $\approx \frac{d}{\varepsilon} \log n$ intersects all hyperedges of cardinality $\geq \varepsilon \cdot n$.

Algorithm:

- Use a random subset S as above in order to partition the vertices into equivalence classes: u ~ v ⇐⇒^{def} N^k[u] ∩ S = N^k[v] ∩ S.
- (Sauer's Lemma) There are only $\tilde{\mathcal{O}}(\varepsilon^{-d})$ equivalence classes V_1, V_2, \ldots, V_q .
- (ε -net) $u \sim v \Longrightarrow |N^k[u]\Delta N^k[v]| = \mathcal{O}(\varepsilon n)$. We keep one representative $v_i \in V_i$ per equivalence class. Let $\mathcal{H}_k = {}^{def} (V, \{N^k[v_i] \mid 1 \le i \le q\}).$
- Deduce a spanning path for $\mathcal{N}_k(G)$ from \mathcal{H}_k and $\mathcal{N}_{k-1}(G)$.

Some final Remarks

- The stabbing numbers of \mathcal{H}_k and $\mathcal{N}_k(G)$ are the same up to an additive $\mathcal{O}(\varepsilon n)$ error term.
- \longrightarrow A "good" spanning path of \mathcal{H}_k also works for $\mathcal{N}_k(G)$.
- The hard part consists in computing the interval representation of all the *k*-neighbourhoods.
- \longrightarrow We need to compute $\forall i, \forall u \in V_i \setminus \{v_i\}, N^k[v_i]\Delta N^k[u].$
 - This can be done efficiently using a "good" spanning path for N_{k-1}(G) (same trick as for the diameter-two problem).
 - For *H*-minor free graphs, we can use instead an <u>*r*-division</u>. [Federickson, J. of Computing'87]

Take-home

• A new geometric framework for "fast" diameter computation on unweighted graphs.

• Generalizes many previously known cases + extends to all new classes (*e.g.*, proper minor-closed)

Conjecture: The diameter can be computed in $\tilde{\mathcal{O}}(mn^{1-\varepsilon_d})$ time in the class of graphs of VC-dimension at most d, for some absolute constant ε_d .

 \longrightarrow True for chordal graphs [Ducoffe & Dragan, Networks 2020] and classes of polynomial expansion.

Toward (almost) linear-time algorithms

- Some drawbacks of the VC-dimension approach:
 - Running time is barely sub-quadratic
 - It does not cover all the positive cases

Example: It only considers graphs of treewidth O(1). But there exists a quasi-linear-time algorithm for computing the diameter within graphs of treewidth $o(\log n)$ [Abboud et al., SODA'16].

Can we still use range searching in order to explain (and generalize) these results?

Orthogonal Range searching

The space has a fixed dimension k: \mathbb{Z}^k

Hyperedge = \mathbf{box} = Cartesian product of k intervals

$$(I_1, u_1) \times (I_2, u_2) \times \ldots \times (I_k, u_k)$$

- Each interval can be closed/open/half-open
- We allow $l_i = -\infty$, resp. $u_i = +\infty$.

Allows faster resolution than general range searching

An old friend: Binary research trees

Pre-processing time: $\mathcal{O}(n \log n)$ Query time: $\mathcal{O}(\log n)$ 1) Preprocess each node v for having $\sum_{u \in T_v} w_u$

2) For
$$(l_1, u_1)$$
, s.t.
 $l_1 \leq root \leq u_1$

- Compute the least $x \ge l_1$ (left)
- Compute the largest $y \le u_1$ (right)
- Sum all the right/left subtrees on the path from x/y to the root

Generalization: k-range trees

Global input: static set V of k-dimensional points $\overrightarrow{q} = (q_1, q_2, \dots, q_k)$

 $\begin{cases} C(n,1) = \mathcal{O}(n \log n) \text{ (balanced binary search tree)} \\ C(n,k) = C(n,k-1) + C(\lfloor n/2 \rfloor,k) + C(\lceil n/2 \rceil,k) + \mathcal{O}(n) \end{cases}$

 \implies in $\mathcal{O}(n \log^k(n))$ -time

better analysis: $n\binom{k+\lceil \log n \rceil}{k} = 2^{\mathcal{O}(k)} n^{1+o(1)}$ [Bringmann et al., IPEC'18] 22^e Journées Graphes et Algorithmes (JGA 2020) 28 /

Answering to a query

For the ranges (I_i, u_i) , $1 \le i \le k$.

- Find \overrightarrow{x} s.t. $x_1 \ge l_1$ minimized;
- Find \overrightarrow{y} s.t. $y_1 \leq u_i$ maximized;
- Locate the nearest common ancestor of $\overrightarrow{x}, \overrightarrow{y}$. Along the $\overrightarrow{x}, \overrightarrow{y}$ -path, do a (k 1)-range query for each right/left subtrees.

 $\implies \text{in } \mathcal{O}(\log^k n) \text{-time}$ better analysis: $\binom{k+\lceil \log n \rceil}{k} = 2^{\mathcal{O}(k)} n^{o(1)}$ [Bringmann et al., IPEC'18]

Applications to **DIAMETER**: **Tree decompositions**

Representation of a graph as a tree preserving connectivity properties.

nodes of the tree \sim subgraphs of *G* (*bags*)

the decomposition spans all the vertices and all the edges

edges of the tree \sim separators of *G*

The maximum distance between disconnected vertices

- S a small-size separator.
- 1) Fix $s \in S$.
- 2) Define $\forall v \notin S, \overrightarrow{p_s}(v) = (dist_G(v, s') dist_G(v, s))_{s' \in S \setminus \{s\}}$.
- 3) $\forall v \notin S$, compute $u \notin S$ s.t.:
 - S is an uv-separator;
 - $\overrightarrow{p_s}(u) \ge -\overrightarrow{p_s}(v) \iff dist_G(u,v) = dist_G(u,s) + dist_G(s,v));$
 - dist_G(u, s) is maximized.
- \implies textbook application of |S|-range tree!

maximum range queries

Application: Treewidth

minimizing the size of bags
width = max size of bags -1
treewidth = min width of tree decompositions

5-approximation in $2^{\mathcal{O}(k)} \cdot n$ -time [Bodlaender et al., SICOMP 2016]

Optimal diameter computation within bounded-treewidth graph classes

1) Compute a tree-decomposition of width $\mathcal{O}(tw(G))$ – in $2^{\mathcal{O}(k)}n$ time

2) Find a balanced separator of size $\mathcal{O}(k)$ – centroid in the tree-decomposition

3) Compute the maximum distance between disconnected vertices – in $2^{O(k)}n^{1+o(1)}$ time with range trees

4) Recurse on each component - add weighted edges to preserve distances

Complexity: $2^{\mathcal{O}(k)} n^{1+o(1)}$ time

Optimal diameter computation within bounded-treewidth graph classes

1) Compute a tree-decomposition of width $\mathcal{O}(tw(G))$ – in $2^{\mathcal{O}(k)}n$ time

2) Find a balanced separator of size $\mathcal{O}(k)$ – centroid in the tree-decomposition

3) Compute the maximum distance between disconnected vertices – in $2^{O(k)}n^{1+o(1)}$ time with range trees

4) Recurse on each component - add weighted edges to preserve distances

Complexity: $2^{\mathcal{O}(k)} n^{1+o(1)}$ time

This is sharp! DIAMETER is SETH-hard for split graphs of clique-number $\mathcal{O}(\log n)$.

Another application: Giant diameter graphs

Problem (*h*-DIAMETER)

Input: A graph G = (V, E); a constant $h \in (0; 1)$. Output: The exact diameter of G if it is at least hn (otherwise, any value < hn).

Some motivations:

- A common topic in Extremal Graph Theory
- Linear structure of some chemical/biological networks
- The OV construction applies to "small" diameter

Related work

The problem was introduced by [Damaschke, IWOCA'16]

Conjecture: For any h, we can solve h-DIAMETER in quasi linear time.

- \longrightarrow Partial progress:
 - Linear-time algorithm for h > 1/2 [Damaschke, *IWOCA'16*].

(Heavily relies on biconnected decomposition)

- In randomized $\mathcal{O}(m + n \log n)$ -time if h > 1/3.
- In <u>randomized</u> $O(n^2/h)$ -time and in deterministic $\Omega(n^2/h^3)$ -time. <u>Disclaimer</u>: I am completely unsure about the constants...

Results [D., SOSA'19]

- A <u>Monte Carlo</u> algorithm in time $\mathcal{O}(\frac{1}{h} \cdot (m + 2^{\mathcal{O}(\frac{1}{h})}n^{1+o(1)}))$. (1 BFS from a random vertex + orthogonal range queries)
- A <u>deterministic</u> algorithm in time $\mathcal{O}(\frac{1}{h^2} \cdot (m + 2^{\mathcal{O}(\frac{1}{h})}n^{1+o(1)}))$. $(\mathcal{O}(\frac{1}{h})$ BFS + orthogonal range queries)

Our algorithms are both simpler and faster than previous work (but have practicality issues).

• Conditional LB for $h = o(1/\log n)$.

Overall Approach

• **Observation**: $\exists S, |S| \leq 1/h$ disconnecting a diametral pair.

(simple counting on BFS layers)

\implies how to find S?

A major source of difficulty in [Damaschke, IWOCA'16]

22^e Journées Graphes et Algorithmes (JGA 2020)

A (Simple!) Observation

• We can relax the constraint on S: we only need |S| = O(1/h).

Overall strategy: For an (unknown) diametral pair (x, y) compute $v \in V$ s.t. $dist_G(v, x) \leq hn/3$ (and so, $dist_G(v, y) \geq 2hn/3$).

 \implies We can choose S between layers hn/3 and 2hn/3 in BFS(v).

$$\mathbb{P}r_{v}[dist_{G}(v,x) \leq hn/3] \geq h/3$$

Result #1: Monte Carlo Algorithm

Algorithm GIANTDIAMETER

- 1: Let $v \in V$ picked u.a.r.
- 2: if $ecc_G(v) < 2hn/3$ then
- 3: return $ecc_G(v)$.
- 4: Find a layer $i \in \{ \lceil hn/3 \rceil, \dots, \lfloor 2hn/3 \rfloor \}$ s.t. $|L_i(v)| \leq 3/h$.
- 5: Compute $D_i := \max\{dist_G(x, y) \mid L_i(v) \text{ is an } xy\text{-separator}\}.$
- 6: return $\max\{D_i\} \cup \{ecc_G(u) \mid u \in L_i(v)\}.$
- Correct if $dist_G(v, x) \le hn/3$ or $dist_G(v, y) \le hn/3$;
- The bottleneck is the computation of D_i (solved using 3/h BFS + orthogonal range queries)

<u>Remark</u>: Before running the algorithm, we may compute a 2-approx for h using a single BFS.

Result #2: Derandomization

Definition

S is a *k*-distance dominating set $\iff \forall v \notin S, dist_G(v, S) \leq k$.

- If S is a (hn/3)-distance dominating set then, we can solve h-DIAMETER by running |S| times Algorithm GIANTDIAMETER.
- (Meir and Moon, *J. of Math. 1975*) Every graph has a *k*-distance dominating set of size $\leq \left\lceil \frac{n}{k+1} \right\rceil$.
- 1) Compute a spanning tree T and a diametral pair x, y of T
- 2) Take one layer over k + 1 in a BFS starting at x.

Result #3: A Conditional Lower-bound

Repeat *n* times the clique of an arbitrary split graph (matching between every two consecutive copies)

 $\forall \varepsilon, \exists c \text{ s.t. we cannot solve } (\frac{1}{c \cdot \log n}) \text{-} \text{DIAMETER in } \mathcal{O}(n^{2-\varepsilon}) \text{-time.}$

Computing diameters below $\Theta(n/\log n)$ **is hard!**

More applications of orthogonal range searching Ongoing work

<u>A first observation</u>: Small (balanced) separators are often used in the design of **distance-labeling schemes**

 \Longrightarrow How about applying orthogonal range searching to more general distance oracles?

Partial results:

• For **hub labels** of size $\leq k$

application to graph classes of bounded expansion

• For embeddings in the Cartesian product of $\leq k$ trees

application to subclasses of median graphs

• For some variation of edge-hub labeling

application to the graphs of clique-width at most k

In $\mathcal{O}(2^{\mathcal{O}(k)}(n+m)^{1+o(1)})$ time **and** this is sharp under SETH

Short conclusion

• Range searching techniques allow to handle the DIAMETER problem on **many** important graph classes, in a unifying and "efficient" way.

• Improved special cases of range searching lead to a better understanding of the (almost) linear-time solvable instances for DIAMETER

• Some interesting connections exist between faster diameter computation and important geometric properties

(VC-dimension, Helly-type properties)

Merci de votre attention!

