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Problem considered

Problem (DIAMETER)

Input: A connected unweighted graph G = (V, E).
Output: diam(G) = max. # of edges on a shortest path.

e In O(nm) using n BFS [folklore]

Seems to require ©(n) BFS to be solved on general graphs

e In O(n*373) time using fast matrix multiplication [Seidel, STOC'92]

In both cases it is a reduction to APSP: (n?) time, even on sparse graphs.

Can we do better?
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Lower bound
[Roditty and V. Williams, STOC'13]

Under SETH we cannot solve DIAMETER in O(n?~¢) time
Partition variables in two halves A, B

Sa: all 27/2 truth tables for A
Sg: all 2"/2 truth tables for B

Graph G = (54U Sg U C, E)

e C: clauses

@ c€ C and a € 54 adjacent iff a
does not satisfy ¢

diam(G) = 3 <= satisfiable (X,V 3, V Xq) A (X, VX3V Xa) A (XpvX3vXa)

DIAMETER in O(N?7¢) = SAT in ()((2!7/2)2*6) — (9(2(1*6’)'7)
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Lower bound cont'd

o We may reinterpret this construction as a “‘disjoint sets” problem,
sometimes called ORTHOGONAL VECTORS (OV).

longtime-known relationship with DIAMETER. [Chepoi and Dragan, 1992]
e Hardness results obtained for constant diameter (2 vs. 3)

e The construction works for bipartite graphs and split graphs
[Borassi et al., ETCS’16]

e (Using Sparsification Lemma) Ve,3c s.t. we cannot solve DIAMETER in
O(n?~¢)-time on split graphs with clique-number < c - log n.
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Breaking the quadratic barrier

e (Almost) all conditional lower bounds for DIAMETER start with a
reduction from OV

(Open problem: find other obstructions to fast diameter computation)

e There are several graph classes where we can solve OV efficiently.

= Does it imply fast diameter computation?

e Can we find a unifying framework in order to address this question
for many graph classes at once?

(based on a few methods or properties)
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State of the art

Special graph classes — quest for (almost) linear-time algorithms

@ Trees [Jordan, 1869]

@ Outerplanar graphs [Farley and
Proskurowski., DAM’80]

@ Interval graphs [Olariu, 1JCM’90]

@ Dually chordal graphs [Brandstédt et al.,
DAM’98]

@ Distance-hereditary graphs [Dragan and
Nicolai, DAM’00]

@ {claw,AT}-free graphs [Corneil et al.,
DAM'01]

@ Plane triangulations and quadrangulations
[Chepoi et al., SODA’02]

@ Cactii [Ben-Moshe et al., TCS’'07]
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Graphs of constant treewidth [Abboud et
al., SODA’16]

Planar graphs [Cabello, TALG’18]

Graphs of constant
modular-width/split-width [Coudert et
al., SODA’18]

(g, q — 3)-graphs [Coudert et al.,
SODA’18]

Graphs of diameter ©(n) [Ducoffe,
SOSA’19]
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Y
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Range searching

Geometrical point of view

Global input: a collection P of objects in some space E¢
(points, lines, ...)

Range query: for some region g C E9, report/count the objects in PN g
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Range searching

Combinatorial point of view

Global input: hypergraph H = (V, E)

@ possibly infinite

@ region = hyperedge &@

Vertex-weights (w, ),c\ taken in a
(semi)group (A, D)

v
Range query: for e € E, compute the !

UM D e Wy = Wy, Wi, O ...
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Classic examples of range queries

e Counting: for e € E, compute |e|
eVveV, w =1
e Semigroup (N, +).
e Sum: for e € E, compute > . w,
e Semigroup (N, +).
e Maximum: for e € E, compute v € E s.t. w, is maximized

e Semigroup (N, max).
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DIAMETER o Range searching
Define:  N*[v] = {u € V| distg(v, u) < k}.

The ball hypergraph of G is:  B(G) = (V,{NX[v] | v € V, k > 0}).

e Decide whether diam(G) < k ?

— Vv € V, check if [N¥(v)| = n

— reduces to n counting range
queries 2 I ®OO® ® ®

Remark: no direct access to B(G) (only to G)
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VC-dimension
Let H = (X, R) be a hypergraph/range space/set family (possibly infinite)
o S C X is shattered if {SNR|Re R} =2°

@ The VC-dimension of H is the largest cardinality of a shattered
subset [Vapnik and Chervonenkis, 1971].

C BlorciRcRIoIGINCEL X0
@0 % ® o e © ® e

S = {A, E} is shattered, VC-dim = 2

e Several applications in Learning Theory and Computational Geometry.

Theorem (Chazelle and Welzl, D & CG 1989)

If VCdim(H) = d then, after polytime pre-processing, range queries can be
answered in O(n*=2"") time.
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VC-dimension of graphs

A graph is a hypergraph of VC-dimension <2 ...

The neighbourhood hypergraph of G = (V, E) is defined as
N(G) = (V,{Ng[v] | v € V}).

VC-dim(G) =9¢f VC-dim(N(G))

®
i
AV
SRIoICHICRI oXCNcRICNe
0 I ©6 % @ @ 6o
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VC-dimension of graphs

Related work

e First introduced by [Haussler and Welzl,DCG’87]

e At most log n for any n-vertex graph.
e Computation is LogNP-hard [Papadimitriou and Yannakakis, JCSS'96]
and W/[1]-hard [Downey et al., COLT'93].

e Constant for many graph classes:

@ proper minor-closed [Anthony et al., DM’95]
@ interval, girth > 5, unit disk, ... [Bousquet et al., SIDMA'15]
@ graphs of constant interval number [Ducoffe et al., COCOA'19]
e Also studied for other remarkable subsets such as cliques, matchings,
cycles, etc. [Kranakis et al., DAM’'87]
(more on that on next slide. . .)
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Generalization: distance VC-dimension

Recall:  NK[v] = {u € V | distg(v,u) < k}.

e The k-neighbourhood hypergraph
of Gis:  Ni(G) = (V,{NK[v] | veV}).

-
k-dist-VC-dim(G) =" VC-dim(Nk(G))
k & o

oo 2

k=1

e The ball hypergraph of G is:
B(G) = (V.{N“[v] | v € V, k > 0}).

=2 IO O® ® ©

dist-VC-dim(G) =" VC-dim(B(G))
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Generalization: distance VC-dimension

Related work
Notion first studied by [Chepoi et al., DCG’07]

e Constant distance VC-dimension for:
— proper minor-closed graph classes [Chepoi et al., DCG'07].

— bounded clique-width graph classes [Bousquet and Thomassé, DM’15].

e A monotone graph class G is nowhere dense iff
vk, su PGeg k-diSt—VC—dim(G) < 400 [Nesetfil and Ossona de Mendez, RMS’16]

e FErdos-Posa property for the hereditary classes G of constant distance
VC-dimension [Bousquet and Thomassé, DM'15]. In particular, if G € G and
diam(G) < 2R, then V(G) can be covered by O(1) balls of radius R.

e Applications in distributed distance computations in planar graphs [Li
and Parter, STOC’19].
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Our results
[D., Habib, Viennot; SODA’20]

For every d > 0, there exists a constant 4 € (0;1) such that in
deterministic time O(mn*~%¢) we can decide whether a graph of
VC-dimension at most d has diameter two.
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Our results
[D., Habib, Viennot; SODA’20]
Theorem

For every d > 0, there exists a constant 4 € (0;1) such that in

deterministic time O(mn'~%¢) we can decide whether a graph of
VC-dimension at most d has diameter two.

Theorem

| \

There exists a Monte Carlo algorithm such that, for every positive integers
d and k, we can decide whether a graph of distance VC-dimension at
most d has diameter at most k. The running time is in O(k - mn*=5¢),
where e4 € (0; 1) only depends on d.

22¢ Journées Graphes et Algorithmes (JGA 2020) 16 / 44



Our results
[D., Habib, Viennot; SODA’20]
Theorem

For every d > 0, there exists a constant 4 € (0;1) such that in
deterministic time O(mn'~%¢) we can decide whether a graph of
VC-dimension at most d has diameter two.

Theorem

| \

There exists a Monte Carlo algorithm such that, for every positive integers
d and k, we can decide whether a graph of distance VC-dimension at
most d has diameter at most k. The running time is in @(k . mnl_ad),
where 4 € (0;1) only depends on d.

Theorem (simplified)

'I:he diameter of a H-minor free graph can be computed in time
O(n*=¢#), with a Monte Carlo algorithm, where ey € (0;1) is a constant
that only depends on H.
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Some Remarks

e All our results also hold for radius computation.

e Our algorithms are "combinatorial” (basically, only using BFS and
binary research trees).

e We do not need to know the (distance) VC-dimension!

e We only use randomization for computing e-nets (more on that later).

e c4 — 0 exponentially fast (e.g., €4 < 1/287 < 1/3).
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Warm-up: Split graphs with small clique

Consider a split graph G = (K U S, E) of clique-number |K| = Iogo(l)(n).
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Warm-up: Split graphs with small clique
Consider a split graph G = (K U S, E) of clique-number |K| = log®™M(n).

@ Two vertices s, t € S are twins if N(u) = N(v).
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Warm-up: Split graphs with small clique

Consider a split graph G = (K U S, E) of clique-number |K| = log®™M(n).

e Two vertices s, t € S are twins if N(u) = N(v).

@ We can keep one vertex per twin class [Coudert et al., SODA'18].

(Sauer-Shelah-Perles) VC—dim(’H) =d = #{Y NR ’ R e R} = O(‘Y|d)

— There are only O(|K|9) = log®{¥)(n) twin classes!
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Stabbing Number

For a hypergraph H = (X, R), a spanning path = a total order over X.

e stabbing number ~ max. # of intervals to represent a hyperedge
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Stabbing Number

For a hypergraph H = (X, R), a spanning path = a total order over X.

e stabbing number ~ max. # of intervals to represent a hyperedge

cRlorClRCRIcYGINCRIoNe
@0 U e % © 0 %

LN NON N N

Every hypergraph of VC-dim < d has a spanning path of stabbing number
O(n*=1/2") [Chazelle and Welzl, DCG'89]
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Application to the Diameter-Two Problem

I

e Compute a spanning path of
stabbing number t for N'(G).
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Application to the Diameter-Two Problem

e Compute a spanning path of
stabbing number t for N'(G).

[1.2], 6.6]

[1.2], [4.6]

e FEvery vertex v collects the ends LaL t651
I(v) of the O(t) intervals for N[v].

® O 0 6O ® ®E
®0 g% @ o % © @ B

®E®eo00 6 6

22¢ Journées Graphes et Algorithmes (JGA 2020) 20 / 44



Application to the Diameter-Two Problem

e Compute a spanning path of
stabbing number t for N'(G).

[1.2] [6.,6]

e FEvery vertex v collects the ends
I(v) of the O(t) intervals for N[v].

e Every vertex v collects the sets
I(u), Yu e N[v].

®e o006 6
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Application to the Diameter-Two Problem

e Compute a spanning path of
stabbing number t for N'(G).

[1.6]

e Every vertex v collects the ends ‘
I(v) of the O(t) intervals for N[v]. 0'3

O—O—0©O
e Every vertex v collects the sets & TIEA CRIcIGICHIC
I(u), Yu € N[v]. @0 % e e & @ @B
e Check whether ® ©®® 6 6

VV S V, UUEN[V] I(U) — V
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Application to the Diameter-Two Problem

e Compute a spanning path of
stabbing number t for N'(G).

[1.6]

e Every vertex v collects the ends ‘
I(v) of the O(t) intervals for N[v]. 0'3

O—0—06
e Every vertex v collects the sets & TIEA [CRECIGINCHIO)
I(u), Yu € N[v]. ®0® ® % @0 %
e Check whether ® ©e 6 6

VV S V, UUEN[V] I(U) — V

Complexity: Spanning Path Computation + " (deg(v) + 1) - O(t)
= Spanning Path Computation + O(tm).
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Fast Computation of a Suboptimal Spanning Path
For the neighbourhood hypergraph

e The proof of [Chazelle and Welzl, DCG'89] is constructive but leads to an
O(n3m)-time algorithm.

e A “classic” trick: arbitrarily partition V into O(n")-size subsets
Vi, Va,..., V,, for some p = O(nl=7).
— Apply the previous algorithm to each of the subhypergraphs
Hi =" (Vi, {Ng[v]n V; | v € V}).
o Every H; has VC-dim < d = Stabbing number in
O(nt1) x O(nA=1/29) = O(nt-1/2).

o (Sauer's Lemma) Every H; has only O(n"9) distinct hyperedges =—
lower running time.
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Generalization to k-neighbourhood hypergraphs

Main Issue: we cannot compute Ny (G).

Theorem (e-net)

If VC-dim(H) < d, then any random subset of size ~ < log n intersects all
hyperedges of cardinality > ¢ - n.

Algorithm:

@ Use a random subset S as above in order to partition the vertices into
equivalence classes: u ~ v <=9 NK[u]nS = N¥[v]N S.

o (Sauer's Lemma) There are only O(¢~?) equivalence classes
Vi, Vo, .., V.

o (cnet) u~ v == |NK[u]ANK[V]| = O(en). We keep one
representative v; € V; per equivalence class. Let
Hie =2 (V, (N¥w] | 1< < q)).

e Deduce a spanning path for Ny (G) from H, and Ny_1(G).
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Some final Remarks

e The stabbing numbers of H; and Ny (G) are the same up to an additive
O(en) error term.

— A "“good"” spanning path of Hj also works for Ny (G).

e The hard part consists in computing the interval representation of all
the k-neighbourhoods.

— We need to compute Vi,Vu € Vi \ {v;}, N¥[v;]AN¥[u].

@ This can be done efficiently using a “good” spanning path for
Nk_1(G) (same trick as for the diameter-two problem).

@ For H-minor free graphs, we can use instead an r-division.
[Federickson, J. of Computing’87]
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Take-home

e A new geometric framework for “fast” diameter computation on
unweighted graphs.

e Generalizes many previously known cases + extends to all new classes
(e.g., proper minor-closed)

Conjecture: The diameter can be computed in O(mn'~%4) time in the
class of graphs of VC-dimension at most d, for some absolute constant &.

— True for chordal graphs [Ducoffe & Dragan, Networks 2020] and classes of
polynomial expansion.
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Toward (almost) linear-time algorithms

e Some drawbacks of the VC-dimension approach:

@ Running time is barely sub-quadratic

@ It does not cover all the positive cases

Example: It only considers graphs of treewidth O(1). But there exists a
quasi-linear-time algorithm for computing the diameter within graphs of
treewidth o(log n) [Abboud et al., SODA'16].

Can we still use range searching in order to explain (and generalize) these
results?
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Orthogonal Range searching

The space has a fixed dimension k: Zk

Hyperedge = box = Cartesian product
of k intervals

(/1, u1) X (/2, U2) X ... X (/k, uk)

@ Each interval can be L o

closed/open/half-open

o)
N

i,

o We allow [} = —oo, resp. © \
u;j = +00.

Allows faster resolution than general range searching
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An old friend: Binary research trees

Pre-processing time: O(nlog n)
Query time: O(log n)

22¢ Journées Graphes et Algorithmes (JGA 2020)

1) Preprocess each node v
having > 7, wu

2) For (h, u1), s.t.
h <root < in

o Compute the least
x> h (Ieft)

o Compute the largest
y < u (right)

@ Sum all the right/left
subtrees on the path
from x/y to the root

for
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Generalization: k-range trees
Global input: static set V of k-dimensional points ¢ = (91,92, ---,qk)

For every i = 1... k do the following:

— .
‘ v & @ Find ¢' € V s.t. g} is a median of
) ) {a/1 7 €V}
_. —

= Vi Left, 9", ViRight

@ Recurse!
Construction of right and left
(k — i+ 1)-range trees

{C(n, 1) = O(nlog n) (balanced binary search tree)
C(n, k) = C(n, k —1) + C(|n/2] , k) + C([n/2], k) + O(n)

= in O(nlogX(n))-time

better analysis: n(kﬂfg n'\) = 20(K) plto(1) [Bringmann et al., IPEC’18]
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Answering to a query
For the ranges (/;, u;), 1 <i < k.
@ Find X s.t. x; > /; minimized;

@ Find 7 s.t. y1 < uj maximized;

@ Locate the nearest common ancestor of X, 7 Along the
Xy -path, do a (k — 1)-range query for each right/left subtrees.

— in O(log” n)-time

better analysis: (k+ “/?g n]

) =290 n°(1) [Bringmann et al., IPEC'18]
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Applications to DIAMETER: Tree decompositions

Representation of a graph as a tree preserving connectivity properties.

nodes of the tree ~ subgraphs of G (bags)

the decomposition spans all the vertices and all the edges

edges of the tree ~ separators of G
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The maximum distance between disconnected vertices

S a small-size separator.
1) Fixse S.
2) Define Vv ¢ S, p(v) = (distg(v,s') — distg(v, s))ses\(s}-
3) Vv ¢ S, compute u ¢ S s.t.:
@ S is an uv-separator;

o pi(u) > —pi(v) (&= distg(u,v) = distg(u, s) + distg(s, v));

o distg(u,s) is maximized.

— textbook application of |S|-range tree!
maximum range queries
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Application: Treewidth

@ minimizing the size of bags
width = max size of bags —1
treewidth = min width of tree decompositions

tw=3

5-approximation in 29(%) . n-time  [Bodlaender et al., SICOMP 2016]
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Optimal diameter computation within bounded-treewidth
graph classes

1) Compute a tree-decomposition of width O(tw(G)) — in 2°()n time

2) Find a balanced separator of size O(k) — centroid in the
tree-decomposition

3) Compute the maximum distance between disconnected vertices — in
20(K) pl+o(1) time with range trees

4) Recurse on each component — add weighted edges to preserve distances

Complexity: 20K pl+o(1) time
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Optimal diameter computation within bounded-treewidth
graph classes

1) Compute a tree-decomposition of width O(tw(G)) — in 2°()n time

2) Find a balanced separator of size O(k) — centroid in the
tree-decomposition

3) Compute the maximum distance between disconnected vertices — in
20(K) pl+o(1) time with range trees

4) Recurse on each component — add weighted edges to preserve distances

Complexity: 20K pl+o(1) time

This is sharp! DIAMETER is SETH-hard for split graphs of
clique-number O(log n).
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Another application: Giant diameter graphs

Problem (h-DIAMETER)

Input: A graph G = (V, E); a constant h € (0;1).
Output: The exact diameter of G if it is at least hn
(otherwise, any value < hn).

Some motivations:

@ A common topic in Extremal Graph Theory
@ Linear structure of some chemical/biological networks

@ The OV construction applies to “small” diameter
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Related work

The problem was introduced by [Damaschke, /WOCA’16]
Conjecture: For any h, we can solve h-DIAMETER in quasi linear time.

— Partial progress:
@ Linear-time algorithm for h > 1/2 [Damaschke, IWOCA'16].

(Heavily relies on biconnected decomposition)
e In randomized O(m + nlog n)-time if h > 1/3.

o In randomized O(n?/h)-time and in deterministic Q(n?/h3)-time.

Disclaimer: | am completely unsure about the constants. . .
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Results
[D., SOSA'19]

e A Monte Carlo algorithm in time O(% - (m + 20(3) plto(1)y),

(1 BFS from a random vertex + orthogonal range queries)

e A deterministic algorithm in time O(% - (m + 20(%)n1+°(1))).

2
(O(%) BFS + orthogonal range queries)

Our algorithms are both simpler and faster than previous work
(but have practicality issues).

e Conditional LB for h = o(1/ log n).
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Overall Approach
e Observation: 35, |S| < 1/h disconnecting a diametral pair.
(simple counting on BFS layers)

= how to find S7
A major source of difficulty in [Damaschke, IWOCA’16]
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A (Simple!) Observation

e We can relax the constraint on S: we only need |S| = O(1/h).

Overall strategy: For an (unknown) diametral pair (x,y) compute v € V
s.t. distg(v,x) < hn/3 (and so, distg(v,y) > 2hn/3).

= We can choose S between layers hn/3 and 2hn/3 in BFS(v).

Pr,[distg(v,x) < hn/3] > h/3
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Result #1: Monte Carlo Algorithm

Algorithm GIANTDIAMETER

: Let v € V picked u.a.r.
if eccg(v) < 2hn/3 then

return eccg(v).
. Find a layer i € {[hn/3],...,|2hn/3]} s.t. |Li(v)] < 3/h.
: Compute D; := max{distg(x,y) | Li(v) is an xy-separator}.
return max{D;} U {eccg(u) | u € Li(v)}.

e Correct if distg(v,x) < hn/3 or distg(v,y) < hn/3;

@ The bottleneck is the computation of D; (solved using 3/h BFS +
orthogonal range queries)

Remark: Before running the algorithm, we may compute a 2-approx for h
using a single BFS.
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Result #2: Derandomization

Definition

S is a k-distance dominating set <= Vv ¢ S, distg(v,S) < k.

e If Sis a (hn/3)-distance dominating set then, we can solve
h-DIAMETER by running |S| times Algorithm GIANTDIAMETER.

e (Meir and Moon, J. of Math. 1975) Every graph has a k-distance
dominating set of size < {kiil}

1) Compute a spanning tree T and a diametral pair x,y of T

2) Take one layer over k + 1 in a BFS starting at x.
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Result #3: A Conditional Lower-bound

Repeat n times the clique of an arbitrary split graph
(matching between every two consecutive copies)

s (N
m}%z«\\lmlm
=\ D)

vV YV Y

N

1

cTogn)-DIAMETER in O(n*~¢)-time.

Ve, dc s.t. we cannot solve (

Computing diameters below ©(n/ log n) is hard!
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More applications of orthogonal range searching
Ongoing work

A first observation: Small (balanced) separators are often used in the
design of distance-labeling schemes

—> How about applying orthogonal range searching to more general
distance oracles?

Partial results:
e For hub labels of size < k
application to graph classes of bounded expansion
e For embeddings in the Cartesian product of < k trees
application to subclasses of median graphs
e For some variation of edge-hub labeling

application to the graphs of clique-width at most k

In 029 (n 4 m)t*+°()) time and this is sharp under SETH
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Short conclusion

e Range searching techniques allow to handle the DIAMETER problem on
many important graph classes, in a unifying and “efficient” way.

e Improved special cases of range searching lead to a better understanding
of the (almost) linear-time solvable instances for DIAMETER

e Some interesting connections exist between faster diameter
computation and important geometric properties

(VC-dimension, Helly-type properties)
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Merci de votre attention!
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