
Requêtes d’appartenance et autres méthodes
“géométriques” pour trouver le diamètre d’un graphe

G. Ducoffe

Université de Bucarest & I.C.I. Bucarest, Roumanie

18 Novembre 2020

Travail réalisé en collaboration avec David Coudert, Feodor Dragan, Michel

Habib, Alexandru Popa et Laurent Viennot.

22e Journées Graphes et Algorithmes (JGA 2020) 1 / 44

Problem considered

Problem (Diameter)

Input: A connected unweighted graph G = (V ,E).

Output: diam(G) = max. # of edges on a shortest path.

• In O(nm) using n BFS [folklore]

Seems to require Θ(n) BFS to be solved on general graphs

• In Õ(n2.373) time using fast matrix multiplication [Seidel, STOC’92]

In both cases it is a reduction to APSP: Ω(n2) time, even on sparse graphs.

Can we do better?

22e Journées Graphes et Algorithmes (JGA 2020) 2 / 44

Lower bound
[Roditty and V. Williams, STOC’13]

Under SETH we cannot solve Diameter in O(n2−ε) time

Partition variables in two halves A,B

SA: all 2n/2 truth tables for A

SB : all 2n/2 truth tables for B

Graph G = (SA ∪ SB ∪ C ,E)

C : clauses

c ∈ C and a ∈ SA adjacent iff a
does not satisfy c

diam(G) = 3⇐⇒ satisfiable V
x

1 2x V 4x () V x
1 3x 4x V V() 2x 3x 4x V V()V

x
1 2x

x
1 2x

x
1 2x

2x x
1

3x 4x

4x 3x

3x 4x

3x 4x

Diameter in O(N2−ε) =⇒ SAT in O((2n/2)2−ε) = O(2(1−ε′)n)

22e Journées Graphes et Algorithmes (JGA 2020) 3 / 44

Lower bound cont’d

• We may reinterpret this construction as a “‘disjoint sets” problem,
sometimes called Orthogonal Vectors (OV).

longtime-known relationship with Diameter [Chepoi and Dragan, 1992]

• Hardness results obtained for constant diameter (2 vs. 3)

• The construction works for bipartite graphs and split graphs
[Borassi et al., ETCS’16]

• (Using Sparsification Lemma) ∀ε, ∃c s.t. we cannot solve Diameter in
O(n2−ε)-time on split graphs with clique-number ≤ c · log n.

22e Journées Graphes et Algorithmes (JGA 2020) 4 / 44

Breaking the quadratic barrier

• (Almost) all conditional lower bounds for Diameter start with a
reduction from OV

(Open problem: find other obstructions to fast diameter computation)

• There are several graph classes where we can solve OV efficiently.

=⇒ Does it imply fast diameter computation?

• Can we find a unifying framework in order to address this question
for many graph classes at once?

(based on a few methods or properties)

22e Journées Graphes et Algorithmes (JGA 2020) 5 / 44

State of the art

Special graph classes – quest for (almost) linear-time algorithms

More recently: algorithms in O(n2−ε) and f (k)n1+o(1) time – “FPT in P”

Trees [Jordan, 1869]

Outerplanar graphs [Farley and
Proskurowski., DAM’80]

Interval graphs [Olariu, IJCM’90]

Dually chordal graphs [Brandstädt et al.,
DAM’98]

Distance-hereditary graphs [Dragan and
Nicolai, DAM’00]

{claw,AT}-free graphs [Corneil et al.,
DAM’01]

Plane triangulations and quadrangulations
[Chepoi et al., SODA’02]

Cactii [Ben-Moshe et al., TCS’07]

Graphs of constant treewidth [Abboud et
al., SODA’16]

Planar graphs [Cabello, TALG’18]

Graphs of constant
modular-width/split-width [Coudert et
al., SODA’18]

(q, q − 3)-graphs [Coudert et al.,
SODA’18]

Graphs of diameter Θ(n) [Ducoffe,
SOSA’19]

Is there a common (exploitable) property to all/most positive cases?

22e Journées Graphes et Algorithmes (JGA 2020) 6 / 44

State of the art

Special graph classes – quest for (almost) linear-time algorithms

More recently: algorithms in O(n2−ε) and f (k)n1+o(1) time – “FPT in P”

Trees [Jordan, 1869]

Outerplanar graphs [Farley and
Proskurowski., DAM’80]

Interval graphs [Olariu, IJCM’90]

Dually chordal graphs [Brandstädt et al.,
DAM’98]

Distance-hereditary graphs [Dragan and
Nicolai, DAM’00]

{claw,AT}-free graphs [Corneil et al.,
DAM’01]

Plane triangulations and quadrangulations
[Chepoi et al., SODA’02]

Cactii [Ben-Moshe et al., TCS’07]

Graphs of constant treewidth [Abboud et
al., SODA’16]

Planar graphs [Cabello, TALG’18]

Graphs of constant
modular-width/split-width [Coudert et
al., SODA’18]

(q, q − 3)-graphs [Coudert et al.,
SODA’18]

Graphs of diameter Θ(n) [Ducoffe,
SOSA’19]

Is there a common (exploitable) property to all/most positive cases?

22e Journées Graphes et Algorithmes (JGA 2020) 6 / 44

State of the art

Special graph classes – quest for (almost) linear-time algorithms

More recently: algorithms in O(n2−ε) and f (k)n1+o(1) time – “FPT in P”

Trees [Jordan, 1869]

Outerplanar graphs [Farley and
Proskurowski., DAM’80]

Interval graphs [Olariu, IJCM’90]

Dually chordal graphs [Brandstädt et al.,
DAM’98]

Distance-hereditary graphs [Dragan and
Nicolai, DAM’00]

{claw,AT}-free graphs [Corneil et al.,
DAM’01]

Plane triangulations and quadrangulations
[Chepoi et al., SODA’02]

Cactii [Ben-Moshe et al., TCS’07]

Graphs of constant treewidth [Abboud et
al., SODA’16]

Planar graphs [Cabello, TALG’18]

Graphs of constant
modular-width/split-width [Coudert et
al., SODA’18]

(q, q − 3)-graphs [Coudert et al.,
SODA’18]

Graphs of diameter Θ(n) [Ducoffe,
SOSA’19]

Is there a common (exploitable) property to all/most positive cases?

22e Journées Graphes et Algorithmes (JGA 2020) 6 / 44

State of the art

Special graph classes – quest for (almost) linear-time algorithms

More recently: algorithms in O(n2−ε) and f (k)n1+o(1) time – “FPT in P”

Trees [Jordan, 1869]

Outerplanar graphs [Farley and
Proskurowski., DAM’80]

Interval graphs [Olariu, IJCM’90]

Dually chordal graphs [Brandstädt et al.,
DAM’98]

Distance-hereditary graphs [Dragan and
Nicolai, DAM’00]

{claw,AT}-free graphs [Corneil et al.,
DAM’01]

Plane triangulations and
quadrangulations [Chepoi et al.,
SODA’02]

Cactii [Ben-Moshe et al., TCS’07]

Graphs of constant treewidth [Abboud
et al., SODA’16]

Planar graphs [Cabello, TALG’18]

Graphs of constant
modular-width/split-width [Coudert et
al., SODA’18]

(q, q − 3)-graphs [Coudert et al.,
SODA’18]

Graphs of diameter Θ(n) [Ducoffe,
SOSA’19]

Is there a common (exploitable) property to all/most positive cases?

22e Journées Graphes et Algorithmes (JGA 2020) 6 / 44

State of the art

Special graph classes – quest for (almost) linear-time algorithms

More recently: algorithms in O(n2−ε) and f (k)n1+o(1) time – “FPT in P”

Trees [Jordan, 1869]

Outerplanar graphs [Farley and
Proskurowski., DAM’80]

Interval graphs [Olariu, IJCM’90]

Dually chordal graphs [Brandstädt et al.,
DAM’98]

Distance-hereditary graphs [Dragan and
Nicolai, DAM’00]

{claw,AT}-free graphs [Corneil et al.,
DAM’01]

Plane triangulations and quadrangulations
[Chepoi et al., SODA’02]

Cactii [Ben-Moshe et al., TCS’07]

Graphs of constant treewidth [Abboud
et al., SODA’16]

Planar graphs [Cabello, TALG’18]

Graphs of constant
modular-width/split-width [Coudert et
al., SODA’18]

(q, q − 3)-graphs [Coudert et al.,
SODA’18]

Graphs of diameter Θ(n) [Ducoffe,
SOSA’19]

Is there a common (exploitable) property to all/most linear-time solvable
cases?

22e Journées Graphes et Algorithmes (JGA 2020) 6 / 44

Range searching
Geometrical point of view

Global input: a collection P of objects in some space Ed

(points, lines, . . .)

Range query: for some region q ⊆ Ed , report/count the objects in P ∩ q

22e Journées Graphes et Algorithmes (JGA 2020) 7 / 44

Range searching
Combinatorial point of view

Global input: hypergraph H = (V ,E)

possibly infinite

region = hyperedge

Vertex-weights (wv)v∈V taken in a
(semi)group (A,⊕)

Range query: for e ∈ E , compute the
sum

∑
v∈e wv = wv1 ⊕ wv2 ⊕ . . .

22e Journées Graphes et Algorithmes (JGA 2020) 8 / 44

Classic examples of range queries

• Counting: for e ∈ E , compute |e|

∀v ∈ V , wv = 1.

Semigroup (N,+).

• Sum: for e ∈ E , compute
∑

v∈e wv

Semigroup (N,+).

• Maximum: for e ∈ E , compute v ∈ E s.t. wv is maximized

Semigroup (N,max).

22e Journées Graphes et Algorithmes (JGA 2020) 9 / 44

Diameter ∝ Range searching

Define: Nk [v] = {u ∈ V | distG (v , u) ≤ k}.

The ball hypergraph of G is: B(G) = (V , {Nk [v] | v ∈ V , k ≥ 0}).

• Decide whether diam(G) ≤ k ?

−→ ∀v ∈ V , check if |Nk(v)| = n

−→ reduces to n counting range
queries

Remark: no direct access to B(G) (only to G)

22e Journées Graphes et Algorithmes (JGA 2020) 10 / 44

VC-dimension

Let H = (X ,R) be a hypergraph/range space/set family (possibly infinite)

S ⊆ X is shattered if {S ∩ R | R ∈ R} = 2S

The VC-dimension of H is the largest cardinality of a shattered
subset [Vapnik and Chervonenkis, 1971].

S = {A,E} is shattered, VC-dim = 2

• Several applications in Learning Theory and Computational Geometry.

Theorem (Chazelle and Welzl, D & CG 1989)

If VCdim(H) = d then, after polytime pre-processing, range queries can be

answered in Õ(n1−2−d
) time.

22e Journées Graphes et Algorithmes (JGA 2020) 11 / 44

VC-dimension of graphs

A graph is a hypergraph of VC-dimension ≤ 2 . . .

The neighbourhood hypergraph of G = (V ,E) is defined as
N (G) = (V , {NG [v] | v ∈ V }).

VC-dim(G) =def VC-dim(N (G))

22e Journées Graphes et Algorithmes (JGA 2020) 12 / 44

VC-dimension of graphs
Related work

• First introduced by [Haussler and Welzl,DCG’87]

• At most log n for any n-vertex graph.

• Computation is LogNP-hard [Papadimitriou and Yannakakis, JCSS’96]

and W [1]-hard [Downey et al., COLT’93].

• Constant for many graph classes:

proper minor-closed [Anthony et al., DM’95]

interval, girth ≥ 5, unit disk, . . . [Bousquet et al., SIDMA’15]

graphs of constant interval number [Ducoffe et al., COCOA’19]

• Also studied for other remarkable subsets such as cliques, matchings,
cycles, etc. [Kranakis et al., DAM’87]

(more on that on next slide. . .)

22e Journées Graphes et Algorithmes (JGA 2020) 13 / 44

Generalization: distance VC-dimension

Recall: Nk [v] = {u ∈ V | distG (v , u) ≤ k}.

• The k-neighbourhood hypergraph
of G is: Nk(G) = (V , {Nk [v] | v ∈ V }).

k-dist-VC-dim(G) =def VC-dim(Nk(G))

• The ball hypergraph of G is:
B(G) = (V , {Nk [v] | v ∈ V , k ≥ 0}).

dist-VC-dim(G) =def VC-dim(B(G))

22e Journées Graphes et Algorithmes (JGA 2020) 14 / 44

Generalization: distance VC-dimension
Related work

Notion first studied by [Chepoi et al., DCG’07]

• Constant distance VC-dimension for:
−→ proper minor-closed graph classes [Chepoi et al., DCG’07].

−→ bounded clique-width graph classes [Bousquet and Thomassé, DM’15].

• A monotone graph class G is nowhere dense iff
∀k, supG∈G k-dist-VC-dim(G) < +∞ [Nešeťril and Ossona de Mendez, RMS’16]

• Erdös-Posa property for the hereditary classes G of constant distance
VC-dimension [Bousquet and Thomassé, DM’15]. In particular, if G ∈ G and
diam(G) ≤ 2R, then V (G) can be covered by O(1) balls of radius R.

• Applications in distributed distance computations in planar graphs [Li

and Parter, STOC’19].

22e Journées Graphes et Algorithmes (JGA 2020) 15 / 44

Our results
[D., Habib, Viennot; SODA’20]

Theorem

For every d > 0, there exists a constant εd ∈ (0; 1) such that in
deterministic time Õ(mn1−εd) we can decide whether a graph of
VC-dimension at most d has diameter two.

Theorem

There exists a Monte Carlo algorithm such that, for every positive integers
d and k, we can decide whether a graph of distance VC-dimension at
most d has diameter at most k. The running time is in Õ(k ·mn1−εd),
where εd ∈ (0; 1) only depends on d.

Theorem (simplified)

The diameter of a H-minor free graph can be computed in time
Õ(n2−εH), with a Monte Carlo algorithm, where εH ∈ (0; 1) is a constant
that only depends on H.

22e Journées Graphes et Algorithmes (JGA 2020) 16 / 44

Our results
[D., Habib, Viennot; SODA’20]

Theorem

For every d > 0, there exists a constant εd ∈ (0; 1) such that in
deterministic time Õ(mn1−εd) we can decide whether a graph of
VC-dimension at most d has diameter two.

Theorem

There exists a Monte Carlo algorithm such that, for every positive integers
d and k, we can decide whether a graph of distance VC-dimension at
most d has diameter at most k. The running time is in Õ(k ·mn1−εd),
where εd ∈ (0; 1) only depends on d.

Theorem (simplified)

The diameter of a H-minor free graph can be computed in time
Õ(n2−εH), with a Monte Carlo algorithm, where εH ∈ (0; 1) is a constant
that only depends on H.

22e Journées Graphes et Algorithmes (JGA 2020) 16 / 44

Our results
[D., Habib, Viennot; SODA’20]

Theorem

For every d > 0, there exists a constant εd ∈ (0; 1) such that in
deterministic time Õ(mn1−εd) we can decide whether a graph of
VC-dimension at most d has diameter two.

Theorem

There exists a Monte Carlo algorithm such that, for every positive integers
d and k, we can decide whether a graph of distance VC-dimension at
most d has diameter at most k. The running time is in Õ(k ·mn1−εd),
where εd ∈ (0; 1) only depends on d.

Theorem (simplified)

The diameter of a H-minor free graph can be computed in time
Õ(n2−εH), with a Monte Carlo algorithm, where εH ∈ (0; 1) is a constant
that only depends on H.

22e Journées Graphes et Algorithmes (JGA 2020) 16 / 44

Some Remarks

• All our results also hold for radius computation.

• Our algorithms are “combinatorial” (basically, only using BFS and
binary research trees).

• We do not need to know the (distance) VC-dimension!

• We only use randomization for computing ε-nets (more on that later).

• εd → 0 exponentially fast (e.g., ε4 ≤ 1/287� 1/3).

22e Journées Graphes et Algorithmes (JGA 2020) 17 / 44

Warm-up: Split graphs with small clique

Consider a split graph G = (K ∪ S ,E) of clique-number |K | = logO(1)(n).

Two vertices s, t ∈ S are twins if N(u) = N(v).

We can keep one vertex per twin class [Coudert et al., SODA’18].

(Sauer-Shelah-Perles) VC-dim(H) = d =⇒ #{Y ∩ R | R ∈ R} = O(|Y |d).

−→ There are only O(|K |d) = logO(d)(n) twin classes!

22e Journées Graphes et Algorithmes (JGA 2020) 18 / 44

Warm-up: Split graphs with small clique

Consider a split graph G = (K ∪ S ,E) of clique-number |K | = logO(1)(n).

Two vertices s, t ∈ S are twins if N(u) = N(v).

We can keep one vertex per twin class [Coudert et al., SODA’18].

(Sauer-Shelah-Perles) VC-dim(H) = d =⇒ #{Y ∩ R | R ∈ R} = O(|Y |d).

−→ There are only O(|K |d) = logO(d)(n) twin classes!

22e Journées Graphes et Algorithmes (JGA 2020) 18 / 44

Warm-up: Split graphs with small clique

Consider a split graph G = (K ∪ S ,E) of clique-number |K | = logO(1)(n).

Two vertices s, t ∈ S are twins if N(u) = N(v).

We can keep one vertex per twin class [Coudert et al., SODA’18].

(Sauer-Shelah-Perles) VC-dim(H) = d =⇒ #{Y ∩ R | R ∈ R} = O(|Y |d).

−→ There are only O(|K |d) = logO(d)(n) twin classes!

22e Journées Graphes et Algorithmes (JGA 2020) 18 / 44

Warm-up: Split graphs with small clique

Consider a split graph G = (K ∪ S ,E) of clique-number |K | = logO(1)(n).

Two vertices s, t ∈ S are twins if N(u) = N(v).

We can keep one vertex per twin class [Coudert et al., SODA’18].

(Sauer-Shelah-Perles) VC-dim(H) = d =⇒ #{Y ∩ R | R ∈ R} = O(|Y |d).

−→ There are only O(|K |d) = logO(d)(n) twin classes!

22e Journées Graphes et Algorithmes (JGA 2020) 18 / 44

Stabbing Number

For a hypergraph H = (X ,R), a spanning path = a total order over X .

• stabbing number ∼ max. # of intervals to represent a hyperedge

Every hypergraph of VC-dim ≤ d has a spanning path of stabbing number
Õ(n1−1/2d) [Chazelle and Welzl, DCG’89]

22e Journées Graphes et Algorithmes (JGA 2020) 19 / 44

Stabbing Number

For a hypergraph H = (X ,R), a spanning path = a total order over X .

• stabbing number ∼ max. # of intervals to represent a hyperedge

Every hypergraph of VC-dim ≤ d has a spanning path of stabbing number
Õ(n1−1/2d) [Chazelle and Welzl, DCG’89]

22e Journées Graphes et Algorithmes (JGA 2020) 19 / 44

Stabbing Number

For a hypergraph H = (X ,R), a spanning path = a total order over X .

• stabbing number ∼ max. # of intervals to represent a hyperedge

Every hypergraph of VC-dim ≤ d has a spanning path of stabbing number
Õ(n1−1/2d) [Chazelle and Welzl, DCG’89]

22e Journées Graphes et Algorithmes (JGA 2020) 19 / 44

Stabbing Number

For a hypergraph H = (X ,R), a spanning path = a total order over X .

• stabbing number ∼ max. # of intervals to represent a hyperedge

Every hypergraph of VC-dim ≤ d has a spanning path of stabbing number
Õ(n1−1/2d) [Chazelle and Welzl, DCG’89]

22e Journées Graphes et Algorithmes (JGA 2020) 19 / 44

Stabbing Number

For a hypergraph H = (X ,R), a spanning path = a total order over X .

• stabbing number ∼ max. # of intervals to represent a hyperedge

Every hypergraph of VC-dim ≤ d has a spanning path of stabbing number
Õ(n1−1/2d) [Chazelle and Welzl, DCG’89]

22e Journées Graphes et Algorithmes (JGA 2020) 19 / 44

Stabbing Number

For a hypergraph H = (X ,R), a spanning path = a total order over X .

• stabbing number ∼ max. # of intervals to represent a hyperedge

Every hypergraph of VC-dim ≤ d has a spanning path of stabbing number
Õ(n1−1/2d) [Chazelle and Welzl, DCG’89]

22e Journées Graphes et Algorithmes (JGA 2020) 19 / 44

Stabbing Number

For a hypergraph H = (X ,R), a spanning path = a total order over X .

• stabbing number ∼ max. # of intervals to represent a hyperedge

Every hypergraph of VC-dim ≤ d has a spanning path of stabbing number
Õ(n1−1/2d) [Chazelle and Welzl, DCG’89]

22e Journées Graphes et Algorithmes (JGA 2020) 19 / 44

Stabbing Number

For a hypergraph H = (X ,R), a spanning path = a total order over X .

• stabbing number ∼ max. # of intervals to represent a hyperedge

Every hypergraph of VC-dim ≤ d has a spanning path of stabbing number
Õ(n1−1/2d) [Chazelle and Welzl, DCG’89]

22e Journées Graphes et Algorithmes (JGA 2020) 19 / 44

Application to the Diameter-Two Problem

• Compute a spanning path of
stabbing number t for N (G).

• Every vertex v collects the ends
I (v) of the O(t) intervals for N[v].

• Every vertex v collects the sets
I (u), ∀u ∈ N[v].

• Check whether
∀v ∈ V ,

⋃
u∈N[v] I (u) = V .

Complexity: Spanning Path Computation +
∑

v (deg(v) + 1) · O(t)

= Spanning Path Computation + O(tm).

22e Journées Graphes et Algorithmes (JGA 2020) 20 / 44

Application to the Diameter-Two Problem

• Compute a spanning path of
stabbing number t for N (G).

• Every vertex v collects the ends
I (v) of the O(t) intervals for N[v].

• Every vertex v collects the sets
I (u), ∀u ∈ N[v].

• Check whether
∀v ∈ V ,

⋃
u∈N[v] I (u) = V .

Complexity: Spanning Path Computation +
∑

v (deg(v) + 1) · O(t)

= Spanning Path Computation + O(tm).

22e Journées Graphes et Algorithmes (JGA 2020) 20 / 44

Application to the Diameter-Two Problem

• Compute a spanning path of
stabbing number t for N (G).

• Every vertex v collects the ends
I (v) of the O(t) intervals for N[v].

• Every vertex v collects the sets
I (u), ∀u ∈ N[v].

• Check whether
∀v ∈ V ,

⋃
u∈N[v] I (u) = V .

Complexity: Spanning Path Computation +
∑

v (deg(v) + 1) · O(t)

= Spanning Path Computation + O(tm).

22e Journées Graphes et Algorithmes (JGA 2020) 20 / 44

Application to the Diameter-Two Problem

• Compute a spanning path of
stabbing number t for N (G).

• Every vertex v collects the ends
I (v) of the O(t) intervals for N[v].

• Every vertex v collects the sets
I (u), ∀u ∈ N[v].

• Check whether
∀v ∈ V ,

⋃
u∈N[v] I (u) = V .

Complexity: Spanning Path Computation +
∑

v (deg(v) + 1) · O(t)

= Spanning Path Computation + O(tm).

22e Journées Graphes et Algorithmes (JGA 2020) 20 / 44

Application to the Diameter-Two Problem

• Compute a spanning path of
stabbing number t for N (G).

• Every vertex v collects the ends
I (v) of the O(t) intervals for N[v].

• Every vertex v collects the sets
I (u), ∀u ∈ N[v].

• Check whether
∀v ∈ V ,

⋃
u∈N[v] I (u) = V .

Complexity: Spanning Path Computation +
∑

v (deg(v) + 1) · O(t)

= Spanning Path Computation + O(tm).

22e Journées Graphes et Algorithmes (JGA 2020) 20 / 44

Fast Computation of a Suboptimal Spanning Path
For the neighbourhood hypergraph

• The proof of [Chazelle and Welzl, DCG’89] is constructive but leads to an
Õ(n3m)-time algorithm.

• A “classic” trick: arbitrarily partition V into O(nη)-size subsets
V1,V2, . . . ,Vp, for some p = O(n1−η).

−→ Apply the previous algorithm to each of the subhypergraphs
Hi =def (Vi , {NG [v] ∩ Vi | v ∈ V }).

Every Hi has VC-dim ≤ d =⇒ Stabbing number in
O(n1−η)× Õ(nη(1−1/2d)) = Õ(n1−η/2d).

(Sauer’s Lemma) Every Hi has only O(nη·d) distinct hyperedges =⇒
lower running time.

22e Journées Graphes et Algorithmes (JGA 2020) 21 / 44

Generalization to k-neighbourhood hypergraphs

Main Issue: we cannot compute Nk(G).

Theorem (ε-net)

If VC-dim(H) ≤ d, then any random subset of size ≈ d
ε log n intersects all

hyperedges of cardinality ≥ ε · n.

Algorithm:

Use a random subset S as above in order to partition the vertices into
equivalence classes: u ∼ v ⇐⇒def Nk [u] ∩ S = Nk [v] ∩ S .

(Sauer’s Lemma) There are only Õ(ε−d) equivalence classes
V1,V2, . . . ,Vq.

(ε-net) u ∼ v =⇒ |Nk [u]∆Nk [v]| = O(εn). We keep one
representative vi ∈ Vi per equivalence class. Let
Hk =def (V , {Nk [vi] | 1 ≤ i ≤ q}).

Deduce a spanning path for Nk(G) from Hk and Nk−1(G).

22e Journées Graphes et Algorithmes (JGA 2020) 22 / 44

Some final Remarks

• The stabbing numbers of Hk and Nk(G) are the same up to an additive
O(εn) error term.

−→ A “good” spanning path of Hk also works for Nk(G).

• The hard part consists in computing the interval representation of all
the k-neighbourhoods.

−→ We need to compute ∀i , ∀u ∈ Vi \ {vi}, Nk [vi]∆Nk [u].

This can be done efficiently using a “good” spanning path for
Nk−1(G) (same trick as for the diameter-two problem).

For H-minor free graphs, we can use instead an r -division.
[Federickson, J. of Computing’87]

22e Journées Graphes et Algorithmes (JGA 2020) 23 / 44

Take-home

• A new geometric framework for “fast” diameter computation on
unweighted graphs.

• Generalizes many previously known cases + extends to all new classes
(e.g., proper minor-closed)

Conjecture: The diameter can be computed in Õ(mn1−εd) time in the
class of graphs of VC-dimension at most d , for some absolute constant εd .

−→ True for chordal graphs [Ducoffe & Dragan, Networks 2020] and classes of
polynomial expansion.

22e Journées Graphes et Algorithmes (JGA 2020) 24 / 44

Toward (almost) linear-time algorithms

• Some drawbacks of the VC-dimension approach:

Running time is barely sub-quadratic

It does not cover all the positive cases

Example: It only considers graphs of treewidth O(1). But there exists a
quasi-linear-time algorithm for computing the diameter within graphs of
treewidth o(log n) [Abboud et al., SODA’16].

Can we still use range searching in order to explain (and generalize) these
results?

22e Journées Graphes et Algorithmes (JGA 2020) 25 / 44

Orthogonal Range searching

The space has a fixed dimension k : Zk

Hyperedge = box = Cartesian product
of k intervals

(l1, u1)× (l2, u2)× . . .× (lk , uk)

Each interval can be
closed/open/half-open

We allow li = −∞, resp.
ui = +∞.

Allows faster resolution than general range searching

22e Journées Graphes et Algorithmes (JGA 2020) 26 / 44

An old friend: Binary research trees

1) Preprocess each node v for
having

∑
u∈Tv

wu

2) For (l1, u1), s.t.
l1 ≤ root ≤ u1

Compute the least
x ≥ l1 (left)

Compute the largest
y ≤ u1 (right)

Sum all the right/left
subtrees on the path
from x/y to the root

Pre-processing time: O(n log n)

Query time: O(log n)

22e Journées Graphes et Algorithmes (JGA 2020) 27 / 44

Generalization: k-range trees
Global input: static set V of k-dimensional points −→q = (q1, q2, . . . , qk)

For every i = 1 . . . k do the following:

1 Find
−→
qi ∈ V s.t. qii is a median of

{qi | −→q ∈ V };

=⇒ Vi ,Left,
−→
qi ,Vi ,Right

2 Recurse!
Construction of right and left
(k − i + 1)-range trees

{
C (n, 1) = O(n log n) (balanced binary search tree)

C (n, k) = C (n, k − 1) + C (bn/2c , k) + C (dn/2e , k) +O(n)

=⇒ in O(n logk(n))-time

better analysis: n
(k+dlog ne

k

)
= 2O(k)n1+o(1) [Bringmann et al., IPEC’18]

22e Journées Graphes et Algorithmes (JGA 2020) 28 / 44

Answering to a query

For the ranges (li , ui), 1 ≤ i ≤ k.

1 Find −→x s.t. x1 ≥ l1 minimized;

2 Find −→y s.t. y1 ≤ ui maximized;

3 Locate the nearest common ancestor of −→x ,−→y . Along the
−→x −→y -path, do a (k − 1)-range query for each right/left subtrees.

=⇒ in O(logk n)-time

better analysis:
(k+dlog ne

k

)
= 2O(k)no(1) [Bringmann et al., IPEC’18]

22e Journées Graphes et Algorithmes (JGA 2020) 29 / 44

Applications to Diameter: Tree decompositions

Representation of a graph as a tree preserving connectivity properties.

nodes of the tree ∼ subgraphs of G (bags)
the decomposition spans all the vertices and all the edges

edges of the tree ∼ separators of G

a

b

c

d

e

f

g

h

i

0

1

2

3

a

0 1

b

0
1

2

c

0 3

d

0 1

e

1

f

1 2 g

0 3

h

3
i

2

22e Journées Graphes et Algorithmes (JGA 2020) 30 / 44

The maximum distance between disconnected vertices

S a small-size separator.

1) Fix s ∈ S .

2) Define ∀v /∈ S ,−→ps (v) = (distG (v , s ′)− distG (v , s))s′∈S\{s}.

3) ∀v /∈ S , compute u /∈ S s.t.:

S is an uv -separator;

−→ps (u) ≥ −−→ps (v) (⇐⇒ distG (u, v) = distG (u, s) + distG (s, v));

distG (u, s) is maximized.

=⇒ textbook application of |S |-range tree!

maximum range queries

22e Journées Graphes et Algorithmes (JGA 2020) 31 / 44

Application: Treewidth

minimizing the size of bags

width = max size of bags −1

treewidth = min width of tree decompositions

a

b

c

d

e

f

g

h

i

0

1

2

3

a

0 1

b

0
1

2

c

0 3

d

0 1

e

1

f

1 2 g

0 3

h

3
i

2

tw = 3

5-approximation in 2O(k) · n-time [Bodlaender et al., SICOMP 2016]

22e Journées Graphes et Algorithmes (JGA 2020) 32 / 44

Optimal diameter computation within bounded-treewidth
graph classes

1) Compute a tree-decomposition of width O(tw(G)) – in 2O(k)n time

2) Find a balanced separator of size O(k) – centroid in the
tree-decomposition

3) Compute the maximum distance between disconnected vertices – in
2O(k)n1+o(1) time with range trees

4) Recurse on each component – add weighted edges to preserve distances

Complexity: 2O(k)n1+o(1) time

This is sharp! Diameter is SETH-hard for split graphs of
clique-number O(log n).

22e Journées Graphes et Algorithmes (JGA 2020) 33 / 44

Optimal diameter computation within bounded-treewidth
graph classes

1) Compute a tree-decomposition of width O(tw(G)) – in 2O(k)n time

2) Find a balanced separator of size O(k) – centroid in the
tree-decomposition

3) Compute the maximum distance between disconnected vertices – in
2O(k)n1+o(1) time with range trees

4) Recurse on each component – add weighted edges to preserve distances

Complexity: 2O(k)n1+o(1) time

This is sharp! Diameter is SETH-hard for split graphs of
clique-number O(log n).

22e Journées Graphes et Algorithmes (JGA 2020) 33 / 44

Another application: Giant diameter graphs

Problem (h-Diameter)

Input: A graph G = (V ,E); a constant h ∈ (0; 1).

Output: The exact diameter of G if it is at least hn
(otherwise, any value < hn).

Some motivations:

A common topic in Extremal Graph Theory

Linear structure of some chemical/biological networks

The OV construction applies to “small” diameter

22e Journées Graphes et Algorithmes (JGA 2020) 34 / 44

Related work

The problem was introduced by [Damaschke, IWOCA’16]

Conjecture: For any h, we can solve h-Diameter in quasi linear time.

−→ Partial progress:

Linear-time algorithm for h > 1/2 [Damaschke, IWOCA’16].

(Heavily relies on biconnected decomposition)

In randomized O(m + n log n)-time if h > 1/3.

In randomized O(n2/h)-time and in deterministic Ω(n2/h3)-time.
Disclaimer: I am completely unsure about the constants. . .

22e Journées Graphes et Algorithmes (JGA 2020) 35 / 44

Results
[D., SOSA’19]

• A Monte Carlo algorithm in time O(1
h · (m + 2O(1

h
)n1+o(1))).

(1 BFS from a random vertex + orthogonal range queries)

• A deterministic algorithm in time O(1
h2 · (m + 2O(1

h
)n1+o(1))).

(O(1
h) BFS + orthogonal range queries)

Our algorithms are both simpler and faster than previous work
(but have practicality issues).

• Conditional LB for h = o(1/ log n).

22e Journées Graphes et Algorithmes (JGA 2020) 36 / 44

Overall Approach
• Observation: ∃S , |S | ≤ 1/h disconnecting a diametral pair.

(simple counting on BFS layers)

.....

.....

.....

.....

.....

.....

.....

.....

n

k

=⇒ how to find S?

A major source of difficulty in [Damaschke, IWOCA’16]

22e Journées Graphes et Algorithmes (JGA 2020) 37 / 44

A (Simple!) Observation

• We can relax the constraint on S : we only need |S | = O(1/h).

Overall strategy: For an (unknown) diametral pair (x , y) compute v ∈ V
s.t. distG (v , x) ≤ hn/3 (and so, distG (v , y) ≥ 2hn/3).

=⇒ We can choose S between layers hn/3 and 2hn/3 in BFS(v).

Prv [distG (v , x) ≤ hn/3] ≥ h/3

22e Journées Graphes et Algorithmes (JGA 2020) 38 / 44

Result #1: Monte Carlo Algorithm
Algorithm GiantDiameter

1: Let v ∈ V picked u.a.r.
2: if eccG (v) < 2hn/3 then
3: return eccG (v).
4: Find a layer i ∈ {dhn/3e , . . . , b2hn/3c} s.t. |Li (v)| ≤ 3/h.
5: Compute Di := max{distG (x , y) | Li (v) is an xy -separator}.
6: return max{Di} ∪ {eccG (u) | u ∈ Li (v)}.

Correct if distG (v , x) ≤ hn/3 or distG (v , y) ≤ hn/3;

The bottleneck is the computation of Di (solved using 3/h BFS +
orthogonal range queries)

Remark: Before running the algorithm, we may compute a 2-approx for h
using a single BFS.

22e Journées Graphes et Algorithmes (JGA 2020) 39 / 44

Result #2: Derandomization

Definition

S is a k-distance dominating set ⇐⇒ ∀v /∈ S , distG (v ,S) ≤ k.

• If S is a (hn/3)-distance dominating set then, we can solve
h-Diameter by running |S | times Algorithm GiantDiameter.

• (Meir and Moon, J. of Math. 1975) Every graph has a k-distance

dominating set of size ≤
⌈

n
k+1

⌉
.

1) Compute a spanning tree T and a diametral pair x , y of T

2) Take one layer over k + 1 in a BFS starting at x .

22e Journées Graphes et Algorithmes (JGA 2020) 40 / 44

Result #3: A Conditional Lower-bound

Repeat n times the clique of an arbitrary split graph
(matching between every two consecutive copies)

3x 4x

4x 3x

3x 4x

3x 4x

x
1 2x

x
1 2x

x
1 2x

2x x
1

.....

.....

.....

.....

.....

∀ε,∃c s.t. we cannot solve (1
c·log n)-Diameter in O(n2−ε)-time.

Computing diameters below Θ(n/ log n) is hard!

22e Journées Graphes et Algorithmes (JGA 2020) 41 / 44

More applications of orthogonal range searching
Ongoing work

A first observation: Small (balanced) separators are often used in the
design of distance-labeling schemes

=⇒ How about applying orthogonal range searching to more general
distance oracles?

Partial results:

• For hub labels of size ≤ k

application to graph classes of bounded expansion

• For embeddings in the Cartesian product of ≤ k trees

application to subclasses of median graphs

• For some variation of edge-hub labeling

application to the graphs of clique-width at most k

In O(2O(k)(n + m)1+o(1)) time and this is sharp under SETH

22e Journées Graphes et Algorithmes (JGA 2020) 42 / 44

Short conclusion

• Range searching techniques allow to handle the Diameter problem on
many important graph classes, in a unifying and “efficient” way.

• Improved special cases of range searching lead to a better understanding
of the (almost) linear-time solvable instances for Diameter

• Some interesting connections exist between faster diameter
computation and important geometric properties

(VC-dimension, Helly-type properties)

22e Journées Graphes et Algorithmes (JGA 2020) 43 / 44

Merci de votre attention!

22e Journées Graphes et Algorithmes (JGA 2020) 44 / 44

