Connected tree-width of a series-parallel graphs

Guillaume Mescoff Christophe Paul Dimitrios M. Thilikos

November 16, 2020
Definition

A **tree decomposition** T of a graph $G = (V,E)$ is a tree where nodes are subset of V_G. Each vertex and each edge appear in T and $\forall x \in V$, the set of nodes containing x has to induce a connected sub-tree of T.

Treewidth

Let G be a graph. The width of a tree decomposition T of G is $\text{width}(T) = \max\{|X| - 1 | X \in T\}$. The **treewidth** of the graph G is $\text{tw}(G) = \min_T\{\text{width}(T) \text{ with } T \text{ a tree decomposition of } G\}$.

Source: Wikipedia
A tree decomposition T is connected if there exists r such that for every path p from r, the subgraph of G induces by the vertices in p is a connected subgraph of G. The connected treewidth of a graph G is $\text{ctw}(G) = \min_T \{ \text{width}(T) \mid T \text{ a connected tree decomposition of } G \}$.
Let G be a graph. A *layout* σ is a permutation of the vertices of G.

![Diagram showing a graph with a layout σ and support set $S_\sigma(i)$]

Support set

$\forall i \in [1, n]$, we define $S_\sigma(i) = \{x \in V_G | \sigma(x) < \sigma(i) \land \exists\text{ a path } p \text{ from } i \text{ to } x \text{ with internal vertices in } \sigma_{>i}\}$.
Support set

Let G be a graph. A layout σ is a permutation of the vertices of G.

$\forall i \in [1, n], \text{ we define } S_\sigma(i) = \{x \in V_G \mid \sigma(x) < \sigma(i) \land \exists \text{ a path } p \text{ from } i \text{ to } x \text{ with internal vertices in } \sigma_{>i}\}$.

Tree vertex separation number

We denote $\text{tvs}(G) = \min_{\sigma} \max_{i \in [1, n]} |S_\sigma(i)|$.
Connected layout

Let G be a connected graph. A layout σ is a connected layout if one of the two following equivalent properties are satisfied:

- $\forall i \in V_G, G[\sigma \leq i]$ induces a connected subgraph of G.
- $\forall i \in V_G, \exists j$ such that σ_j is a neighbour of σ_i with $j < i$.

Connected tree vertex separation number

We denote $\text{ctvs}(G) = \min_\sigma \max_{i \in [1,n]} |S_\sigma(i)|$ with σ a connected layout.

By definition, we have $\text{tvs}(G) \leq \text{ctvs}(G)$.
Connected rooted layout

Rooted layout

Let \((G, R)\) a rooted graph where \(R \subset V_G\). A rooted layout \(\sigma\) on \((G, R)\) is a layout where \(R\) is a prefix of \(\sigma\).

Connected rooted layout

A rooted layout \(\sigma\) is connected if, \(\forall i \in [1, n]\), every connected component of the subgraph \(G[\sigma_{\leq i}]\) contains a root vertex.
Series-parallel graphs

Definition

A graph G is a **series-parallel** graph if it is an edge $\{x, y\}$ or it can be built from two other series-parallel graphs G_1 and G_2 by the series composition \otimes or by the parallel composition \oplus.

![Diagram of series-parallel graphs](image)
A series-parallel graph G can be represented by a series-parallel tree where each node is \otimes or \oplus composition.

Theorem

If G is a bi-connected series-parallel graph, then:

$$\forall (x, y) \in E_G, (G, (x, y)) = (G_1, (x, y)) \oplus (G_2, (x, y)) \text{ with } G_2 = K_2.$$
Results

Theorem

- [Dendris N., Kirousis L., Thilikos D. TCS’97]: \(\text{tw}(G) = \text{tvs}(G) \).
- [Adler I., Paul C., Thilikos D. FST-TCS’19]: \(\text{ctw}(G) = \text{ctvs}(G) \).
- Price of connectivity: \(\forall k \in \mathbb{N}, \text{there exists } G \text{ such that } \text{ctw}(G) - \text{tw}(G) \geq k \).

Our result

[Mescoff G., Paul C., Thilikos D.]: We can compute the connected treewidth of series-parallel graphs in \(O(n^2 \cdot \log n) \) time where \(n \) is the number of vertices of \(G \).
Extended graph

Let $G = (V, E)$ a graph and F a set of edges disjoint from E_G. We denote G^+F the extended graph G with fictive edges from F. We said that G is the solid graph of G^+F.

Connexity of G^+F

Fictive edges do not increase connexity of G^+F. Connected components of G^+F are exactly the connected components of the solid graph G.
Extended Path

An extended path is a path of G^+F containing fictive edges.

Extended cost

- $\forall i \in V_G$ we define $S^+_{\sigma}(i) = \{x \in V_G | \sigma(x) < \sigma(i) \land \exists \text{ a extended path } p \text{ from } i \text{ to } x \text{ with internal vertices in } \sigma_{>i}\}.$
- $\text{ectvs}(G) = \min_{\sigma} \max_{i \in [1,n]} |S^+_{\sigma}(i)|$ with σ a connected layout.
Lemma

Let \((G^+∅, R)\) be a rooted extended graph such that \(R = \{x, y\}\) and \(G = G_1 \oplus G_2\) with \(G_1 = (G_1, (x, y))\) and \(G_2 = (G_2, (x, y))\). Then,

\[
\text{ectvs}(G^+∅, R) = \max\{\text{ectvs}(G_1^+∅, R), \text{ectvs}(G_2^+∅, R)\}.
\]
Let \((G^+\emptyset, R)\) be a rooted extended graph such that \(R = \{x, y\}\) and \(G = G_1 \oplus G_2\) with \(G_1 = (G_1, (x, y))\) and \(G_2 = (G_2, (x, y))\). Then,

\[
\text{ectvs}(G^+\emptyset, R) = \max\{\text{ectvs}(G_1^+\emptyset, R), \text{ectvs}(G_2^+\emptyset, R)\}.
\]
Lemma

$$\text{ectvs} (G^+\emptyset, R) = \min \left\{ \max \left\{ \text{ectvs}(\tilde{G}_1^+\{zy\}, R), \text{ectvs}(G_2^+\emptyset, R_2) \right\}, \max \left\{ \text{ectvs}(\tilde{G}_2^+\{zx\}, R), \text{ectvs}(G_1^+\emptyset, R_1) \right\} \right\}. $$

Figure: Decomposition of an extended graph resulting from a series composition.
Series composition without fictive edges

Lemma

\[\text{ectvs}(G^+ \emptyset, R) = \min \left\{ \begin{array}{l} \max \left\{ \text{ectvs}(\tilde{G}_1^+ \{zy\}, R), \text{ectvs}(G_2^+ \emptyset, R_2) \right\} \\ \max \left\{ \text{ectvs}(\tilde{G}_2^+ \{zx\}, R), \text{ectvs}(G_1^+ \emptyset, R_1) \right\} \end{array} \right\}. \]

Figure: Rearranging a layout \(\sigma^* \) of \(G = G_1 \otimes G_2 \) of minimum cost into
\[\sigma = \langle x, y \rangle \odot \sigma^*[V_1 \setminus \{x\}] \odot \sigma^*[V_2 \setminus \{y, z\}] \].
Parallel and series composition with extended graph
Composition with the fictive edge (x,y)

\begin{align*}
G_1 & \rightarrow G_2 \\
\quad & \rightarrow \\
\quad & +
\end{align*}
Let G a biconnected graph.

- $\text{ctw}(G) = \min_{(x,y) \in G} (G^+ \emptyset, \{x, y\}) \leftarrow \mathcal{O}(n)$.
- We have at most $2n$ steps in our algorithm $\leftarrow \mathcal{O}(n)$.
- For each step, we compute at most αn results with some constant $\alpha \leftarrow \mathcal{O}(n)$.

Which gives a total time complexity in $\mathcal{O}(n^3)$. With a better complexity analysis, we can show that the real time complexity is $\mathcal{O}(n^2 \cdot \log n)$.
Generalization

Treewidth at most 2

A graph G has treewidth at most 2 iff its biconnected components are series-parallel graphs. So, G contains a cut vertex or G is a biconnected series-parallel graph.

$G_1 \xrightarrow{X} G_2 + G_3$

Complexity

Since the complexity is $\mathcal{O}(n^2 \cdot \log n)$ for every biconnected component and since we try for every starting vertex, the total time complexity is $\mathcal{O}(n^3 \cdot \log n)$.
Conclusion

We see in this presentation how compute the connected treewidth for graph with treewidth at most 2. The complexity of the general problem is still open:

- **Conjecture 1:** Connected treewidth can be computed by an $\mathcal{O}(n^{f(tw(G))})$-time algorithm.
- **Conjecture 2:** Connected treewidth bounded by k can be decided by an $\mathcal{O}(n \cdot f(k, tw(G)))$-time algorithm.
- **Conjecture 3:** Connected treewidth bounded by k can be decided by an $\mathcal{O}(n^{f(k)})$-time algorithm.