Connected tree-width of a series-parallel graphs

Guillaume Mescoff Christophe Paul Dimitrios M. Thilikos

November 16, 2020

<ロト <部ト <きト <きト = 3

1/19

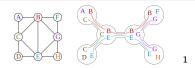
Guillaume Mescoff, Christophe Paul, Dimitrios M. Thilikos Connected tree-width of a series-parallel graphs

Connected treewidth Layout Series-parallel graphs

Treewidth

Definition

A tree decomposition T of a graph G = (V,E) is a tree where nodes are subset of V_G. Each vertex and each edge appear in T and $\forall x \in V$, the set of nodes containing x has to induce a connected sub-tree of T.



Treewidth

Let G be a graph. The width of a tree decomposition T of G is width(T) = max{ $|X| - 1 | X \in T$ }. The treewidth of the graph G is tw(G) = min_T{width(T) with T a tree decomposition of G}.

¹Source: Wikipedia

Guillaume Mescoff, Christophe Paul, Dimitrios M. Thilikos

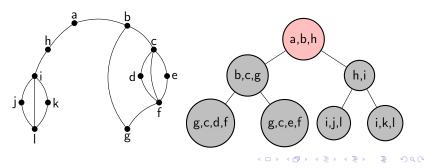
Connected treewidth Layout Series-parallel graphs

3/19

Connected treewidth

Connected treewidth

A tree decomposition T is connected if there exists *r* such that for every path *p* from *r*, the subgraph of G induces by the vertices in *p* is a connected subgrah of G. The connected treewidth of a graph G is $ctw(G) = min_{T} \{width(T) with T a connected tree decomposition of G\}$.



Connected treewidth Layout Series-parallel graphs

<ロト <部ト <きト <きト = 3

4/19

Layout

Layout Let G be a graph. A layout σ is a permutation of the vertices of G.

Support set

 $\forall i \in [1, n]$, we define $S_{\sigma}(i) = \{x \in V_G \mid \sigma(x) < \sigma(i) \land \exists a \text{ path } p \text{ from } i \text{ to } x \text{ with internal vertices in } \sigma_{>i}\}$.

Preliminaries definitions Proof Proof Connected treewidth Layout Series-parallel graphs

Support set

Layout

Let G be a graph. A layout σ is a permutation of the vertices of G.

Support set

 $\forall i \in [1, n]$, we define $S_{\sigma}(i) = \{x \in V_G \mid \sigma(x) < \sigma(i) \land \exists a \text{ path } p \text{ from } i \text{ to } x \text{ with internal vertices in } \sigma_{>i}\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

5/19

Tree vertex separation number

We denote $\operatorname{tvs}(\mathsf{G}) = \min_{\sigma} \max_{i \in [1,n]} |S_{\sigma}(i)|$.

Connected treewidth Layout Series-parallel graphs

Connected layout

Connected layout

Let G be a connected graph. A layout σ is a connected layout if one of the two following equivalent proprieties are satisfied:

- $\forall i \in V_G, G[\sigma_{\leq i}]$ induces a connected subgraph of G.
- $\forall i \in V_{G}, \exists j \text{ such that } \sigma_{j} \text{ is a neighbour of } \sigma_{i} \text{ with } j < i$.

Connected tree vertex separation number

We denote $\operatorname{ctvs}(G) = \min_{\sigma} \max_{i \in [1,n]} |S_{\sigma}(i)|$ with σ a connected layout.

(日)

3

6/19

By definition, we have $tvs(G) \leq ctvs(G)$.

Connected treewidth Layout Series-parallel graphs

Connected rooted layout

Rooted layout

Let (G, R) a rooted graph where $R \subset V_G$. A rooted layout σ on (G, R) is a layout where R is a prefix of σ .

Connected rooted layout

A rooted layout σ is connected if, $\forall i \in [1, n]$, every connected component of the subgraph $G[\sigma_{\leq i}]$ contains a root vertex.

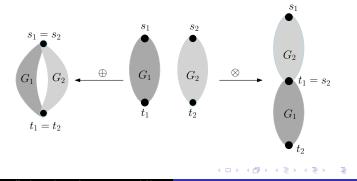
크

Connected treewidth Layout Series-parallel graphs

Series-parallel graphs

Definition

A graph G is a series-parallel graph if it is an edge $\{x, y\}$ or it can be built from two other series-parallel graphs G_1 and G_2 by the series composition \bigotimes or by the parallel composition \bigoplus .



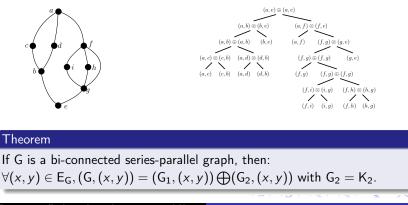
Connected treewidth Layout Series-parallel graphs

9/19

Series-parallel tree

Series-parallel tree

A series-parallel graph G can be represented by a series-parallel tree where each node is \bigotimes or \bigoplus composition.



Guillaume Mescoff, Christophe Paul, Dimitrios M. Thilikos Connected tree-width of a series-parallel graphs

Connected treewidth Layout Series-parallel graphs

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

10/19

Results

Theorem

- [Dendris N., Kirousis L., Thilikos D. TCS'97]: tw(G) = tvs(G).
- [Adler I., Paul C., Thilikos D. FST-TCS'19]: ctw(G) = ctvs(G).
- Price of connectivity: $\forall k \in N$, there exists G such that

 $\mathsf{ctw}(\mathsf{G}) - \mathsf{tw}(\mathsf{G}) \ge k.$

Our result

[Mescoff G., Paul C., Thilikos D.]: We can compute the connected treewidth of series-parallel graphs in $\mathcal{O}(n^2 \cdot \log n)$ time where *n* is the number of vertices of G.

Extended graph Composition lemmas Dynamical programming Generalization for graph of treewidth at most 2

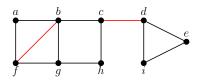
(日) (四) (日) (日) (日)

11/19

Extended graph

Extended graph

Let G=(V,E) a graph and F a set of edges disjoint from $E_G.$ We denote G^{+F} the extended graph G with with fictive edges from F. We said that G is the solid graph of $G^{+F}.$



Connexity of G^{+F}

Fictive edges do not increase connexity of $\mathsf{G}^{+\mathsf{F}}.$ Connected components of $\mathsf{G}^{+\mathsf{F}}$ are exactly the connected components of the solid graph G.

Extended graph Composition lemmas Dynamical programming Generalization for graph of treewidth at most 2

イロト 不得 トイヨト イヨト ニヨー

12/19

Extended Path

Extended path

An extended path is a path of G^{+F} containing fictive edges.

Extended cost

∀i ∈ V_G we define S^{+F}_σ(i) = {x ∈ V_G | σ(x) < σ(i) ∧ ∃ a extended path p from i to x with internal vertices in σ_{>i}}.

• $ectvs(G) = min_{\sigma} max_{i \in [1,n]} |S_{\sigma}^{+F}(i)|$ with σ a connected layout.

Extended graph Composition lemmas Dynamical programming Generalization for graph of treewidth at most 2

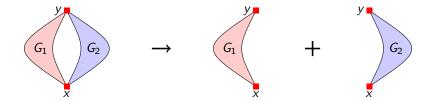
୬**୯**୯ 13/19

Parallel composition without fictive edges

Lemma

Let $(G^{+\emptyset}, R)$ be a rooted extended graph such that $R = \{x, y\}$ and $G = G_1 \bigoplus G_2$ with $G_1 = (G_1, (x, y))$ and $G_2 = (G_2, (x, y))$. Then,

 $\mathsf{ectvs}(\mathsf{G}^{+\emptyset}, \mathsf{R}) = \max\{\mathsf{ectvs}(\mathsf{G}_1^{+\emptyset}, \mathsf{R}), \mathsf{ectvs}(\mathsf{G}_2^{+\emptyset}, \mathsf{R})\}.$



Extended graph Composition lemmas Dynamical programming Generalization for graph of treewidth at most 2

(日)

୬**୯**୯ 13/19

Parallel composition without fictive edges

Lemma

Let $(G^{+\emptyset}, R)$ be a rooted extended graph such that $R = \{x, y\}$ and $G = G_1 \bigoplus G_2$ with $G_1 = (G_1, (x, y))$ and $G_2 = (G_2, (x, y))$. Then,

 $ectvs(G^{+\emptyset}, R) = max\{ectvs(G_1^{+\emptyset}, R), ectvs(G_2^{+\emptyset}, R)\}.$

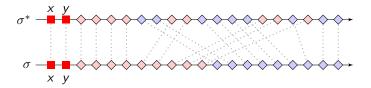


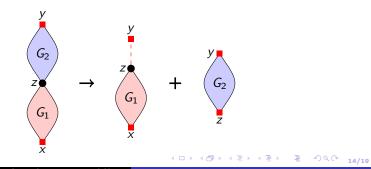
Figure: Rearranging a layout of minimum cost of an extended graph $G = G_1 \oplus G_2$. Red vertices belongs to $V_1 \setminus \{x, y\}$ and blue vertices belong to $V_2 \setminus \{x, y\}$.

Extended graph Composition lemmas Dynamical programming Generalization for graph of treewidth at most 2

Series composition without fictive edges

Lemma

$$\mathsf{ectvs}(\mathsf{G}^{+\emptyset},\mathsf{R}) = \mathsf{min} \left\{ \begin{array}{c} \mathsf{max} \left\{ \mathsf{ectvs}(\tilde{\mathsf{G}}_1^{+\{\mathit{zy}\}},\mathsf{R}),\mathsf{ectvs}(\mathsf{G}_2^{+\emptyset},\mathsf{R}_2) \right\} \\ \mathsf{max} \left\{ \mathsf{ectvs}(\tilde{\mathsf{G}}_2^{+\{\mathit{zx}\}},\mathsf{R}),\mathsf{ectvs}(\mathsf{G}_1^{+\emptyset},\mathsf{R}_1) \right\} \end{array} \right\}$$



Extended graph Composition lemmas Dynamical programming Generalization for graph of treewidth at most 2

イロト イポト イヨト イヨト 二日

14/19

Series composition without fictive edges

Lemma

$$\mathsf{ectvs}(\mathsf{G}^{+\emptyset},\mathsf{R}) = \mathsf{min} \left\{ \begin{array}{l} \mathsf{max} \left\{ \mathsf{ectvs}(\tilde{\mathsf{G}}_1^{+\{zy\}},\mathsf{R}),\mathsf{ectvs}(\mathsf{G}_2^{+\emptyset},\mathsf{R}_2) \right\} \\ \mathsf{max} \left\{ \mathsf{ectvs}(\tilde{\mathsf{G}}_2^{+\{zx\}},\mathsf{R}),\mathsf{ectvs}(\mathsf{G}_1^{+\emptyset},\mathsf{R}_1) \right\} \end{array} \right\}$$

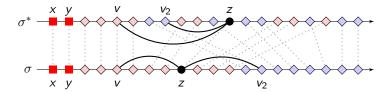
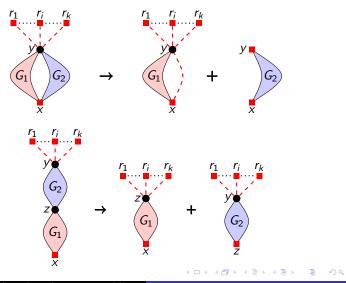


Figure: Rearranging a layout σ^* of $G = G_1 \otimes G_2$ of minimum cost into $\sigma = \langle x, y \rangle \odot \sigma^* [V_1 \setminus \{x\}] \odot \sigma^* [V_2 \setminus \{y, z\}].$

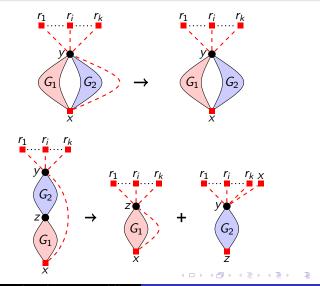
Preliminaries definitions Proof Proof Composition lemmas Dynamical programming Generalization for graph of treewidth at most 2

Parallel and series composition with extended graph



Extended graph Composition lemmas Dynamical programming Generalization for graph of treewidth at most 2

Composition with the fictive edge(x,y)



Guillaume Mescoff, Christophe Paul, Dimitrios M. Thilikos Connec

Connected tree-width of a series-parallel graphs

Extended graph Composition lemmas Dynamical programming Generalization for graph of treewidth at most 2

◆□ → ◆□ → ◆ ≧ → ◆ ≧ → ○ へ ○ 17/19

Complexity

Complexity

Let G a biconnected graph.

- $\operatorname{ctw}(\mathsf{G}) = \min_{(x,y)\in\mathsf{G}}(\mathsf{G}^{+\emptyset}, \{x,y\}) \leftarrow \mathcal{O}(n).$
- We have at most 2n steps in our algorithm $\leftarrow O(n)$.
- For each step, we compute at most αn results with some constant α ← O(n).

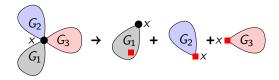
Which gives a total time complexity in $\mathcal{O}(n^3)$. With a better complexity analysis, we can show that the real time complexity is $\mathcal{O}(n^2 \cdot \log n)$.

Preliminaries definitions Composition lemmas Proof Dynamical programming Generalization for graph of treewidth at most 2

Generalization

Treewidth at most 2

A graph G has treewidth at most 2 iff its biconnected components are series-parallel graphs. So, G contain a cut vertex or G is a biconnected series-parallel graph.



Complexity

Since the complexity is $\mathcal{O}(n^2 \cdot \log n)$ for every biconnected component and since we try for every starting vertex, the total time complexity is $\mathcal{O}(n^3 \cdot \log n)$.

Extended graph Composition lemmas Dynamical programming Generalization for graph of treewidth at most 2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

Conclusion

We see in this presentation how compute the connected treewidth for graph with treewidth at most 2. The complexity of the general problem is still open:

- **Conjecture 1:** Connected treewidth can be computed by an $\mathcal{O}(n^{f(\mathsf{tw}(\mathsf{G}))})$ -time algorithm.
- **Conjecture 2:** Connected treewidth bounded by *k* can be decided by an $\mathcal{O}(n \cdot f(k, \operatorname{tw}(G)))$ -time algorithm.
- Conjecture 3: Connected treewidth bounded by k can be decided by an O(n^{f(k)})-time algorithm.