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Reconfiguration

The 15 puzzle game:

13 2 3 12

9 11 1 10

6 4 14

15 8 7 5

Goal: slide the tokens along the board to reach the target configuration
→ Is it always possible to reach the target configuration?

Reachability for reconfiguration problems: initial configuration + pool
of possible moves (rules). The goal is to reach a target configuration.
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Independent set reconfiguration (ISR)

Initial independent set I ↔ Target independent set J.

Token sliding: tokens ”slide”
along edges.

Token jumping: tokens can
”jump” anywhere on the graph.

→ Similar definitions for Dominating Set Reconfiguration, Vertex Cover
Reconfiguration, Vertex Separator Reconfiguration...
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Main questions

Fix a graph G and a rule T ⊆ {TS ,TJ}:

1 Reachability: given two independent sets I , J ⊆ G, what is the
complexity of deciding I ↔ J under rule T ?

2 Connectivity: is it possible to transform any IS of G into any
other under rule T ?

3 Shortest sequence: given two independent sets I , J ⊆ G such
that I ↔ J under rule T , what is the length of a shortest I ↔ J
reconfiguration sequence?

→ PSPACE-complete in general.
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Complexity of ISR reachability

Reachability on planar graphs of maximum degree 3:

PSPACE-complete under TJ [Ito et. al]

PSPACE-complete under TS [Bonsma, Cereceda]

Reachability on bipartite graphs:

NP-complete under TJ [Lokshtanov, Mouawad]

PSPACE-complete under TS [Lokshtanov, Mouawad]

Reachability on even-hole-free graphs:

Linear under TJ [Kamiński, Medvedev, Milanic̆]

Open under TS

November 13, 2020 5 / 15



Complexity of ISR reachability

Reachability on planar graphs of maximum degree 3:

PSPACE-complete under TJ [Ito et. al]

PSPACE-complete under TS [Bonsma, Cereceda]

Reachability on bipartite graphs:

NP-complete under TJ [Lokshtanov, Mouawad]

PSPACE-complete under TS [Lokshtanov, Mouawad]

Reachability on even-hole-free graphs:
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Parameterized complexity

Definition

A problem parameterized by k is Fixed Parameter Tractable if it can be
decided in time f (k)nO(1) for some computable function f .

→ A parameterized problem is W [1]-hard Ô⇒ unlikely to be FPT
(unless FPT =W [1])

Theorem (Ito et al.)

Token jumping is W [1]-hard when parameterized by the size k of
the independent sets.

Token sliding is W [1]-hard when parameterized by k.

Token jumping is FPT on bounded-degree graphs when
parameterized by k.
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Our results

Graph Class Token Jumping Token Sliding

{C3,C4}-free graphs FPT Open

C4-free graphs W[1]-hard W[1]-hard

Bipartite graphs Open W[1]-hard

Bipartite C4-free graphs FPT FPT

→ Let’s see how it works for Token Sliding on bipartite and bipartite
C4-free graphs.
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Bipartite C4-free graphs

Proof outline:

1 G is bipartite C4-free and has a ”high-degree” vertex then YES.
2 TS is FPT on bipartite bounded degree graphs.

Theorem (Ito et al.)

Token jumping is FPT on bounded degree graphs.

I ∪ J

G

If ∣V (G) −N[I ∪ J]∣ ≤ f (∆, k) then solve by brute-force
If ∣V (G) −N[I ∪ J]∣ > f (∆, k) then YES

→ Does not work for Token Sliding
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Bipartite bounded degree graphs.

Lemma (Fox-Epstein et al. 2015 - revisited)

Let G be a bipartite graph and I be an IS of G. Let v ∈ G be at distance at least
2 from every vertex of I : a sequence from I to I − {u} + {v} for some u ∈ I can be
found in linear time.

I

G
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Conclusion and open questions

Graph Class Token Jumping Token Sliding

{C3,C4}-free graphs FPT Open

C4-free graphs W[1]-hard W[1]-hard

Bipartite graphs Open W[1]-hard

Bipartite C4-free graphs FPT FPT

The construction for bipartite graphs does not work at all for Token
Jumping.

What about C3-free graphs?

Thanks for your attention!
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