On the k shortest simple paths: A faster algorithm with low memory consumption

Ali Al Zoobi, David Coudert and Nicolas Nisse
Université Côte d’Azur, Inria, CNRS, I3S

November 13, 2020
Introduction

k shortest simple paths problem

k shortest simple paths algorithms:
- Yen’s algorithm
- Postponed Node Classification algorithm

Evaluations and conclusions
Motivation

A shortest path is not enough!

- A shortest path may be affected
- Some constraints can be added
 - Bounded delay, cost ...
 - A user may prefer the coast road ...
- User likes diversity!

Give the user a set of 'good' choices
Motivation

Sometimes, it is hard to specify constraints that a path should satisfy.

Applications:
- bioinformatics: biological sequence alignment
- natural language processing
- list decoding
- parsing
- network routing
- many more ...

Figure: aligning two DNA sequences
k shortest paths problem

Definition

Input:
- Directed weighted graph $D = (V, A)$ with $w : A \rightarrow \mathbb{R}^+$,
- Two terminals s and t and an integer k

Output:
- k paths $P_1, P_2, ..., P_k$ from s to t such that $w(P_i) \leq w(P_{i+1})$, $1 \leq i < k$ and $w(P_k) \leq w(Q)$ for all other s-t paths Q

where $w(P) = \sum_{e \in A(P)} w(e)$
simple vs not simple

Figure: P is simple, Q is not simple

Definition (simple path)

A path is **simple** if and only if it has no repeated vertices
Complexity of the problem

Theorem (Eppstein '97)

The problem of finding k *shortest paths can be solved in time*

$O(m + n \log n + k)$
Complexity of the problem

Theorem (Eppstein ’97)

The problem of finding k shortest paths can be solved in time $O(m + n \log n + k)$

Theorem (Yen ’71)

*The problem of finding k shortest *simple* paths can be solved in time $O(kn(m + n \log n))$*
Complexity of the problem

Theorem (Eppstein ‘97)

The problem of finding \(k\) *shortest paths can be solved in time*

\[O(m + n \log n + k)\]

Theorem (Yen ‘71)

The problem of finding \(k\) *shortest simple paths can be solved in time*

\[O(kn(m + n \log n))\]

Theorem (Williams and Williams ‘10)

All-Pairs-Shortest-Paths (APSP) \(\prec_{(m,n)} 2\text{-}SSP\) \(\Leftrightarrow \tilde{O}(n.m)\) for 2-SSP
Yen’s algorithm (the algorithm)

Yen’s idea:
- A second shortest simple path is a shortest simple detour from a shortest path

Complexity: \(O(kn \ (m + n\log n)) \)

Complexity of finding one SP
Yen’s algorithm (example)
Yen's algorithm (example)
Yen’s algorithm (example)

Shortest Path:
- $sABCt(4)$
- $sADCt(5)$
- Candidate
- $sDCt(7)$
- $sABEt(7)$
Yen’s algorithm (example)
Shortest Paths Problem

Yen’s algorithm (example)

Shortest Path:
- sABCt(4)
- sADc (5)

Candidate
- sDCt (7)
- sABEt (7)
- sEt (10)

Graph:
- Nodes: S, A, B, C, D, E, T
- Edges with weights:
 - S to A: 1
 - A to B: 1
 - B to C: 1
 - B to E: 2
 - E to C: 2
 - C to T: 3
 - S to D: 5
 - D to A: 2
 - S to E: 7

Shortest Paths:
- sABCt(4)
- sADc (5)

Candidate Paths:
- sDCt (7)
- sABEt (7)
- sEt (10)
Yen’s algorithm (example)

Shortest Path:
- sABCe(4)
- sADCe(5)
Candidate:
- sDCe(7)
- sABEt(7)
- sEt(10)
Yen’s algorithm (example)
Yen’s algorithm (example)
Algorithm engineering

On Road networks:
- 9th DIMAC’S implementation challenge followed by a set of improvements
- (NC) by Feng 2014 (speed up the detours computation)
- (SB*) by Kurz and Mutzel 2016, followed by Al Zoobi et al. 2019 (larger memory consumption)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yen</td>
<td>11,316</td>
</tr>
<tr>
<td>NC</td>
<td>823</td>
</tr>
<tr>
<td>SB* (large memory)</td>
<td>117</td>
</tr>
</tbody>
</table>

Table: DC network ($n \approx 10,000; m \approx 15,000$ and $k = 1,000$)

- We proposed the PNC
 - The fastest algorithm with low memory consumption
Postponed Node Classification (PNC) algorithm

So many calls of SP algorithm
Can we skip some?
PNC: skipping SP calls

\[\text{lb}(u_i) = c \text{ s.t. a shortest simple detour of } P_0 \text{ at } u_i \text{ is bigger than } c \]

\[LB \text{ answers in a pivot step} \]
PNC: skipping SP calls

After applying LB on each vertex of P_0
If a shortest simple detour P of P_0 has length less $lb(u_i)$ for each $u_i \in P_0$

- What can we deduce?
PNC: skipping SP calls

Shortest Paths Problem

If \(w(P) \leq \text{lb}(u_i) \) for each \(u_i \in P_0 \)
- Then \(P \) is a second shortest path

Otherwise
- continue until \(P' \) (with \(w(P') \leq \text{lb}(u_i) \) for each \(u_i \in P_0 \)) is found
While computing P_0, the reversed shortest path tree T rooted at t is kept...
For each vertex u_i, each vertex v in T is colored:

- **Yellow** if the path from v to t in T crosses u_i
- **Green** Otherwise

Classification of Feng 2014
PNC : describing *LB*

For each arc $e_j = (u_i, v)$ tailing at u_i:

\[\delta(e_i) = w(s, \cdots, u_i) + w(e_j) + w(P_{v-t}^T): \text{the cost of the shortest detour at } e_j \]

Let $e_{min} = (u_i, v_{min})$ be the arc with minimum δ (δ_{min})

inspired by Kurz and Mutzel (2016)
Let $e_{min} = (u_i, v_{min})$ be the arc with minimum δ (δ_{min}).

Claim: $\delta_{min} = lb(u_i)$

δ_{min} is the length of a shortest detour (not necessarily simple) at u_i.
PNC: describing LB

NC algorithm calls an SP algorithm at u_i:

- (PNC) postpone such call so it may be skipped
PNC : The algorithm

Algorithm 1 \(PNC(G, s, t) \)

1: \(C \leftarrow \{P_0\} \)
2: while \(C \) is not empty do
3: \(P \leftarrow \text{extractMin}(C) \)
4: if \(P \) is simple then
5: add \(P \) to the output
6: using the \(LB \) procedure, add the shortest detours of \(P \) to \(C \)
7: else
8: repair \(P \) into a simple path and add it to \(C \)
PNC : The algorithm

Algorithm 2 $PNC(G, s, t)$

1: $C \leftarrow \{P_0\}$
2: \textbf{while} C is not empty \textbf{do}
3: \hspace{1em} $P \leftarrow \text{extractMin}(C)$
4: \hspace{1em} \textbf{if} P is simple \textbf{then}
5: \hspace{2em} add P to the output
6: \hspace{2em} using the LB procedure, add the shortest detours of P to C
7: \hspace{1em} \textbf{else}
8: \hspace{2em} repair P into a simple path and add it to C

Remarque:

- Low memory consumption: only one shortest path is kept in the memory (+ candidate paths)
Figure: The average running time of the $kSSP$ algorithms with respect to k on DC road networks ($n \approx 10,000; m \approx 15,000$)
Figure: The average running time of the $kSSP$ algorithms with respect to k on COL road networks ($n \approx 500,000; m \approx 1,000,000$)
Ongoing - future work

- Evaluate these algorithms on complex networks
- Study the impact of these improvements on others problems
 - Path with resource constraints, bioinformatics problems ...
- Study the problem when the arcs may have negative weights

Questions ?