Couplage temporel et géométrique Algorithmes pour les couplages temporels

Timothé Picavet, ENS de Lyon, timothe.picavet@ens-lyon.fr Ngoc-Trung Nguyen, HCMUE, trungnn@hcmue.edu.vn Binh-Minh Bui-Xuan, LIP6 Paris, buixuan@lip6.fr

15 Novembre 2020

Pourquoi le γ -matching?

Pour répondre à :

• Comment maximiser le nombre de collaborations entre personnes?

< A >

Pourquoi le γ -matching?

Pour répondre à :

- Comment maximiser le nombre de collaborations entre personnes?
- Qui travaille ensemble sur des projets par email? Ou quels véhicules roulent ensemble durant un certain temps?

Pourquoi le γ -matching?

Pour répondre à :

- Comment maximiser le nombre de collaborations entre personnes?
- Qui travaille ensemble sur des projets par email? Ou quels véhicules roulent ensemble durant un certain temps?
- Comment optimiser la consommation de carburant en co-vol avec Fello'fly (Airbus)?

• Graphes non orientés classiques

э

E 5 4 E

< (17) × <

- Graphes non orientés classiques
- Les arêtes du couplage n'ont pas de sommet en commun

- Graphes non orientés classiques
- Les arêtes du couplage n'ont pas de sommet en commun

• Problème MATCHING : couplage de taille maximale

- Graphes non orientés classiques
- Les arêtes du couplage n'ont pas de sommet en commun

- Problème MATCHING : couplage de taille maximale
- Analogie des collaborateurs :
 - Sommets : Collaborateur
 - Arête si deux personnes peuvent compléter une tâche
 - But : Compléter le plus de tâches
- Résolution en temps polynomial (ex : Edmonds)

Comment étendre le problème au temps?

Définition (link stream)

C'est L = (T, V, E) où

- *V* est l'ensemble des sommets
- T est l'ensemble des instants où les arêtes peuvent exister
- E ⊆ T × (^V₂) est l'ensemble des arêtes

Représente un graphe où les arêtes existent ou non en fonction du temps.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Le couplage temporel

Définition (γ -arête)

Une γ -arête $E_{\gamma}(t, uv)$ avec u, v des sommets est l'ensemble des arêtes consécutives $\{(t, uv), (t + 1, uv), \dots, (t + \gamma - 1, uv)\}$. Γ est une γ -arête de L si $\Gamma \subseteq E$.

Définition (γ -matching)

Ensemble de γ -arêtes n'ayant pas de sommet temporel (de la forme (t, u)) en commun.

< □ > < □ > < □ > < □ > < □ > < □ >

Le couplage temporel

Définition (γ -arête)

Une γ -arête $E_{\gamma}(t, uv)$ avec u, v des sommets est l'ensemble des arêtes consécutives $\{(t, uv), (t + 1, uv), \dots, (t + \gamma - 1, uv)\}$. Γ est une γ -arête de L si $\Gamma \subseteq E$.

Définition (γ -matching)

Ensemble de γ -arêtes n'ayant pas de sommet temporel (de la forme (t, u)) en commun.

< □ > < □ > < □ > < □ > < □ > < □ >

État de l'art de la recherche sur γ -MATCHING

- γ -MATCHING est NP-Complet¹ dès que $\gamma > 1$.
- γ-MATCHING est APX-Complet² dès que γ > 1 et max(T) > 3 (sauf si P=NP).
- On ne sait pas vraiment faire mieux qu'une 2-approximation en temps polynomial.

^{1.} *Temporal matching in link stream : kernel and approximation*, J. Baste and B.-M. Bui-Xuan, CTW, 2018

^{2.} Computing Maximum Matchings in Temporal Graphs, George B. Mertzios et al., STACS, 2020

Résultats

- Algorithme exact FPT en $O^*((\gamma + 1)^{|V|})$
- PTAS pour les unit ball link stream de densité et vitesse bornée

< A > <

• Représentation géométrique : cercles de diamètre 1

・ 何 ト ・ ヨ ト ・ ヨ ト

- Représentation géométrique : cercles de diamètre 1
- Sommets : boules euclidiennes de dimension d
 - ▶ d = 1 Intervalles
 - d = 2 Disques

E 6 4 E 6

< A >

- Représentation géométrique : cercles de diamètre 1
- Sommets : boules euclidiennes de dimension d
 - ▶ d = 1 Intervalles
 - d = 2 Disques
- Arête si intersection :

 $\|\mathbf{c}_u - \mathbf{c}_v\| \leq 1$

▲ 伊 → ▲ 三

- Représentation géométrique : cercles de diamètre 1
- Sommets : boules euclidiennes de dimension d
 - d = 1 Intervalles
 - d = 2 Disques
- Arête si intersection : $\|\mathbf{c}_u - \mathbf{c}_v\| \le 1$
- Link stream : $\mathbf{c}_u(t)$

▲ 伊 → ▲ 三

- Représentation géométrique : cercles de diamètre 1
- Sommets : boules euclidiennes de dimension d
 - ▶ d = 1 Intervalles
 - d = 2 Disques
- Arête si intersection : $\|\mathbf{c}_u - \mathbf{c}_v\| \le 1$
- Link stream : $\mathbf{c}_u(t)$
- Vitesse : $\|\mathbf{c}_u(t) \mathbf{c}_u(t+1)\| \leq \mathbf{v}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Définition (graphe L_{γ})

V(L_γ) = E_γ
{Γ, Γ'} ∈ E(L_γ) si Γ, Γ' dépendantes

э

A D N A B N A B N A B N

Définition (graphe L_{γ})

- V(L_γ) = E_γ
 {Γ, Γ'} ∈ E(L_γ) si
 - Γ, Γ' dépendantes

Proposition γ -MATCHINGsur LMIS sur L_{γ}

э

< □ > < 同 > < 回 > < 回 > < 回 >

Définition (graphe L_{γ})

V(L_γ) = E_γ
{Γ, Γ'} ∈ E(L_γ) si Γ, Γ' dépendantes Proposition

 γ -Matching sur L \iff

MIS sur L_{γ}

Définition (centre) Pour $\Gamma = E_{\gamma}(t, uv)$, $\mathbf{c}_{\Gamma} = \frac{1}{2} \cdot (\mathbf{c}_{u}(t) + \mathbf{c}_{v}(t))$ $\overline{\mathbf{c}_{\Gamma}} = \frac{1}{1 + (\gamma - 1)\mathbf{v}} \cdot \mathbf{c}_{\Gamma}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Définition (graphe
$$L_{\gamma}$$
)
• $V(L_{\gamma}) = E_{\gamma}$
• $\{\Gamma, \Gamma'\} \in E(L_{\gamma})$ si
 Γ, Γ' dépendantes

Proposition

$$\gamma$$
-MATCHING
sur L \iff
MIS sur L_{γ}

Définition (centre)
Pour
$$\Gamma = E_{\gamma}(t, uv),$$

 $\mathbf{c}_{\Gamma} = \frac{1}{2} \cdot (\mathbf{c}_{u}(t) + \mathbf{c}_{v}(t))$
 $\overline{\mathbf{c}_{\Gamma}} = \frac{1}{1 + (\gamma - 1)\mathbf{v}} \cdot \mathbf{c}_{\Gamma}.$

Lemme

$$\| \mathbf{c}_{\Gamma} - \mathbf{c}_{\Gamma'} \| > 1 + (\gamma - 1) oldsymbol{
u} \implies \Gamma, \Gamma' ext{ indépendantes}$$

Définition (graphe
$$L_{\gamma}$$
)
• $V(L_{\gamma}) = E_{\gamma}$
• $\{\Gamma, \Gamma'\} \in E(L_{\gamma})$ si
 Γ, Γ' dépendantes

Proposition

$$\gamma$$
-MATCHING
sur L \iff
MIS sur L_{γ}

$$\begin{array}{l} \begin{array}{l} \mbox{Définition (centre)} \\ \mbox{Pour } \Gamma = E_{\gamma}(t, uv), \\ \mbox{c}_{\Gamma} = \frac{1}{2} \cdot (\mbox{c}_{u}(t) + \mbox{c}_{v}(t)) \\ \hline \mbox{c}_{\Gamma} = \frac{1}{1 + (\gamma - 1)v} \cdot \mbox{c}_{\Gamma}. \end{array}$$

Lemme

$$\|\overline{\mathbf{c}_{\Gamma}} - \overline{\mathbf{c}_{\Gamma'}}\| > 1 \implies \Gamma, \Gamma' \text{ indépendantes}$$

T. Picavet et a

Couplage temporel et géométrique

Définition (γ -line graph normalisé, L'_{γ})

C'est le unit ball graph dont la représentation géométrique est l'ensemble des $\overline{c_{\Gamma}}.$

3

Définition (γ -line graph normalisé, L'_{γ})

C'est le unit ball graph dont la représentation géométrique est l'ensemble des $\overline{c_{\Gamma}}.$

Corollaire

Le γ -line graph normalisé est un unit ball graph ayant le γ -line graph comme sous-graphe partiel.

Un ensemble indépendant du 1er graphe est un ensemble indépendant du 2ème graphe.

Définition (Épaisseur θ) $A_t = \{E_{\gamma}(t, uv) \in A \mid u \neq v\}$ $\theta(A) = \max\{|A_t| \mid t \in T(L)\}$

э

Définition (Épaisseur θ) $A_t = \{E_{\gamma}(t, uv) \in A \mid u \neq v\}$ $\theta(A) = \max\{|A_t| \mid t \in T(L)\}$

э

Définition (Épaisseur θ) $A_t = \{E_{\gamma}(t, uv) \in A \mid u \neq v\}$ $\theta(A) = \max\{|A_t| \mid t \in T(L)\}$

э

Définition (Épaisseur θ) $A_t = \{E_{\gamma}(t, uv) \in A \mid u \neq v\}$ $\theta(A) = \max\{|A_t| \mid t \in T(L)\}$

A D N A B N A B N A B N

э

Définition (Épaisseur θ) $A_t = \{E_{\gamma}(t, uv) \in A \mid u \neq v\}$ $\theta(A) = \max\{|A_t| \mid t \in T(L)\}$

э

Définition (Épaisseur θ) $A_t = \{E_{\gamma}(t, uv) \in A \mid u \neq v\}$ $\theta(A) = \max\{|A_t| \mid t \in T(L)\}$

Définition (Densité ρ)

A : des γ -arêtes \mathcal{H}_d : les *d*-cube unitaire (alignés aux axes) $A_{\mathbf{U}} = \{\Gamma \in A \mid \overline{\mathbf{c}_{\Gamma}} \in \mathbf{U}\}$ $\rho(A) = \max\{\theta(A_{\mathbf{U}}) \mid \mathbf{U} \in \mathcal{H}_d\}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

・ロト ・ 四ト ・ ヨト ・ ヨト …

э

イロト 不得 トイヨト イヨト

э

イロト 不得 トイヨト イヨト

Définition (Densité projective ρ_{π})

Comme la densité, mais on projette les \mathbf{c}_{Γ} sur l'hyperplan x = 0 avant (on oublie la première dimension). $\rho_{\pi}(A) = \max\{\theta(A_{U}) \mid \mathbf{U} \in \mathbb{R} \times \mathcal{H}_{d-1}\}$

Définition (Densité projective ρ_{π})

Comme la densité, mais on projette les \mathbf{c}_{Γ} sur l'hyperplan x = 0 avant (on oublie la première dimension). $\rho_{\pi}(A) = \max\{\theta(A_{U}) \mid \mathbf{U} \in \mathbb{R} \times \mathcal{H}_{d-1}\}$

Définition (Densité projective ρ_{π})

Comme la densité, mais on projette les \mathbf{c}_{Γ} sur l'hyperplan x = 0 avant (on oublie la première dimension). $\rho_{\pi}(A) = \max\{\theta(A_{\mathbf{U}}) \mid \mathbf{U} \in \mathbb{R} \times \mathcal{H}_{d-1}\}$

• Chemin de décomposition : ensemble X de réels dans l'ordre croissant $X = \{x_1, x_2, \dots, x_{|X|}\}$

3

A D N A B N A B N A B N

- Chemin de décomposition : ensemble X de réels dans l'ordre croissant $X = \{x_1, x_2, \dots, x_{|X|}\}$
- Partition incomplète de A par X : $P_X(A) = (P_0(A), P_1(A), \dots, P_{|X|}(A))$
 - $\blacktriangleright P_0(A) = \{ \Gamma \in A \mid \overline{\mathbf{x}_{\Gamma}} < x_1 \frac{1}{2} \}$

$$\forall 0 < i < |X|, P_i(A) = \{ \Gamma \in A \mid x_i + \frac{1}{2} \le \overline{\mathbf{x}_{\Gamma}} < x_{i+1} - \frac{1}{2} \}$$

 $P_{|X|}(A) = \{ \Gamma \in A \mid x_{|X|} + \frac{1}{2} \le \overline{\mathbf{x}_{\Gamma}} \}$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- Chemin de décomposition : ensemble X de réels dans l'ordre croissant $X = \{x_1, x_2, \dots, x_{|X|}\}$
- Partition incomplète de A par X : $P_X(A) = (P_0(A), P_1(A), \dots, P_{|X|}(A))$
 - $P_0(A) = \{ \Gamma \in A \mid \overline{\mathbf{x}_{\Gamma}} < x_1 \frac{1}{2} \}$ $\forall 0 < i < |X|, P_i(A) = \{ \Gamma \in A \mid x_i + \frac{1}{2} \le \overline{\mathbf{x}_{\Gamma}} < x_{i+1} - \frac{1}{2} \}$
 - $V_0 < I < |X|, P_i(A) = \{ I \in A \mid X_i + \frac{1}{2} \le \mathbf{x}_{\Gamma} < X_{i+1} \frac{1}{2} \}$ $P_{|X|}(A) = \{ \Gamma \in A \mid X_{|X|} + \frac{1}{2} \le \overline{\mathbf{x}_{\Gamma}} \}$

Soit $m_{\gamma} = |E_{\gamma}|$. Pour $f_L \ge \rho$ assez grand, on peut calculer un chemin de décomposition $X = \{x_1, x_2, \dots, x_{|X|}\}$, tel que la partition ("indépendante") incomplète $P_X(E_{\gamma})$ satisfait :

•
$$P_0(E_\gamma) = P_{|X|}(E_\gamma) = \emptyset$$
,

Soit $m_{\gamma} = |E_{\gamma}|$. Pour $f_L \ge \rho$ assez grand, on peut calculer un chemin de décomposition $X = \{x_1, x_2, \dots, x_{|X|}\}$, tel que la partition ("indépendante") incomplète $P_X(E_{\gamma})$ satisfait :

•
$$P_0(E_\gamma) = P_{|X|}(E_\gamma) = \emptyset$$
,

•
$$\forall 0 < i < |X| - 1$$
, $f_L \le \rho_{\pi}(P_i(E_{\gamma})) < f_L + \rho$,

イロト 不得 トイヨト イヨト 二日

Soit $m_{\gamma} = |E_{\gamma}|$. Pour $f_L \ge \rho$ assez grand, on peut calculer un chemin de décomposition $X = \{x_1, x_2, \dots, x_{|X|}\}$, tel que la partition ("indépendante") incomplète $P_X(E_{\gamma})$ satisfait :

•
$$P_0(E_\gamma) = P_{|X|}(E_\gamma) = \emptyset$$
,

•
$$\forall 0 < i < |X| - 1, \ f_L \le \rho_{\pi}(P_i(E_{\gamma})) < f_L + \rho,$$

•
$$0 \le
ho_{\pi}(P_{|X|-1}(E_{\gamma})) < f_L +
ho$$
,

イロト 不得 トイヨト イヨト 二日

Soit $m_{\gamma} = |E_{\gamma}|$. Pour $f_L \ge \rho$ assez grand, on peut calculer un chemin de décomposition $X = \{x_1, x_2, \dots, x_{|X|}\}$, tel que la partition ("indépendante") incomplète $P_X(E_{\gamma})$ satisfait :

•
$$P_0(E_{\gamma}) = P_{|X|}(E_{\gamma}) = \emptyset,$$

• $\forall 0 < i < |X| - 1, \ f_L \le \rho_{\pi}(P_i(E_{\gamma})) < f_L + \rho$
• $0 \le \rho_{\pi}(P_{|X|-1}(E_{\gamma})) < f_L + \rho,$
• $x_{|X|} - x_{|X|-1} \ge \frac{f_L}{\rho}.$

Le calcul est polynomial en m_{γ} .

(人間) トイヨト イヨト ニヨ

Idée de preuve.

D'abord, on trie $A = \{\Gamma_1, \Gamma_2, \ldots, \Gamma_{m_{\gamma}}\}$ pour que $\overline{x_{\Gamma_1}} < \overline{x_{\Gamma_2}} < \cdots < \overline{x_{\Gamma_{m_n}}}$. On définit $x_i = \overline{\mathbf{x}_{\Gamma_1}} - 1$. On va créer les $P_i(E_{\gamma})$ itérativement. On scanne les xr dans l'ordre croissant, et on crée une nouvelle $P_i(E_{\gamma})$ quand sa densité projective de la partition actuelle dépasse f_{I} . Sinon, on agrandit la sous-partition. Pour tout *i*, $\rho_{\pi}(P_i(E_{\gamma})) < f_L + \rho.$

Algorithme de calcul de $\rho(A)$ $1 \rho \leftarrow 0$ // Each C_i is a normalized center of a γ -edge of A 2 for $(C^1, C^2, \ldots, C^d) \in {\overline{\mathbf{c}_{\Gamma}} \mid \Gamma \in A}^d$ do // We consider the unit hypercube **H** with C_i^i as its *i*-th lowest coordinate 3 $H \leftarrow$ $[C_1^1, C_1^1 + 1] \times \cdots \times [C_d^d, C_d^d + 1]$ $\rho \leftarrow \max\{\rho, \theta(A_{\mathbf{H}})\}$ 4 5 return ρ

э

э

э

On garde la meilleure approximation

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Algorithme exact FPT en $O^*((\gamma+1)^{|V|})$

- Algorithme exact FPT en $O^*((\gamma + 1)^{|V|})$
- Introduction du γ -line graph et du γ -line graph normalisé

- Algorithme exact FPT en $O^*((\gamma+1)^{|V|})$
- Introduction du γ -line graph et du γ -line graph normalisé
- PTAS pour les unit ball link stream de densité bornée

- Algorithme exact FPT en $O^*((\gamma+1)^{|V|})$
- Introduction du γ -line graph et du γ -line graph normalisé
- PTAS pour les unit ball link stream de densité bornée
- NP-Complétude de γ matching sur les unit ball link stream de densité bornée ?

- Algorithme exact FPT en $O^*((\gamma+1)^{|V|})$
- Introduction du γ -line graph et du γ -line graph normalisé
- PTAS pour les unit ball link stream de densité bornée
- NP-Complétude de γ matching sur les unit ball link stream de densité bornée ?
- Mais pas beaucoup d'espoir :
- TEMPORAL MATCHING est NP-complet ¹ même si $\gamma = 2$ et si le graphe sous-jacent est chemin

Merci de votre attention !

э

(日) (四) (日) (日) (日)

Résolution du problème $\gamma\text{-}\mathrm{Matching}$ par programmation dynamique

Théorème

 γ -MATCHING est résoluble en temps $O(|E| + |V|^2 + |E_{\gamma}|(\gamma + 1)^{|V|})$.

- E_{γ} est l'ensemble des γ -arêtes.
- On procède par programmation dynamique.
- M(t, A₁, A₂,..., A_γ) stocke un γ-matching maximum de la restriction du link stream L aux instants 0 à t + γ − 1, où on enlève les arêtes adjacentes aux sommets temporels (t + i − 1, u) pour u ∈ A_i.
- Intuitivement, les sommets des A_i sont adjacents à des γ-arêtes déjà choisies.

イロト 不得下 イヨト イヨト 二日

Formule de programmation dynamique :

$$M(-1, A_1, A_2, \dots, A_{\gamma}) = \emptyset$$

$$M(t, A_1, A_2, \dots, A_{\gamma}) =$$

$$\max\left(\left\{M(t-1, \emptyset, A_1, A_2, \dots, A_{\gamma-1})\right\} \cup \left\{\{\Gamma\} \cup M(t, A_1 \cup \{u, v\}, A_2, A_3, \dots, A_{\gamma}) \middle| \Gamma = E_{\gamma}(t, u, v) \subseteq L \land u, v \notin \bigcup_{i=1}^{\gamma} A_i\right\}\right)$$

Théorème

La formule donnée ci-dessus est correcte. $M(t_{max} - \gamma + 1, \emptyset, ..., \emptyset)$ est un γ -matching maximum.

3

(日) (四) (日) (日) (日)

Explications :

 $M(t-1, \emptyset, A_1, A_2, ..., A_{\gamma-1})$: On ne choisit pas d'autre γ -arête à l'instant t.

$$\{\Gamma\} \cup M(t, A_1 \cup \{u, v\}, A_2, A_3, \dots, A_{\gamma}) :$$

pour $\Gamma = E_{\gamma}(t, u, v) \subseteq L$ une γ -arête
avec $u, v \notin \bigcup_{i=1}^{\gamma} A_i$.
On choisit une γ -arête Γ à l'instant t qui
n'a pas de sommet temporel dans $\bigcup_{i=1}^{\gamma} A_i$.

$\gamma = 2$ Calcul de $M(2, \{c, d\}, \{a, b\})$. ρ d A_1 b а t = 0 t = 1 t = 2 t = 3 Γ est la seule γ -arête disponible.

Démonstration.

Assez longue... Sur un exemple avec $\gamma = 2$?

$$\begin{split} \mathcal{M}(-1, \mathcal{A}_1, \mathcal{A}_2) &= \emptyset\\ \mathcal{M}(t, \mathcal{A}_1, \mathcal{A}_2) &=\\ \max(\{\mathcal{M}(t-1, \emptyset, \mathcal{A}_1)\} \cup\\ \{\{\Gamma\} \cup \mathcal{M}(t, \mathcal{A}_1 \cup \{u, v\}, \mathcal{A}_2) \mid\\ \Gamma &= \mathcal{E}_{\gamma}(t, u, v) \subseteq \mathcal{L} \land u, v \notin \mathcal{A}_1 \cup \mathcal{A}_2\} \end{split}$$

<ロト <問ト < 目と < 目と

 $M(1, \emptyset, \emptyset) =$

3

$$\begin{split} \mathcal{M}(-1,A_1,A_2) &= \emptyset \\ \mathcal{M}(t,A_1,A_2) &= \\ \max(\{\mathcal{M}(t-1,\emptyset,A_1)\} \cup \\ \{\{\Gamma\} \cup \mathcal{M}(t,A_1 \cup \{u,v\},A_2) \mid \\ \Gamma &= \mathcal{E}_{\gamma}(t,u,v) \subseteq L \land u, v \notin A_1 \cup A_2\}) \end{split}$$

イロト イヨト イヨト イヨト

 $M(1, \emptyset, \emptyset) = \max\{M(0, \emptyset, \emptyset), \}$

2

 $M(1,\emptyset,\emptyset) = \max\{M(0,\emptyset,\emptyset), 1 + M(1,\{a,b\},\emptyset), 1 + M(1,\{a,b\},\emptyset), 0 + M$

э

 $M(1, \emptyset, \emptyset) = \max\{M(0, \emptyset, \emptyset), 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\}$

3

 $\begin{aligned} &M(1, \emptyset, \emptyset) = \max\{M(0, \emptyset, \emptyset), 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\} \\ &M(0, \emptyset, \emptyset) = \max\{ \end{aligned}$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\begin{aligned} & \mathcal{M}(1,\emptyset,\emptyset) = \max\{\mathcal{M}(0,\emptyset,\emptyset), 1 + \mathcal{M}(1,\{a,b\},\emptyset), 1 + \mathcal{M}(1,\{b,c\},\emptyset)\} \\ & \mathcal{M}(0,\emptyset,\emptyset) = \max\{\mathcal{M}(-1,\emptyset,\emptyset) \end{aligned}$

T. Picavet et al

15 Novembre 2020 22 / 23

$$\begin{split} & M(1, \emptyset, \emptyset) = \max\{M(0, \emptyset, \emptyset), 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\} \\ & M(0, \emptyset, \emptyset) = \max\{0, \} \end{split}$$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

 $M(1, \emptyset, \emptyset) = \max\{M(0, \emptyset, \emptyset), 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\}$ $M(0, \emptyset, \emptyset) = \max\{0, 1 + M(0, \{c, d\}, \emptyset)\}$

э

 $\begin{aligned} & M(1, \emptyset, \emptyset) = \max\{M(0, \emptyset, \emptyset), 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\} \\ & M(0, \emptyset, \emptyset) = \max\{0, 1 + M(0, \{c, d\}, \emptyset)\} \\ & M(0, \{c, d\}, \emptyset) = \end{aligned}$

э

 $\begin{aligned} & M(1, \emptyset, \emptyset) = \max\{M(0, \emptyset, \emptyset), 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\} \\ & M(0, \emptyset, \emptyset) = \max\{0, 1 + M(0, \{c, d\}, \emptyset)\} \\ & M(0, \{c, d\}, \emptyset) = M(-1, \emptyset, \{c, d\}) \end{aligned}$

 $\begin{aligned} &M(1, \emptyset, \emptyset) = \max\{M(0, \emptyset, \emptyset), 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\} \\ &M(0, \emptyset, \emptyset) = \max\{0, 1 + M(0, \{c, d\}, \emptyset)\} \\ &M(0, \{c, d\}, \emptyset) = 0 \end{aligned}$

э

 $\begin{aligned} & M(1, \emptyset, \emptyset) = \max\{M(0, \emptyset, \emptyset), 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\} \\ & M(0, \emptyset, \emptyset) = \max\{0, 1 + 0\} \\ & M(0, \{c, d\}, \emptyset) = 0 \end{aligned}$

э

 $\begin{aligned} &M(1,\emptyset,\emptyset) = \max\{M(0,\emptyset,\emptyset), 1 + M(1,\{a,b\},\emptyset), 1 + M(1,\{b,c\},\emptyset)\} \\ &M(0,\emptyset,\emptyset) = 1 \end{aligned}$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

 $M(1, \emptyset, \emptyset) = \max\{1, 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\}$ $M(0, \emptyset, \emptyset) = 1$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

 $M(1, \emptyset, \emptyset) = \max\{1, 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\}$ $M(1, \{a, b\}, \emptyset) =$

э

E 6 4 E 6

< 43 > <

 $M(1, \emptyset, \emptyset) = \max\{1, 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\}$ $M(1, \{a, b\}, \emptyset) = M(0, \emptyset, \{a, b\})$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$egin{aligned} &\mathcal{M}(1,\emptyset,\emptyset) = \max\{1,1+\mathcal{M}(1,\{a,b\},\emptyset),1+\mathcal{M}(1,\{b,c\},\emptyset)\}\ &\mathcal{M}(1,\{a,b\},\emptyset) = \mathcal{M}(0,\emptyset,\{a,b\})\ &\mathcal{M}(0,\emptyset,\{a,b\}) = \max\{\end{aligned}$$

∃ ► < ∃ ►</p>

$$egin{aligned} & M(1, \emptyset, \emptyset) = \max\{1, 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\} \ & M(1, \{a, b\}, \emptyset) = M(0, \emptyset, \{a, b\}) \ & M(0, \emptyset, \{a, b\}) = \max\{M(-1, \emptyset, \emptyset)\} \end{aligned}$$

∃ ► < ∃ ►</p>

$$egin{aligned} &\mathcal{M}(1,\emptyset,\emptyset) = \max\{1,1+\mathcal{M}(1,\{a,b\},\emptyset),1+\mathcal{M}(1,\{b,c\},\emptyset)\}\ &\mathcal{M}(1,\{a,b\},\emptyset) = \mathcal{M}(0,\emptyset,\{a,b\})\ &\mathcal{M}(0,\emptyset,\{a,b\}) = \max\{0 \end{aligned}$$

∃ ► < ∃ ►</p>

$$\begin{split} & \mathsf{M}(1,\emptyset,\emptyset) = \max\{1,1+\mathsf{M}(1,\{a,b\},\emptyset),1+\mathsf{M}(1,\{b,c\},\emptyset)\} \\ & \mathsf{M}(1,\{a,b\},\emptyset) = \mathsf{M}(0,\emptyset,\{a,b\}) \\ & \mathsf{M}(0,\emptyset,\{a,b\}) = \max\{0,1+\mathsf{M}(0,\{c,d\},\{a,b\})\} \end{split}$$

∃ ► < ∃ ►</p>

$$\begin{split} & \mathsf{M}(1,\emptyset,\emptyset) = \max\{1,1+\mathsf{M}(1,\{a,b\},\emptyset),1+\mathsf{M}(1,\{b,c\},\emptyset)\} \\ & \mathsf{M}(1,\{a,b\},\emptyset) = \mathsf{M}(0,\emptyset,\{a,b\}) \\ & \mathsf{M}(0,\emptyset,\{a,b\}) = \max\{0,1+\mathsf{M}(0,\{c,d\},\{a,b\})\} \\ & \mathsf{M}(0,\{c,d\},\{a,b\}) = \mathsf{M}(-1,\emptyset,\{c,d\}) = 0 \end{split}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

$$\begin{split} & M(1, \emptyset, \emptyset) = \max\{1, 1 + M(1, \{a, b\}, \emptyset), 1 + M(1, \{b, c\}, \emptyset)\} \\ & M(1, \{a, b\}, \emptyset) = M(0, \emptyset, \{a, b\}) \\ & M(0, \emptyset, \{a, b\}) = \max\{0, 1 + 0\} \\ & M(0, \{c, d\}, \{a, b\}) = M(-1, \emptyset, \{c, d\}) = 0 \end{split}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

$$egin{aligned} &\mathcal{M}(1,\emptyset,\emptyset) = \max\{1,1+\mathcal{M}(1,\{a,b\},\emptyset),1+\mathcal{M}(1,\{b,c\},\emptyset)\}\ &\mathcal{M}(1,\{a,b\},\emptyset) = \mathcal{M}(0,\emptyset,\{a,b\})\ &\mathcal{M}(0,\emptyset,\{a,b\}) = 1 \end{aligned}$$

T. Picavet et al.

15 Novembre 2020 22 / 23

э

∃ ► < ∃ ►</p>

$$egin{aligned} &\mathcal{M}(1,\emptyset,\emptyset) = \max\{1,1+\mathcal{M}(1,\{a,b\},\emptyset),1+\mathcal{M}(1,\{b,c\},\emptyset)\}\ &\mathcal{M}(1,\{a,b\},\emptyset) = 1\ &\mathcal{M}(0,\emptyset,\{a,b\}) = 1 \end{aligned}$$

∃ ► < ∃ ►</p>

 $M(1, \emptyset, \emptyset) = \max\{1, 2, 1 + M(1, \{b, c\}, \emptyset)\}$ $M(1, \{a, b\}, \emptyset) = 1$

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $M(1, \emptyset, \emptyset) = \max\{1, 2, 1 + M(1, \{b, c\}, \emptyset)\}$ $M(1, \{b, c\}, \emptyset) =$

э

E 6 4 E 6

< 43 > <

$$M(-1, A_1, A_2) = \emptyset$$

$$M(t, A_1, A_2) =$$

$$\max(\{M(t - 1, \emptyset, A_1)\} \cup$$

$$\{\{\Gamma\} \cup M(t, A_1 \cup \{u, v\}, A_2) \mid$$

$$\Gamma = E_{\gamma}(t, u, v) \subseteq L \land u, v \notin A_1 \cup A_2\})$$

 $M(1, \emptyset, \emptyset) = \max\{1, 2, 1 + M(1, \{b, c\}, \emptyset)\}$ $M(1, \{b, c\}, \emptyset) = M(0, \emptyset, \{b, c\})$

э

< 回 > < 三 > < 三 >

$$egin{aligned} &\mathcal{M}(1, \emptyset, \emptyset) = \max\{1, 2, 1 + \mathcal{M}(1, \{b, c\}, \emptyset)\} \ &\mathcal{M}(1, \{b, c\}, \emptyset) = \mathcal{M}(0, \emptyset, \{b, c\}) = \mathcal{M}(-1, \emptyset, \emptyset) \end{aligned}$$

∃ ► < ∃ ►</p>

$$M(1, \emptyset, \emptyset) = \max\{1, 2, 1 + M(1, \{b, c\}, \emptyset)\}$$

$$M(1, \{b, c\}, \emptyset) = M(0, \emptyset, \{b, c\}) = M(-1, \emptyset, \emptyset) = 0$$

∃ ► < ∃ ►</p>

$$egin{aligned} &\mathcal{M}(1,\emptyset,\emptyset)=\max\{1,2,1\}\ &\mathcal{M}(1,\{b,c\},\emptyset)=\mathcal{M}(0,\emptyset,\{b,c\})=\mathcal{M}(-1,\emptyset,\emptyset)=0 \end{aligned}$$

∃ ► < ∃ ►</p>

$$\begin{split} \mathcal{M}(-1, \mathcal{A}_1, \mathcal{A}_2) &= \emptyset\\ \mathcal{M}(t, \mathcal{A}_1, \mathcal{A}_2) &=\\ \max(\{\mathcal{M}(t-1, \emptyset, \mathcal{A}_1)\} \cup\\ \{\{\Gamma\} \cup \mathcal{M}(t, \mathcal{A}_1 \cup \{u, v\}, \mathcal{A}_2) \mid\\ \Gamma &= \mathcal{E}_{\gamma}(t, u, v) \subseteq \mathcal{L} \land u, v \notin \mathcal{A}_1 \cup \mathcal{A}_2\} \end{split}$$

<ロト <問ト < 目と < 目と

 $M(1, \emptyset, \emptyset) = 2$

3

$$M(-1, A_1, A_2) = \emptyset$$

$$M(t, A_1, A_2) =$$

$$\max\{\{M(t - 1, \emptyset, A_1)\} \cup$$

$$\{\{\Gamma\} \cup M(t, A_1 \cup \{u, v\}, A_2) \mid$$

$$\Gamma = E_{\gamma}(t, u, v) \subseteq L \land u, v \notin A_1 \cup A_2\})$$

<ロト <問ト < 目と < 目と

 $M(1, \emptyset, \emptyset) = 2$ Ouf!

3

Complexité

Lemme

Lorsqu'on appelle $M(t, A_1, A_2, ..., A_{\gamma}),$ $A_1, A_2, ..., A_{\gamma}$ sont disjoints deux à deux.

Démonstration.

À un moment on aurait $A_1 \cap A_k \neq \emptyset$. Or on ajoute que à A_1 des éléments qui ne sont pas dans A_k . Contradiction.

Complexité

Lemme

Lorsqu'on appelle $M(t, A_1, A_2, ..., A_{\gamma}),$ $A_1, A_2, ..., A_{\gamma}$ sont disjoints deux à deux.

Démonstration.

À un moment on aurait $A_1 \cap A_k \neq \emptyset$. Or on ajoute que à A_1 des éléments qui ne sont pas dans A_k . Contradiction.

Théorème

 $egin{aligned} & M(t-\gamma+1,\emptyset,\ldots,\emptyset) ext{ est calculable en} \ & O(|E|+|V|^2+|E_\gamma|(\gamma+1)^{|V|}). \end{aligned}$

Démonstration.

- $|E| + |V|^2$: calcul de toutes les γ -arêtes
- Si il y a N(t) γ -arêtes à l'instant t

•
$$\sum_{t=0}^{t_{max}-\gamma+1} N(t)(\gamma+1)^{|V|}$$

イロト 不得 トイヨト イヨト 二日