Graphs in phylogenomics, a few applications

Celine Scornavacca

17/11/2020

From Aristotle to Darwin

Since Aristotle, naturalists have always tried to classify the abundance of creatures that populate the Earth.

Aristote: the scala naturae; Carl von Linné: classification of living; Antoine Laurent de Jussieu; Leclerc de Buffon: the first to evoke the possibility that species can evolve; Jean-Baptiste Lamarck: first theory of evolution; Charles Darwin: The Origins of Species (1859).

From *The Origin of Species*

- It is a truly wonderful fact that all animals and all plants throughout all time and space should be related to each other in groups, subordinate to groups. [...]
- The affinities of all the beings of the same class have sometimes been represented by a great tree. [...] The green and budding twigs may represent existing species; and those produced during former years may represent the long succession of extinct species.

Charles Darwin, (1872), pp. 170-171. The Origin of Species. Sixth Edition. The Modern Library, New York.

Phylogenetics/phylogenetic trees

- Phylogenetics aims at clarifying, using molecular and morphological data, the evolutionary relationships that exist among different species
- These relationships can be represented through *phylogenetic trees* or *phylogenies*, out-branching trees with no indegree-1 outdegreee-1 nodes, where sinks are associated to a set of species (often *binary*)
 - the sinks or taxa represent existing organisms
 - the only node with indegree-0 is called root
 - internal nodes represent hypothetical ancestors
 - each internal node represents the lowest common ancestor of all taxa below it (clade)
 - nodes and branches can have several kinds of information associated with them, such as time or amount of evolution estimates

Phylogenetics/phylogenetic trees

- Phylogenetics aims at clarifying, using molecular and morphological data, the evolutionary relationships that exist among different species
- These relationships can be represented through *phylogenetic trees* or *phylogenies*, out-branching trees with no indegree-1 outdegreee-1 nodes, where sinks are associated to a set of species (often *binary*)

Applications: the TOL – Tree Of Life

de Vienne DM (2016) Lifemap: Exploring the Entire Tree of Life. PLOS Biology.

Applications: character evolution

A. afraspera * A. abyssinica

A. montevidensis

A. americana

A. evenia *

C. stellaris

A. patula

B. humularioides

K. lutea

S. sensitiva

S. semperflorens

Applications: co-evolution

ficus trees

wasps

Applications: the Noah's Ark Problem

F. Pardi and N. Goldman (2007). Resource aware taxon selection for maximizing phylogenetic diversity. Systematic Biology.

Applications: disease evolution and spreading

Phylogeny of SARS-CoV-2 related strains (GISAID, 10/5/2020)

Anna Zhukova et al (2020) Origin, evolution and global spread of SARS-CoV-2 To appear in the Comptes Rendus - Biologies of the French Academy of Sciences

Applications: disease evolution and spreading

Phylogenetic scenario showing the main transmission clusters of SARS-CoV-2 until April 25, 2020.

Anna Zhukova et al (2020) Origin, evolution and global spread of SARS-CoV-2 To appear in the Comptes Rendus - Biologies of the French Academy of Sciences

Explicit phylogenetic networks

They represent evolutionary history when inheritance is from multiple ancestors – because of reticulate events, e.g:

- Hybrid speciation
- Lateral gene transfer
- Recombination

Explicit phylogenetic networks

They represent evolutionary history when inheritance is from multiple ancestors – because of reticulate events, e.g:

Explicit phylogenetic networks

They represent evolutionary history when inheritance is from multiple ancestors – because of reticulate events, e.g:

Explicit phylogenetic networks (rDAG)

• We want to sequence a genome, a chromosome, a portion of a genome, etc.

CCCCTGAACTTCGCTAGGGTTC	CTAACGACACTCCTTGGGTTTTTACG	TCGCGGTTCTCTAGGCCAT	FGATTGCGGGTCCAGGTGCTGTCAACGA
CCCCTGAACTT			FGATTGCGGGTC
			GGTCCAGGTGCTGTCAACGA
TCGCTAGGGTTC	TCTAACGA TTTACG	TCGCGG	CGA

- We want to sequence a genome, a chromosome, a portion of a genome, etc
- The portion of genomic data we want to sequence is chopped into smaller pieces, which can be easily "read"

CCCCTGAACTTCGCTAGGGTTC	ICTAACGACACTCCTTGGGTTTTTACG 1	CGCGGTTCTCTAGGCCAT	TGATTGCGGGTCCAGGTGCTGTCAACGA
CCCCTGAACTT			TGATTGCGGGTC
ACTTCGC			GGTCCAGGTGCTGTCAACGA
TCGCTAGGGTTC	ICTAACGA TTTACGI		CGA
CCCCTGAACTTCGCTAGGGTTC	FCTAACGACACTCCTTGGGTTTTTACG T	CGCGGTTCTCTAGGCCAT	TGATTGCGGGTCCAGGTGCTGTCAACGA

- We want to sequence a genome, a chromosome, a portion of a genome, etc
- The portion of genomic data we want to sequence is chopped into smaller pieces, which can be easily "read"
- The assembly step puts all the *reads* together, and we obtain the whole sequence back

CCCCTGAACTTCGCTAGGGTTCTCT	AACGACACTCCTTGGGTTTTTACGT	CGCGGTTCTCTAGGCCAT	TTGATTGCGGGTCCAGGTGCTGTCAACGA
CCCCTGAACTT			TTGATTGCGGGTC
ACTTCGC			GGTCCAGGTGCTGTCAACGA
TCGCTAGGGTTCTCT			CGA
CCCCTGAACTTCGCTAGGGTTCTCT	AACGACACTCCTTGGGTTTTTACGT	CGCGGTTCTCTAGGCCAT	TTGATTGCGGGTCCAGGTGCTGTCAACGA

- We want to sequence a genome, a chromosome, a portion of a genome, etc
- The portion of genomic data we want to sequence is chopped into smaller pieces, which can be easily "read"
- The assembly step puts all the *reads* together, and we obtain the whole sequence back

Easier to say than to do

GCCCCTGAACTTCGCTA	GGGTTCTCTAACGACACTCCTTGGGTTT	TTACGTCGC <mark>GGTT</mark>	CTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC
GCCCCTGAACTT		TT	CTAGGCCATTGATTGCGGGTC
ACTTCGC			GGTCCAGGTGCTGTCAACGAC
TCGCTA		TTACGTCGCGG	CGAC
GCCCCTGAACTTCGCTA	GGGTTCTCTAACGACACTCCTTGGGTTT	TTACGTCGCGG	CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

Parts of the sequence might not be covered by reads
✓ high coverage

GCCCCTGAACTTCGCTA	GGTTCTCTAACGA	CACTCCTTGGGTTTTTACGTCGC GGTT (CTCTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC
GCCCCTGAACTT	CGA	CACTCCTTGGGTTTT	CTAGGCCATTGATTGCGGGTC
ACTTCGC	GGTTCTCT		GGTCCAGGTGCTGTCAACGAC
TCGCTA	GGGTTCTCTAACGT	TTTACGTCGCGG	CGAC
GCCCCTGAACTTCGCTA	GGGTTCTCTAACGA	CACTCCTTGGGTTTTTACGTCGCGG	CTAGGCCATTGATTGCGGGGTCCAGGTGCTGTCAACGAC

- Parts of the sequence might not be covered by reads
 - ✓ high coverage
- Errors are possible
 - ✓ high coverage
 - ✓ consensus

GCCCCTGAACTTCGCTA	GGTTCTCTA	CGACACTCCTTGGGTTTTTACGTC	GCGGTTCTCTA	GCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC
GCCCCTGAACTT	(CTA	GCCATTGATTGCGGGTC
				GGTCCAGGTGCTGTCAACGAC
				CGAC
GCCCCTGAACTTCGCTA	GGGTTCTCTAA	CGACACTCCTTGGGTTTTTACGTC	GCGG CTA	GGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

- Parts of the sequence might not be covered by reads
 - ✓ high coverage
- Errors are possible
 - ✓ high coverage
 - ✓ consensus
- Repeats (common in DNA) make assembly ambiguous

GCCCCTGAACTTCGCTA	G GGTTCTCTA ACGACACTCCTTGGGTTTTTACGTC	GC <mark>GGTTCTCTA</mark> GGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC
GCCCCTGAACTT		CTAGGCCATTGATTGCGGGTC
ACTTCGC		GGTCCAGGTGCTGTCAACGAC
TCGCTA		GGG CGAC
GCCCCTGAACTTCGCTA	GGGTTCTCTAACGACACTCCTTGGGTTTTTACGTC(GCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

- Parts of the sequence might not be covered by reads
 - ✓ high coverage
- Errors are possible
 - ✓ high coverage
 - ✓ consensus
- Repeats (common in DNA) make assembly ambiguous

DeBruijn-graph based assembly

DeBruijn-graph based assembly

- chop all reads into "k-mers"
- builds overlap graph ("DeBruijn graph")
- find Eulerian path

GCCCCTGAACTTCGCTA	GGGTTCTCTAACGACACTCCTTGGGTTTTTACGT(CGC GGTTCTCTA GGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC
GCCCCTGAACTT		CTAGGCCATTGATTGCGGGTC
ACTTCGC		GGTCCAGGTGCTGTCAACGAC
TCGCTA		CGAC
GCCCCTGAACTTCGCTA	GGGTTCTCTAACGACACTCCTTGGGTTTTTACGT(CGCGG CTAGGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC

GCCCCTGAACTTCGCTAG**GGTTCTCTA**ACGACACTCCTTGGGTTTTTACGTCGC**GGTTCTCTA**GGCCATTGATTGCGGGTCCAGGTGCTGTCAACGAC GCCCCTGAACTT CGACACTCCTTGGGTTTT CTAGGCCATTGATTGCGGGGTC ACTTCGC GGTTCTCT GGTCCGCGG GGTCCCAGGTGCTGTCAACGAC TCGCTAGGGTTCTCTAACGA TTTACGTCGCGG GCCCCTGAACTTCGCTAGGGTTCTCTAACGACACTCCTTGGGTTTTTACGTCGCGGGNNNNCTAGGCCATTGATTGCGGGGTCCAGGTGCTGTCAACGAC

Thanks to paired-end information, we can join *contigs* into chromosomes. This step is called scaffolding

• map reads into contigs

- map reads into contigs
- pair contigs according to read-pairing (weighted)

- map reads into contigs
- pair contigs according to read-pairing (weighted)
- cover "scaffold graph" with (heavy) alternating paths, where each path corresponds to a chromosome

- map reads into contigs
- pair contigs according to read-pairing (weighted)
- cover "scaffold graph" with (heavy) alternating paths, where each path corresponds to a chromosome

- Np alternating paths
- Nc alternating cycles

- map reads into contigs
- pair contigs according to read-pairing (weighted)
- cover "scaffold graph" with (heavy) alternating paths, where each path corresponds to a chromosome

- Contig Jumps
- Multiplicities
- Linearization of solutions

- Np alternating paths
- Nc alternating cycles

Thanks to Mathias Weller for the nice blackboard-like pics

Which sequence to compare?

Homologous genes, ie sequences inherited in the species of interest from a common ancestor. Groups of homologous genes form *gene families*.

Which sequence to compare?

Homologous genes, ie sequences inherited in the species of interest from a common ancestor. Groups of homologous genes form *gene families*.

But sequences do not come with nice labels on them, telling us to which gene family they belong

We put all the genes in a pool and we cluster them into gene families using *similarity measures*

After applying a filtering step deleting edges with weights lower than a certain threshold, we would like to get this kind of scenarios...

... but we don't! We often get unclear scenarios where our disconnected cliques are not really cliques and not really disconnected

- cluster algorithm for graphs (e.g. MCL)
- graph editing (adding deleting edges to get disconnected cliques)

Alignment (aka which characters to compare)

Homologous characters, ie characters inherited in the species of interest from a common ancestor. We need to *align* sequences because no only *mutations* happen on genomic sequences but also *indels* (insertions and deletions)

G T T A C G A G T T G G A

Alignment (aka which characters to compare)

Homologous characters, ie characters inherited in the species of interest from a common ancestor. We need to *align* sequences because no only *mutations* happen on genomic sequences but also *indels* (insertions and deletions)

G T T A C G A G T T G G A

• opening of the gaps

extension of the gaps[Affine functions are often used]

Alignment (aka which characters to compare)

Homologous characters, ie characters inherited in the species of interest from a common ancestor. We need to *align* sequences because no only *mutations* happen on genomic sequences but also *indels* (insertions and deletions)

G T T A C G A G T T G G A

- G T T A C G A G T T - G G A G T T A C G A G T T G - G A
- G T T A C G A G T T - - G G A

- opening of the gaps
- extension of the gaps[Affine functions are often used]
- substitutions (between nucleotides or amino acids)

Phylogenetic inference

D_yakuba	GGAGCI	TGAGCCG	G A A T A G T A G G A A	A C A T C T T T A A G A A T T T T A A T T C G A G C
RPU74073	GGAATC	TGAACAG	GCTTAGTAGCCA	A C T A G A A T A A G A C T T T T A A T T C G A G C
RPU74053	GGAATI	TGAACAG	GTTTAGTAGCCA	A C T A G A A T A A G A C T C T T A A T T C G A G C
PSU74068	GGAATI	TGAACCG	GCCTCGTAGCAA	A C A A G A A T A A G C T T A T T A A T C C G T G C
TJU74075	GGAATI	TGAACCG	GCTTAGTAGCCA	A C A A G A A T A A G A C T A T T A A T T C G A G C
LCU74061	GGAATC	TGAACAG	JTCTAGTAGCCA	A C T A G A A T A A G A C T A T T A A T T C G A G C
OAU74069	GGAATI	TGAACAGO	STCTAGTAGCCA	A C T A G A A T A A G A C T C T T A A T T C G A G C
ESU74065	GGAATC	TGAACAG	GACTAGTAGCCA	A C G A G A A T G A G A C T C C T A A T T C G A G C
ESU84262	GGAATC	TGAACAG	GACTAGTAGCCA	A C G A G A A T G A G A C T C C T A A T T C G A G C
GBU74066	GGAATI	TGAGCAG	GAATAATTGCAA	A C T A G A A T A A G A A T T A T T A T C C G T C T
		10		
		· · · - · · · · ·		
D_yakuba	AGAATI	AGGTCAT	CAGGAGCATTA	A A T T G G A G A T G A T C A A A T T T A T A A T G
D _y akuba RPU74073	A G A A T I T G A A C I	AGGTCAT TGGCCAA	CCAGGAGCATTA CCTGGGACTCTI	A A TT <mark>G G A G</mark> A T <mark>G</mark> A T C A A A TT T A T A A T <mark>G</mark> F T T A <mark>G G T G A T G</mark> A C C A A A T C T A T A A T T
D_yakuba RPU74073 RPU74053	A G A A T I T G A A C I G G A A C I	A G G T C A T (T G G C C A A (A G G A C A A (CCAGGAGCATTA CCTGGGACTCTT CCAGGAACTCTT	A A TT <mark>G G A G</mark> AT <mark>G AT C</mark> AA A TT T AT A A T <mark>G</mark> F T T A G G T G AT G A C C AA A T C T AT A A T T F T T A <mark>G G A G A C G A C C</mark> AA A TT T A C A A T T
D_yakuba RPU74073 RPU74053 PSU74068	A G A A T I T G A A C I G G A A C I A G A G C I	A G G T C A T (T G G C C A A (A G G A C A A (A G G T C A A (CCAGGAGCATTA CCTGGGACTCTT CCAGGAACTCTT CCTGGTACACTT	A A TT G G A G AT G AT C AA A TT T AT A A T G F T T A G G T G AT G A C C AA A T C T AT A A T T F T T A G G A G A C G A C C AA A T T T A C A A T T F C T A G G A G AT G A C C AA A T T T A T A A C T
D_yakuba RPU74073 RPU74053 PSU74068 TJU74075	AGAATI TGAACI GGAACI AGAGCI TGAACI	A G G T C A T C T G G C C A A C A G G A C A A C A G G T C A A C T G G A C A A C	CCAGGAGCATTA CCTGGGACTCTT CCAGGAACTCTT CCTGGTACACTT CCTGGTACACTT CCAGGAACTCTT	A A TT G G A G AT G AT C AA A TT T AT A A T G F T T A G G T G AT G A C C AA A T C T AT A A T T F T T A G G A G A C G A C C AA A T T T A C A A T T F C T A G G A G A T G A C C AA A T T T A T A A C T F C T A G G A G A T G A C C AA A T T T A T A A T T
D_yakuba RPU74073 RPU74053 PSU74068 TJU74075 LCU74061	AGAATI TGAACI GGAACI AGAGCI TGAACI TGAACI	A G G T C A T (T G G C C A A (A G G A C A A (A G G T C A A (T G G A C A A (T G G T C A G (CCAGGAGCATTA CCTGGGACTCTT CCAGGAACTCTT CCTGGTACACTT CCAGGAACTCTT CCCGGAACACTC	A A TT G G A G AT G AT C AA A TT T AT AA T G F T TA G G T G AT G AC C AA A T C T AT AAT T F T TA G G A G A C G A C C AA A T T T A C A A T T F C TA G G A G AT G A C C AA A T T T A T A A C T F C TA G G A G AT G A C C AA A T T T A T AAT T C T TA G G A G AT G A C C AA A T T T A C A A T T C T TA G G A G AT G A C C AA A T T T A C A A T T
D_yakuba RPU74073 RPU74053 PSU74068 TJU74075 LCU74061 OAU74069	A G A A T I T G A A C I G G A A C I A G A G C I T G A A C I T G A A C I T G A A C I	A G G T C A T (T G G C C A A C A G G A C A A C A G G T C A A C T G G T C A G C G G T C A A C	C C A G G A G C A T T A C C T G G G A C T C T T C C A G G A A C T C T T C C T G G T A C A C T T C C A G G A A C T C T T C C C G G A A C A C T C T T	A A TT G G A G AT G AT C AA ATTT AT AA T G F T TA G G T G AT G AC C AA A T C T AT AAT T F T TA G G A G AC G A C C AA A T T T A C A A T T F C TA G G A G AT G A C C AA A T T T A T A A C T F C TA G G A G AT G A C C AA A T T T A T AA T T C T T A G G A G AT G A C C AA A T T T A T AA T T F T T A G G C G A C G A C C AA A T T T A T A A C T
D_yakuba RPU74073 RPU74053 PSU74068 TJU74075 LCU74061 OAU74069 ESU74065	A G A A T T G G A A C T G G A A C T A G A G C T T G A A C T	A G G T C A T (T G G C C A A C A G G A C A A C A G G T C A A C T G G T C A A C C G G T C A A C T G G A C A A C	CCAGGAGCATTA CCTGGGACTCTT CCAGGAACTCTT CCTGGTACACTT CCAGGAACTCTT CCCGGAACACTCTT CCCGGAACTCTT CCCGGAACTCTT	A A TT G G A G AT G AT C AA ATT T AT A AT G F T TA G G T G AT G A C C AA A T C T AT A A T T F T TA G G A G A C G A C C AA A T T T A C A A T T F C TA G G A G A T G A C C AA A T T T AT A A C T F C T A G G A G A T G A C C AA A T T T AT A A T T C T T A G G A G A T G A C C AA A T T T A T A A T T F T T A G G C G A C G A C C AA A T T T A T A A C T F C T A G G A G A C G A C C AA A T T T A T A A C T
D_yakuba RPU74073 RPU74053 PSU74068 TJU74075 LCU74061 OAU74069 ESU74065 ESU84262	A G A A T T G G A A C T A G A G C T T G A A C T T G A G C T	A G G T C A T (T G G C C A A C A G G A C A A C A G G T C A A C T G G A C A A C C G G T C A A C T G G A C A A C	CCAGGAGCATTA CCTGGGACTCTT CCAGGAACTCTT CCTGGTACACTT CCAGGAACTCTT CCCGGAACTCTT CCCGGAACTCTT CCTGGAACTCTT	A A TT G G A G AT G AT C AA A TT T AT A A T G F T TA G G T G AT G A C C AA A T C T AT A A T T F T TA G G A G A C G A C C AA A T T T A C A A T T F C TA G G A G A T G A C C AA A T T T A T A A C T F C T A G G A G A T G A C C AA A T T T A T A A T T C T T A G G A G A T G A C C AA A T T T A T A A T T F T T A G G C G A C G A C C AA A T T T A T A A C T F C T A G G A G A C G A C C AA A T T T A T A A T T F C T A G G A G A C G A T C AA A T T T A T A A T T F C T A G G A G A C G A T C AA A T T T A T A A T T
D_yakuba RPU74073 RPU74053 PSU74068 TJU74075 LCU74061 OAU74069 ESU74065 ESU84262 GBU74066	A G A A T T G G A A C T A G A G A C T T G A G C T T G A G C T C G A A C T	A G G T C A T (T G G C C A A C A G G A C A A C A G G T C A A C T G G T C A A C C G G T C A A C T G G A C A A C T G G A C A A C	CCAGGAGCATTA CCTGGGACTCTT CCAGGAACTCTT CCTGGTACACTT CCGGAACTCTT CCCGGAACTCTT CCCGGAACTCTT CCTGGAACTCTT CCTGGAACTCTT CCAGGATCTTTT	A A TT G G A G AT G AT C AA A TT T AT A A T G F T TA G G T G AT G A C C AA A T C T AT A A T T F T TA G G A G A C G A C C AA A T T T A C A A T T F C TA G G A G A T G A C C AA A T T T A T A A C T F C T A G G A G A T G A C C AA A T T T A T A A T T C T T A G G A G A T G A C C AA A T T T A T A A T T F T T A G G C G A C G A C C AA A T T T A T A A C T F C T A G G A G A C G A C C AA A T T T A T A A T T F C T A G G A G A C G A C C AA A T T T A T A A T T F C T A G G A G A C G A T C AA A T T T A T A A T T F C T A G G A G A C G A T C AA A T T T A T A A T T F C T A G G A G A C G A T C AA A T T T A T A A T T

Reconstructing phylogenies

- distance-based methods, which use pairwise distances to quantify the amount of evolution separating species
- character-based methods, which retrieve similarities comparing the states taken by species at different characters:
 - o parsimony methods
 - o likelihood methods
 - o bayesian methods

Reconstructing phylogenies

- **distance-based methods**, which use pairwise distances to quantify the amount of evolution separating species
- character-based methods, which retrieve similarities comparing the states taken by species at different characters:
 - o parsimony methods
 - o likelihood methods
 - o bayesian methods

First thing to do is to define distances between genomic sequences. The usual way (no genome rearrangement here) is to compute them from the alignments

> G T T A C G A C G T T - G G A A

First thing to do is to define distances between genomic sequences. The usual way (no genome rearrangement here) is to compute them from the alignments, after having removed the gaps

> G T T C G A C G T T G G A A

• Hamming distance 1+1

First thing to do is to define distances between genomic sequences. The usual way (no genome rearrangement here) is to compute them from the alignments, after having removed the gaps

> G T T C G A C G T T G G A A

- 1. Hamming distance: 1+1
- 2. Accounting for the biology:
 - $C_{C->G} + C_{C->A}$

First thing to do is to define distances between genomic sequences. The usual way (no genome rearrangement here) is to compute them from the alignments, after having removed the gaps

G T T C G A C G T T <mark>G</mark> G A <mark>A</mark>

- 1. Hamming distance: 1+1
- 2. Accounting for the biology:
 - $C_{C->G} + C_{C->A}$
 - accounting for multiple, parallel, convergent, coincidental and back substitutions

3 more substitutions!

We correct the Hamming distance (d_0) using a substitution model (a probabilistic model of sequence evolution). The corrected distance aims at estimating the true distance.

Examples of substitution models

Aka probabilistic models of sequence evolution

$$\mathsf{JC} \qquad \mathsf{Q} = \begin{pmatrix} -3\alpha & \alpha & \alpha & \alpha \\ \alpha & -3\alpha & \alpha & \alpha \\ \alpha & \alpha & -3\alpha & \alpha \\ \alpha & \alpha & \alpha & -3\alpha \end{pmatrix}$$

$$K2P \qquad Q = \begin{pmatrix} -\alpha - 2\beta & \beta & \alpha \\ \beta & -\alpha - 2\beta & \beta \\ \alpha & \beta & -\alpha - 2\beta \\ \beta & \alpha & \beta & -\alpha - 2\beta \end{pmatrix}$$

$$GTR \qquad Q = \begin{pmatrix} \lambda_A & \pi_C R_{AC} & \pi_G R_{AG} & \pi_T R_{AT} \\ \pi_A R_{AC} & \lambda_C & \pi_G R_{CG} & \pi_T R_{CT} \\ \pi_A R_{AG} & \pi_C R_{CG} & \lambda_G & \pi_T R_{GT} \\ \pi_A R_{AT} & \pi_C R_{CT} & \pi_G R_{GT} & \lambda_T \end{pmatrix}$$

- Estimate pairwise distances between sequences (mean number of substitutions per site, see previous slides)
- Reconstruct a tree that corresponds well to the estimated distances

- Estimate pairwise distances between sequences (mean number of substitutions per site)
- Reconstruct a tree that corresponds well to the estimated distances
- An agglomerative algorithm: Neighbor Joining (NJ)

- Estimate pairwise distances between sequences (mean number of substitutions per site)
- Reconstruct a tree that corresponds well to the estimated distances
- An agglomerative algorithm: Neighbor Joining (NJ)

- Estimate pairwise distances between sequences (mean number of substitutions per site)
- Reconstruct a tree that corresponds well to the estimated distances
- An agglomerative algorithm: Neighbor Joining (NJ)

- Estimate pairwise distances between sequences (mean number of substitutions per site)
- Reconstruct a tree that corresponds well to the estimated distances
- An agglomerative algorithm: Neighbor Joining (NJ)

until the tree is binary

- Estimate pairwise distances between sequences (mean number of substitutions per site)
- Reconstruct a tree that corresponds well to the estimated distances
- An agglomerative algorithm: Neighbor Joining (NJ)
- Optimization principles
 - Least Squares (LS): given the estimated distances δ_{ij} , find T s.t $\delta_{ij} \approx d_{ij}^T$ where d_{ij}^T are the distances between the leaves of T

- Estimate pairwise distances between sequences (mean number of substitutions per site)
- Reconstruct a tree that corresponds well to the estimated distances
- An agglomerative algorithm: Neighbor Joining (NJ)
- Optimization principles
 - Least Squares (LS): given the estimated distances δ_{ij} , find T s.t $\delta_{ij} \approx d_{ij}^T$ where d_{ij}^T are the distances between the leaves of T

$$\min_{T} \sum_{i < j} w_{ij} (d_{ij}^T - \delta_{ij})$$

OLS when $w_{ij}=1$ WLS otherwise, where w_{ij} gives the confidence we have in the distance entry δ_{ij}

- Estimate pairwise distances between sequences (mean number of substitutions per site)
- Reconstruct a tree that corresponds well to the estimated distances
- An agglomerative algorithm: Neighbor Joining (NJ)
- Optimization principles
 - Least Squares (LS): given the estimated distances δ_{ij} , find T s.t $\delta_{ij} \approx d_{ij}^T$ where d_{ij}^T are the distances between the leaves of T

$$\min_{T} \sum_{i < j} w_{ij} (d_{ij}^T - \delta_{ij})$$

SMALL PROBLEM

OLS when $w_{ij}=1$ O(n²) WLS otherwise, where w_{ij} gives the confidence we have in the distance entry δ_{ij}

BIG PROBLEM NP-hard

Heuristics:

- Sequential insertion
- Star decomposition
 - Hill-climbing

- Estimate pairwise distances between sequences (mean number of substitutions per site)
- Reconstruct a tree that corresponds well to the estimated distances
- An agglomerative algorithm: Neighbor Joining (NJ)
- Optimization principles
 - Least Squares (LS): given the estimated distances δ_{ij} , find T s.t $\delta_{ij} \approx d_{ij}^T$ where d_{ij}^T are the distances between the leaves of T

• Balanced Minimum Evolution (BME):
$$\min_{T} \sum_{k \in E(T)} b_k$$
$$q(b) = \sum_{i < j} w_{ij} (d_{ij}^T - \delta_{ij})^2 \qquad \underset{\text{NP-hard Heuristics}}{\text{BIG}}$$

(such as NJ)

Reconstructing phylogenies

- distance-based methods, which use pairwise distances to quantify the amount of evolution separating species
- **character-based methods**, which retrieve similarities comparing the states taken by species at different characters:
 - o parsimony methods
 - o likelihood methods
 - o bayesian methods

a

b

С

d

 $e \\ f$

- The main hypothesis of parsimony sequence-based methods is that character changes are not frequent and thus the phylogenies that best explain the data are those requiring the fewest evolutionary changes
- Each character can be analyzed independently from the others

- The main hypothesis of parsimony sequence-based methods is that character changes are not frequent and thus the phylogenies that best explain the data are those requiring the fewest evolutionary changes
- Each character can be analyzed independently from the others

- The main hypothesis of parsimony sequence-based methods is that character changes are not frequent and thus the phylogenies that best explain the data are those requiring the fewest evolutionary changes
- Each character can be analyzed independently from the others

- The main hypothesis of parsimony sequence-based methods is that character changes are not frequent and thus the phylogenies that best explain the data are those requiring the fewest evolutionary changes
- Each character can be analyzed independently from the others

$$PS(A) = \min_{T} PS(T|A)$$

BIG PROBLEM NP-hard

Heuristics such as hill-climbing

Hardwired parsimony score

SMALL PROBLEM

 find the assignment of states to internal nodes of the network such that the total number of edges that connect nodes in different states is minimized (the same definition used for trees!)

$$PS_{hw}(N|a_{\star,j}) = \min_{\tau} \sum_{uv \in E(N)} c_{\tau}(uv)$$

• conjectured to be NP-hard

Hardwired parsimony score - issue

This definition counts a statechange when a reticulation node has the same state as one of its parents, if the other parent has a different state, see for example the reticulation h.

Hence, hardwired parsimony counts more state-changes than necessary since h could very well have inherited its state from its same-state parent.

Trees displayed by a network

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

The genome at the start of the new lineage is a composition of those of the parent lineages.

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

The genome at the start of the new lineage is a composition of those of the parent lineages.

The evolution of each part independently inherited is described by a *"gene" tree*

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

The genome at the start of the new lineage is a composition of those of the parent lineages.

The evolution of each part independently inherited is described by a *"gene" tree*

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

In a phylogenetic network, a reticulate event is represented as a reticulation, where branches converge to give rise to a new lineage:

Delete switched off edges and unlabelled leaves and suppress outdgree-1 indegree-1 nodes

2^r possible trees

Softwired parsimony score

We evaluate a candidate network *on the basis of how well the trees it displays fit the data:*

SMALL

PROBLEM

Softwired parsimony score - results

- NP-hard for tree-child timeconsistent networks and binary characters
- for any constant \$\varepsilon > 0\$, an approximation factor of \$|X|^{1-\varepsilon\$ is not possible in poly time (\$|X|^{1/3-\varepsilon\$ for binary networks) unless \$P = NP\$
- non-FPT in the parsimony score (NP-hard to know if PS=1!)
- FPT in the level of the network
- fast ILP (simulations)

Fischer et al. On computing the maximum parsimony score of a phylogenetic network, 2015

A modeling problem: the allopolyploidy example

The true gene tree is **not displayed** by the network because it needs to *use* both edges entering the hybrid node

The multi-labelled tree U*(N)

- nodes are the directed paths in N starting at r(N)
- for each pair of paths p, p' in N, there is an edge in $U^*(N)$ from p to p' if and only if p=p'e for some edge e in N
- each node in $U^*(N)$ corresponding to a path in N that starts at r(N) and ends at x in X is labelled by x

Parental trees

A phylogenetic tree T on X is a parental tree of N if it is displayed by $U^*(N)$

Parental trees

Parental parsimony score

 $PS_{pt}(N|a_{\star,j}) = \min_{T \in \mathcal{PT}(N)} \min_{\tau} \sum_{uv \in E(t)} c_{\tau}(uv)$

The parsimony scores, an example

Parental parsimony score - results

- NP-hard even if the network is tree-child and has reticulation depth at most 1 and binary characters
- FPT in the reticulation number of the network
- FPT in the level of the network

Lineage functions

A lineage function maps every node in a network to a set of states. Informally, this is a way of tracking how many branches of a parental tree travel through each node of the network, and what states are assigned to each of those branches.

ML phylogenetic network inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it ("parentally") displays fit the data:

Many possible formulations:

Jin et al.Maximum likelihood of phylogenetic networks. Bioinformatics 2006.

Yu et al. The Probability of a Gene Tree Topology within a Phylogenetic Network with Applications to Hybridization Detection, 2012

ML phylogenetic network inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it ("parentally") displays fit the data:

Many possible formulations:

Jin et al.Maximum likelihood of phylogenetic networks. Bioinformatics 2006.

Yu et al. The Probability of a Gene Tree Topology within a Phylogenetic Network with Applications to Hybridization Detection, 2012

ML phylogenetic network inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it ("parentally") displays fit the data:

Many possible formulations:

Jin et al.Maximum likelihood of phylogenetic networks. Bioinformatics 2006.

Yu et al. The Probability of a Gene Tree Topology within a Phylogenetic Network with Applications to Hybridization Detection, 2012

ML phylogenetic tree inference

An optimization problem where a candidate network is evaluated on the basis of how well the trees it ("parentally") displays fit the data:

Many possible formulations:

Data:

Sequence alignments: (typically given in blocks)

Goal:

Find N that maximises

es
$$\mathbf{Pr}(A_1, A_2, ..., A_m | N) = \prod_{i=1}^m \mathbf{Pr}(A_i | N) =$$

ML under the NMSC

PhyloNet

Data:

Sequence alignments: (typically given in blocks)

Goal: Find N that maximises

$$\mathbf{Pr}(A_1, A_2, \dots, A_m | N) = \prod_{i=1}^m p(G_i | N).$$

Zhu and Degnan. Displayed trees do not determine distinguishability under the network multispecies coalescent, 2016 Yu et al. Maximum likelihood inference of reticulate evolutionary histories, 2014 Wen el al. PLOS Genetics 2016 (Bayesian method)

The strategy (hill-climbing, MCMC...)

Searching the space of phylogenetic networks

Searching the space of phylogenetic networks (rNNI)

Searching the space of phylogenetic networks (rSPR)

Searching the space of phylogenetic networks

Arc insertion/deletion

Combining trees

Combining trees

The underlying approach

- 1. Combinatorial objects such as phylogenetic *trees*, hierarchical *clusters* or *triplets* or *trinets* are constructed from the data of the species under study
- 2. These combinatorial objects are combined into a phylogenetic **network**. The way they are combined and the parameters to optimise (e.g. minimizing the *hybridization number*, i.e. the number of reticulations of the network, or the *level*, i.e. the maximum number of reticulations in each biconnected component) give a large range of different problems

Consensus methods

All trees have the **same** taxa

data set, člaiming that majority-fule consensus tends to a bigurran heleed, ambiguity in the hata set can cause an a topology displaying seteral polytomies; to be repeated d therefore preferred s(*I*this method. MT problem for *k* trees is equivalent to the maximum inder the control of the set of the transmum inder the control of the set of the transmum inder the control of the set of the transmum inder the control of the set of the transmum inder the control of the set of the transmum inder the set of the set of the transmum inder the set of the transmum inder the set of t

strict consensus, majority consensus

semistrict consensus

crifie in constructing a creedy const is tree, defined as follows: the semist tree, defined as follows: the semiset tree, defined as follows: the semiset tree, defined as follows: the semiset tree between, 1995], of an isticoted mapagible sengitas of by (1905) and the semimatrix tree between the semiset tree between the semimatrix tree between the semiset tree between the semimatrix tree between the semiset tree between tree between the semiset tree between tree between tree between the semiset tree between tree betwee

T Sprict C 21201 suS trees consensu tains splits tenpeasing in volumence of ct consensus tree McLorra et al. 19 protectures is the tree that contain

semi-strict consensus tree for the forest depicted Eathat can help to understand whether the lack of resoluni-strict consensus trees contains the split abledet which, sus tree is due to a strong disagreement between input trees by any tree, is not included neither in the strict consensus e can be used to evaluate the efficiency of all strict consensus ule consensus tree. For this forest the semi-strict and the inson [1994] *i.e.*, methods that retain unanimous agreement c (Section 3.2.1.6) are identical.

greedy consensus

Supertree methods

Trees **do not** have the **same** taxon sets

Supertree methods

Display graph

Supertree methods

Display graph

Supertree methods

Display graph

The compatibility and the strict compatibility problems for unrooted phylogenetic trees, strongly related, respectively, to the notions of containing as a minor and containing as a topological minor, Both problems are FTP in the number of input trees k, by using their expressibility in MSOL.

But the dependency on k of these algorithms is **prohibitively large.**

Supertree methods

Display graph

We gave the first explicit dynamic programming algorithms for solving these problems, both runningin time 2 $O(k^2)$ n, where n is the total size of the input.

N

Phylogenetic supernetwork inference

An optimization problem where a candidate network is evaluated *on the basis of how well the trees it displays fit the data:*

Many possible formulations:

Data:

Any trees on the same taxa:

Goal:

Find the network N with the lower hybridization number such that the input trees are `consistent' with one of the trees displayed by N

subject to constraints on the complexity of \boldsymbol{N}

The hybridization number problem

Given: Two rooted binary trees on the same taxon set but different topology.

Question: What is the most probable evolutionary history?

Assumptions: Difference is caused by hybridizations, parsimony framework

Answer: Network *displaying* both trees with a minimal number of hybridization (reticulation) nodes: **hybridization network**

Using MAAFs to construct hybridization networks

Results

- NP-hard
- FPT in the reticulation number r of the network $O(3.18^r n)$
- FPT in the level k of the network $O(3.18^k n)$
- > Reduction steps:
 - o Subtree reduction
 - o Chain reduction
 - o Cluster reduction

Using MAAFs to construct hybridization networks

Results – approx (connection with the DFVS)

- no 1.36-approximation, unless P=NP
- no (2ϵ) -approximation, unless the unique games conjecture fails
- O(log(r)loglog(r))- approximation
- d(c+1)-approximation

Kelk et al. Cycle killer...qu'est-ce que c'est? On the comparative approximability of hybridization number and directed feedback vertex set 2012 van lersel et al. A practical approximation algorithm for solving massive instances of hybridization number. 2012

Results – approx (connection with the DFVS)

- no 1.36-approximation, unless P=NP
- no (2ϵ) -approximation, unless the unique games conjecture fails
- O(log(r)loglog(r))- approximation
- d(c+1)-approximation

$$\mathsf{AAF} = \qquad \mathsf{AF} \ \mathbf{c} \ \mathbf{^3} + \qquad \mathsf{DFVS} \ \mathbf{d} \ \mathbf{^1}$$

Using the 4-approximation on a normal laptop, we managed to construct networks with up to 10,000 leaves and up to 10,000 reticulations within 10 minutes!

Kelk et al. Cycle killer...qu'est-ce que c'est? On the comparative approximability of hybridization number and directed feedback vertex set 2012 van lersel et al. A practical approximation algorithm for solving massive instances of hybridization number. 2012

More than 2 trees

Phylogenetic supernetwork inference

An optimization problem where a candidate network is evaluated *on the basis of how well the trees it displays fit the data:*

Many possible formulations:

Data:

Clusters of taxa: $\{a, b\}, \{d, e\}, \{d, e, f\}, \{a, b, c, d, e, f\}, \{e, f\}, \{c, d, e, f\}, \dots$

Goal:

Find the network N with the lower hybridization number such that the input clusters are `explained' by one of the trees displayed by N

subject to constraints on the complexity of \boldsymbol{N}

Clusters

- cluster containment: NP-hard
- minimization NP-hard, APX-hard
- A possible solution ... topological constraints:
 - o galled trees (level-1 networks)... it does not always exist
 - galled networks (if every reticulation in N has a *tree cycle*)...
 still NP-hard
 - level-k networks ... still NP-hard

Clusters

CASS algorithm : search for the level-k network containing a set of clusters (exact for level-1 and level-2 networks)

van lersel et al. Phylogenetic networks do not need to be complex: using fewer reticulations to represent conflicting clusters. 2010

Phylogenetic network inference

An optimization problem where a candidate network is evaluated *on the basis of how well the trees it displays fit the data:*

Many possible formulations:

Data:

Any trinets on the same taxa: (inferred from other data)

Goal:

Find the network N with the lower hybridization number such that the input trees are `consistent' with the N

subject to constraints on the complexity of \boldsymbol{N}

Trinets

DL model

- Speciation (S) are the only possible events shaping species histories
- Speciation (S), duplication (D) and loss (L) are the possible events shaping gene histories
- Each contemporary gene is a leaf of G and is associated to the corresponding species of S in which this gene is collected
- Each **S** in G happens at **S** in S
- Each S and D event gives birth to exactly two genes
- The evolution of G along S goes forward in time
- L events in G are supposed to happen at a S in S

DTL model

- Speciation (S) are the only possible events shaping species histories
- Speciation (S), duplication (D) loss (L) and transfers (T) between sampled/ unsampled species are the possible events shaping gene histories
- Each contemporary gene is a leaf of G and is associated to the corresponding species of S in which this gene is collected
- Each **S** in G happens at **S** in S
- Each S and D event gives birth to exactly two genes
- The evolution of G along S goes forward in time
- Each T event is happens between two co-existing species.

Evolution of applications

- Find one of the "good" scenarios (e.g. to detect homology/ paralogy)
 - $\circ \quad \mathsf{DTL} \text{ The best-performing parsimony-based algorithm to date for ranked species trees (i.e. we suppose to have knowledge of the relative order in which nodes appear in the tree)} \qquad \mathsf{O}(\mathsf{n}^2 \,\mathsf{m})$
 - DTL A modification of the algorithm can be used to reconcile against undated species trees
 O(n m)
 - DTL Unrooted/non-binary gene trees as input O(m n² (3^d 2^{d+1})) where d is the maximum out-degree of any node in G
 - DTLI A algorithm for ranked species trees $O(m(n^2 + n_k 2^k) 2^k)$ where k is the maximum number of ILS branches that are connected in S and n_k is the number of sets of connected ILS branches of S (e.g., if we have a group of three adjacent ILS branches, k = 3 while nk = 1)
 - DL on networks O(h² m n) where h is the number of nodes with 2 parents in the network
 DTL on LGT networks O(n m)

 sequence analyses (recombination detection, genome rearrangements such as sorting by reversals, or DCJ, orthology detection)

- sequence analyses (recombination detection, genome rearrangements such as sorting by reversals, or DCJ, orthology detection)
- comparing trees/networks (edit distances, confidence value...)

- sequence analyses (recombination detection, genome rearrangements such as sorting by reversals, or DCJ, orthology detection)
- comparing trees/networks (edit distances, confidence value...)

- sequence analyses (recombination detection, genome rearrangements such as sorting by reversals, or DCJ, orthology detection)
- comparing trees/networks (edit distances, confidence value...)
- generating/counting/studying classes of trees/networks

- sequence analyses (recombination detection, genome rearrangements such as sorting by reversals, or DCJ, orthology detection)
- comparing trees/networks (edit distances, confidence value...)
- generating trees/networks

. . .

• drawing trees and networks

Peer Community In

Looking for a way of publishing that is

- transparent,
- made by and for researchers,
- independent of publishing companies and
- totally free for authors and readers?

Check us out at https://peercommunityin.org and submit to **PCI Math Comp Biol** https:/mcb.peercommunityin.org/

