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From Aristotle to Darwin 

Phylogene4cs	

Since Aristotle, naturalists have always tried to classify the 
abundance of creatures that populate the Earth. 
 
Aristote: the scala naturae; 
Carl von Linné: classification of living; 
Antoine Laurent de Jussieu; 
Leclerc de Buffon: the first to evoke the possibility that 
species can evolve;  
Jean-Baptiste Lamarck: first theory of evolution; 
Charles Darwin: The Origins of Species (1859). 



From The Origin of Species 

Phylogene4cs	

•  It is a truly wonderful fact that all animals and all plants 
throughout all time and space should be related to each 
other in groups, subordinate to groups. [...] 

 
•  The affinities of all the beings of the same class have 

sometimes been represented by a great tree. [...] The 
green and budding twigs may represent existing species; 
and those produced during former years may represent 
the long succession of extinct species. 

Charles Darwin, (1872), pp. 170-171. The Origin of Species. Sixth Edition. The Modern Library, New York.  



Phylogenetics/phylogenetic trees   

Phylogene4cs	

•  Phylogenetics aims at clarifying, using molecular and 
morphological data, the evolutionary relationships that 
exist among different species  

•  These relationships can be represented through 
phylogenetic trees or phylogenies, out-branching trees 
with no indegree-1 outdegreee-1 nodes, where sinks are 
associated to a set of species         (often binary) 
•  the sinks or taxa represent existing organisms 
•  the only node with indegree-0 is called root 
•  internal nodes represent hypothetical 

ancestors 
•  each internal node represents the lowest 

common ancestor of all taxa below it (clade) 
•  nodes and branches can have several kinds of 

information associated with them, such as 
time or amount of evolution estimates 
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Phylogenetics/phylogenetic trees   
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Unrooted phylogenetic trees ...

... are trees with no degree-2 nodes, where leaves are associated to a set of
species.
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Applications: the TOL – Tree Of Life   

Phylogene4cs	

de Vienne DM (2016) Lifemap: Exploring the Entire Tree of Life. PLOS Biology. 



Applications: character evolution 

Phylogene4cs	
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Applications: co-evolution 

Phylogene4cs	

Tetrapus

Pleistodontes

Waterstoniella

Elizabethiella

Platyscapa

Pegoscapus

W. punctata

Blastophaga

W. pumilae

Kradibia

Liporrhopalum

C. pilipes

C. arabicus

C. capensis

Pharmacosycea

Malvanthera

Conosycea

Galoglychia

Americana

Urostigma

Ficus

Rhizocladus

Kalosyce

Sycidium

Sycocarpus

Sycomorus

ficus trees  wasps 



Applications: the Noah's Ark Problem 

Phylogene4cs	

F. Pardi and N. Goldman (2007). Resource aware taxon selection for maximizing phylogenetic diversity. Systematic Biology. 



Applications: disease evolution and spreading 

Phylogene4cs	

Phylogeny of SARS-CoV-2 related strains (GISAID, 10/5/2020) 

Anna Zhukova et al (2020) Origin, evolution and global spread of SARS-CoV-2 To appear in the Comptes Rendus - 
Biologies of the French Academy of Sciences 



Applications: disease evolution and spreading 

Phylogene4cs	

Phylogenetic scenario showing the main transmission clusters of SARS-
CoV-2 until April 25, 2020. 

Anna Zhukova et al (2020) Origin, evolution and global spread of SARS-CoV-2 To appear in the Comptes Rendus - 
Biologies of the French Academy of Sciences 



•  Hybrid speciation 
•  Lateral gene transfer 
•  Recombination 

Explicit phylogenetic networks 

They represent evolutionary history when inheritance is from multiple 
ancestors – because of reticulate events, e.g:    

Phylogenetic networks 
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•  Hybrid speciation 
•  Lateral gene transfer 
•  Recombination 

Putative phylogeny of HIV/
SIV infecting primates  
(Bailes et al. Science 2003) 

They represent evolutionary history when inheritance is from multiple 
ancestors – because of reticulate events, e.g:    

Phylogenetic networks 

Explicit phylogenetic networks 



Phylogenetic networks 

Explicit phylogenetic networks (rDAG) 
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Phylogenomics 

Phylogenomics	
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Assembly for next generation sequencing –NGS  

Acquiring	genomic	data	

•  We want to sequence a genome, a chromosome, a portion of a 
genome, etc. 
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•  We want to sequence a genome, a chromosome, a portion of a 
genome, etc 

•  The portion of genomic data we want to sequence is chopped into 
smaller pieces, which can be easily “read”  

•  The assembly step puts all the reads together, and we obtain the 
whole sequence back  

Easier to say than to do 

Assembly for next generation sequencing –NGS  

Acquiring	genomic	data	



•  Parts of the sequence might not be covered by reads   
ü  high coverage 
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•  Parts of the sequence might not be covered by reads   
ü  high coverage 

•  Errors are possible  
ü  high coverage 
ü  consensus  

•  Repeats (common in DNA) make assembly ambiguous 

DeBruijn-graph based assembly 
 

Assembly for next generation sequencing –NGS  

Acquiring	genomic	data	



DeBruijn-graph based assembly 

•  chop all reads into “k-mers” 
•  builds overlap graph (“DeBruijn graph”) 
•  find Eulerian path 

Acquiring	genomic	data	



Scaffolding 

Acquiring	genomic	data	



Scaffolding 

Thanks to paired-end information, we can join contigs into 
chromosomes. This step is called scaffolding 

Acquiring	genomic	data	
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Scaffolding 

•  map reads into contigs 
•  pair contigs according to read-pairing (weighted) 
•  cover “scaffold graph” with (heavy) alternating paths, where each 
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Genomic	data	

Scaffolding 

•  map reads into contigs 
•  pair contigs according to read-pairing (weighted) 
•  cover “scaffold graph” with (heavy) alternating paths, where each 

path corresponds to a chromosome 

•  Np alternating paths  
•  Nc alternating cycles 

•  Contig Jumps 
•  Multiplicities 
•  Linearization of 

solutions 

Thanks to Mathias Weller for the nice blackboard-like pics  

Acquiring	genomic	data	
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Genomic	data	

Which sequence to compare? 
Homologous genes, ie sequences inherited in the species of interest 
from a common ancestor. Groups of homologous genes form gene 
families. 
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Genomic	data	

Which sequence to compare? 
Homologous genes, ie sequences inherited in the species of interest 
from a common ancestor. Groups of homologous genes form gene 
families. 

But sequences do not come with nice labels on them, telling us to 
which gene family they belong  
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Genomic	data	

Homology inference 
We put all the genes in a pool and we cluster them into gene families 
using similarity measures  

Acquiring	genomic	data	Homology		
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w3 
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Genomic	data	

Homology inference 
After applying a filtering step deleting edges with weights lower than a 
certain threshold, we would like to get this kind of scenarios… 

Acquiring	genomic	data	Homology		

Gene family 1 

Gene family 2 



Genomic	data	

Homology inference 
… but we don’t! We often get unclear scenarios where our 
disconnected cliques are not really cliques and not really disconnected   

Acquiring	genomic	data	Homology		



Genomic	data	

Homology inference 
•  cluster algorithm for graphs (e.g. MCL) 
•  graph editing (adding deleting edges to get disconnected cliques)  

Acquiring	genomic	data	Homology		
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Alignment (aka which characters to compare) 

Phylogenomics	
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Homologous characters, ie characters inherited in the species of 
interest from a common ancestor. We need to align sequences because 
no only mutations happen on genomic sequences but also indels 
(insertions and deletions)  
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Alignment (aka which characters to compare) 

Phylogenomics	
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G T T A C - G A  
G T T - - G G A 

Homologous characters, ie characters inherited in the species of 
interest from a common ancestor. We need to align sequences because 
no only mutations happen on genomic sequences but also indels 
(insertions and deletions)  
 

•  opening of the gaps  
•  extension of the gaps  
[Affine functions are often used] 
•  substitutions (between 

nucleotides or amino acids) 
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Phylogenetic inference 

Phylogenomics	



Reconstructing phylogenies 

•  distance-based methods, which use pairwise distances to quantify 
the amount of evolution separating species 

•  character-based methods, which retrieve similarities comparing the 
states taken by species at different characters: 

o  parsimony methods 
o  likelihood methods 
o  bayesian methods 

Distance	methods	
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Distance estimation 

First thing to do is to define distances between genomic sequences. 
The usual way (no genome rearrangement here) is to compute them 
from the alignments 
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First thing to do is to define distances between genomic sequences. 
The usual way (no genome rearrangement here) is to compute them 
from the alignments, after having removed the gaps 

•  Hamming distance 1+1 
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Distance estimation 

Distance	methods	

First thing to do is to define distances between genomic sequences. 
The usual way (no genome rearrangement here) is to compute them 
from the alignments, after having removed the gaps 

1.  Hamming distance: 1+1 
2.  Accounting for the biology: 

•   CC->G + CC->A 
•  accounting for multiple, parallel, 

convergent, coincidental and back 
substitutions 

G T T C G A C 
G T A G G A A 
G T T G G A A 

3 more substitutions!  



G T T C G A C 
G T T G G A A 

Distance estimation 

We correct the Hamming distance (d0) using a substitution model (a 
probabilistic model of sequence evolution). The corrected distance 
aims at estimating the true distance.  

G T T C G A C 
G T A G G A A 
G T T G G A A 

Distance	methods	

G T T C G A C 
G T T G G A A 

+	



Examples of substitution models 

Aka probabilistic models of sequence evolution 

Distance	methods	
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Distance methods 

Distance	methods	

•  Estimate pairwise distances between sequences (mean number of 
substitutions per site, see previous slides)  

•  Reconstruct a tree that corresponds well to the estimated distances  
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•  Estimate pairwise distances between sequences (mean number of 
substitutions per site)  

•  Reconstruct a tree that corresponds well to the estimated distances  
 
•  An agglomerative algorithm: Neighbor Joining (NJ)  
 

Agglomera@ve,algorithms,
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Then,,un@l,the,tree,is,binary,,iterate,two,steps:,
,
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,Based,on,some,criterion,,choose,two,taxa,i,,j,connected,to,
,the,central,high)degree,node,and,agglomerate,(join),them,
,,
,Reduc3on,step,
,Define,new,distances,between,the,new,node,(i,j),and,all,
,other,taxa,

Thanks to Fabio Pardi for the nice pics  
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Distance	methods	

•  Estimate pairwise distances between sequences (mean number of 
substitutions per site)  

•  Reconstruct a tree that corresponds well to the estimated distances  
 
•  An agglomerative algorithm: Neighbor Joining (NJ)  
 

Selection step: which 
nodes  

to choose  
 

Reduction step: how 
to update the 

distances 
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Distance	methods	

•  Estimate pairwise distances between sequences (mean number of 
substitutions per site)  

•  Reconstruct a tree that corresponds well to the estimated distances  
 
•  An agglomerative algorithm: Neighbor Joining (NJ)  
 

until the tree  
is binary 

UPGMA	(1958),	WPGMA	(1973),	ADDTREE	(1977),	NJ	(1987),	BIONJ	(1997),	UNJ	(1997),	MVR	(2000),	Weighbor	(2000)	



•  Estimate pairwise distances between sequences (mean number of 
substitutions per site)  

•  Reconstruct a tree that corresponds well to the estimated distances  
 
•  An agglomerative algorithm: Neighbor Joining (NJ)  

•  Optimization principles  
o  Least Squares (LS): given the estimated distances δij, find T s.t 
δij ≈ dij where dij are the distances between the leaves of T 

 

Distance methods 

Distance	methods	

Least,squares,

The,idea:,given,the,es@mated,distances,,,,,,,,,,find,T,,s.t,,,,,,,,,,,,,,,,,,,,
where,the,,,,,,,,,,are,the,distances,between,the,leaves,of,T.,,

(δij )

More,precisely,we,wish,to,find,T,to!

Least,squares,

Th, Pt, Gg, Ms, Hs,

Th, 0, .23, .38, .61, .50,

Pt, 0, .42, .57, .48,

Gg, 0, .41, .29,

Ms, 0, .30,

Hs, 0,
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T )
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T
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Pt, 0, .4, .6, .5,

Gg, 0, .4, .3,

Ms, 0, .3,

Hs, 0,

Th,

Hs,

Pt,

Ms,

Gg,

T (dij
T )(δij )

.2,

.2,.1,

.1,

.1,.1,
.1,

minimizeT! wij (dij
T −δij )

2

i< j
∑

T T 



Distance methods 

Distance	methods	

OLS when wij=1 
WLS otherwise, where wij gives the confidence we have in the distance entry δij  
	

•  Estimate pairwise distances between sequences (mean number of 
substitutions per site)  

•  Reconstruct a tree that corresponds well to the estimated distances  
 
•  An agglomerative algorithm: Neighbor Joining (NJ)  

•  Optimization principles  
o  Least Squares (LS): given the estimated distances δij, find T s.t 
δij ≈ dij where dij are the distances between the leaves of T 

 
T T 

min
T

X

i<j

wij(d
T
ij � �ij)



Distance methods 

Distance	methods	

OLS when wij=1 O(n2)	 	 	 	 	 	 	 	 	 				O(n4)/O(n2) 
WLS otherwise, where wij gives the confidence we have in the distance entry δij  

SMALL  
PROBLEM 

•  Estimate pairwise distances between sequences (mean number of 
substitutions per site)  

•  Reconstruct a tree that corresponds well to the estimated distances  
 
•  An agglomerative algorithm: Neighbor Joining (NJ)  

•  Optimization principles  
o  Least Squares (LS): given the estimated distances δij, find T s.t 
δij ≈ dij where dij are the distances between the leaves of T 

 
T T 

min
T

X

i<j

wij(d
T
ij � �ij)
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Le nombre d’arbres

Combien d’arbres non enracinés avec n feuilles, avec n � 3 ?
U(n) = (2n � 5)!! := 3 · 5 · 7 · ... · (2n � 5).

Combien d’arbres enracinés avec n feuilles, avec n � 3 ?

R(n) = (2n � 3)!! = U(n) · (2n?3) = 3 · 5 · ... · (2n � 3).

a b c d a c b d a d b c b a c d

b c d a b d a c c a b d c b d a

c d a b d a b c d b c a d c b a

a b c d a c b d a d b c

Distance methods 

Distance	methods	

BIG 
PROBLEM 
NP-hard 

Heuristics: 
•  Sequential insertion 
•  Star decomposition 

•  Hill-climbing 

(2n-3)!! 
 trees 

min
T

X

i<j

wij(d
T
ij � �ij)



•  Estimate pairwise distances between sequences (mean number of 
substitutions per site)  

•  Reconstruct a tree that corresponds well to the estimated distances  
 
•  An agglomerative algorithm: Neighbor Joining (NJ)  

•  Optimization principles  
o  Least Squares (LS): given the estimated distances δij, find T s.t 
δij ≈ dij where dij are the distances between the leaves of T 

o  Balanced Minimum Evolution (BME): 
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BIG 

PROBLEM 
NP-hard 
Heuristics  

(such as NJ) 

T T 

q(b) =
X

i<j

wij(d
T
ij � �ij)

2

min
T

X

k2E(T )

bk



Reconstructing phylogenies 

•  distance-based methods, which use pairwise distances to quantify 
the amount of evolution separating species 

•  character-based methods, which retrieve similarities comparing 
the states taken by species at different characters: 

o  parsimony methods 
o  likelihood methods 
o  bayesian methods 

Distance	methods	
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§  The main hypothesis of parsimony sequence-based methods is that 
character changes are not frequent and thus the phylogenies that 
best explain the data are those requiring the fewest evolutionary 
changes  

§  Each character can be analyzed independently from the others 
 

PS(T |A) =
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wjPS(T |a?,j)
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variations of this  
definition are possible 
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Les méthodes de parcimonie - un example

Un algorithme en O(nm) pour calculer P(S |T ) a été proposé par
Fitch en 1971.

10 Chapter 1. Inferring phylogenies

• the number of possible states for a character is limited;

• each character can be analyze independently;

• the choice of the root does not change the parsimony value of a tree, in the
usual case where Cx!y = Cy!x holds for each pair of states x, y.

An O(nm) algorithm to calculate P (S|T ) was proposed by Fitch [1971]. On the
contrary, finding the tree T that gives the minimum value of P (S|T ) is an NP-
hard problem [Day et al., 1986] for which several heuristic methods were proposed
[Felsenstein, 2005; Goloboff et al., 2008; Swofford, 2003].
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Figure 1.3: Most parsimonious reconstructions per sites for the set of se-
quences S given the phylogeny T - Two equally parsimonious reconstructions are
possible for site 2. Deduced internal characters are shown between square brackets.

The main drawback of parsimony methods is that they are not consistent [Caven-
der, 1978; Felsenstein, 1978]. A method is said to be consistent if the probability
to obtain the correct tree converges to one as more and more data are analyzed.
For example, parsimony methods are not robust to long branch attractions i.e.,
when rapidly evolving species that had a separated evolution are inferred to be
closely related, regardless of their true evolutionary relationships [e.g., Felsenstein,
1978, see Section 2.1.3]. Indeed, when molecular sequences from two species evolve
rapidly, the probability that the same nucleotide appears in both two sequences at
the same site increases. When this happens, the most parsimonious scenario is a
wrong one, where the two species evolved from a common ancestor. As a matter of
fact, rapid evolving species accumulate numerous mutations on a single character
and contradict the very foundations of the parsimony approach. For a review of
other objections to parsimony methods see Sober [1998].

Parsimony methods 

§  The main hypothesis of parsimony sequence-based methods is that 
character changes are not frequent and thus the phylogenies that 
best explain the data are those requiring the fewest evolutionary 
changes  

§  Each character can be analyzed independently from the others 
 

PS(T |a?,j) = min
⌧

X

uv2E(T )

c⌧ (uv)

O(nm) 

Parsimony 

SMALL  
PROBLEM 



§  The main hypothesis of parsimony sequence-based methods is that 
character changes are not frequent and thus the phylogenies that 
best explain the data are those requiring the fewest evolutionary 
changes  

§  Each character can be analyzed independently from the others 
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Hardwired parsimony  

Hardwired parsimony score  
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•  find the assignment of states 
to internal nodes of the 
network such that the total 
number of edges that connect 
nodes in different states is 
minimized (the same definition 
used for trees!) 

 
  

•  conjectured to be NP-hard  

PShw(N |a?,j) = min
⌧

X
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c⌧ (uv)
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Hardwired parsimony  

Hardwired parsimony score - issue  
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This definition counts a state-
change when a reticulation 
node has the same state as one 
of its parents, if the other 
parent has a different state, see 
for example the reticulation h.  
 
Hence, hardwired parsimony 
counts more state-changes than 
necessary since h could very 
well have inherited its state 
from its same-state parent. 
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Trees displayed by a network 

a b c d e f 

a b c d e f 

In the absence of deep 
coalescence and 

allopolyploidy, the gene 
trees are displayed by 

the network 

In a phylogenetic network, a reticulate event is represented as a 
reticulation, where branches converge to give rise to a new lineage: 

Trees displayed by a network 

The evolution of each part independently 
inherited is described by a “gene” tree  

a b c d e f 

The genome at the start of the new lineage is a 
composition of those of the parent lineages. 
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Trees displayed by a network 
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reticulated edges 
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Trees displayed by a network 

Trees displayed by a network 
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Delete switched off 
edges and unlabelled 
leaves and suppress 

outdgree-1 indegree-1 
nodes 
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Trees displayed by a network 

Trees displayed by a network 

 
 2r possible trees 



Softwired parsimony score  

a b c d e f a b c d e f 

Softwired parsimony  
 

We evaluate a candidate network on the basis of how well the trees it 
displays fit the data:  

a b c d e f 

T (N) :

N

score of a character on a network  
= score of the best tree inside 
the network 

PSsw(N |a?,j) = min
T2T (N)

min
⌧

X

uv2E(T )

c⌧ (uv)
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Softwired parsimony score - results  
 

Softwired parsimony  
 

Fischer et al. On computing the maximum parsimony score of a phylogenetic network, 2015 

•  NP-hard  for tree-child time-
consistent networks  and binary 
characters 

•  for any constant  > 0,  an 
approximation factor of |X|1−   is 
not possible in poly time (|X|1/3−     
for binary networks) unless P = 
NP 

•  non-FPT in the parsimony score 
(NP-hard to know if PS=1!) 

•  FPT  in the level of the network 
•  fast ILP (simulations)  

ε
ε

ε

SMALL  
PROBLEM 



A modeling problem: the allopolyploidy example 

The model 
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The true gene tree is not  
displayed by the network 

because it needs to use   
both edges entering  

the hybrid node  



The multi-labelled tree U*(N) 

Parental trees 

a d bc
(a) (b)

a bdc dc
(c)

a c bd

a d bca d bc
(a) (b)

a bdc dc
(c)

a c bd

a d bc

N 

•  nodes are the directed paths in N starting at r(N)  
•  for each pair of paths p,p' in N, there is an edge in U*(N) from p 

to p' if and only if p=p'e for some edge e in N 
•  each node in U*(N) corresponding to a path in N that starts at 

r(N) and ends at x in X is labelled by x 

U*(N)  



Parental trees 

Parental trees 
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A phylogenetic tree T  on X  is a parental tree  of N  if it is displayed by U*(N) 
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Parental parsimony 

Parental parsimony score  
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Parsimony-based methods for phylogenetic networks 
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Parental parsimony 
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•  NP-hard even if the 
network is tree-child and 
has reticulation depth at 
most 1  and binary 
characters 

•  FPT  in the reticulation 
number of the network 

•  FPT  in the level of the 
network 

Parental parsimony score - results  



Parental parsimony 

Lineage functions 
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(a) (b)
A lineage function maps every node in a network to a set of 
states. Informally, this is a way of tracking how many branches of 
a parental tree travel through each node of the network, and 
what states are assigned to each of those branches. 

van Iersel et al. Improved maximum parsimony models for phylogenetic networks. Syst Biol. 2018 



ML phylogenetic network inference 

Many possible formulations: a b c d e f a b c d e f 

ML	

An optimization problem where a 
candidate network is evaluated on the 
basis of how well the trees it 
(“parentally” ) displays fit the data:  

a b c d e f 

Data: 
Sequence alignments:  
(typically given in blocks) 

Find N that maximises 

. . .

Goal: 
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Jin et al.Maximum likelihood of phylogenetic networks. Bioinformatics 2006.  
Yu et al. The Probability of a Gene Tree Topology within a Phylogenetic Network with Applications to Hybridization Detection, 2012 
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ML phylogenetic tree inference 

Many possible formulations: a b c d e f 

ML	

An optimization problem where a 
candidate network is evaluated on the 
basis of how well the trees it 
(“parentally” ) displays fit the data:  

Data: 
Sequence alignments:  
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ML under the NMSC 

Data: 
Sequence alignments:  
(typically given in blocks) 

Find N that maximises 
Goal: 

Zhu and Degnan. Displayed trees do not determine distinguishability under the network multispecies coalescent, 2016 
Yu et al. Maximum likelihood inference of reticulate evolutionary histories, 2014  
Wen el al. PLOS Genetics 2016 (Bayesian method) 
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3

on its consistency with collections of such data will not be able to distinguish between networks N1 and
N2. This includes all the methods whose data consists of clusters of taxa (e.g., [34]), triples (e.g., [35]),
quartets (e.g., [36]), or any trees (e.g., [37]).

The same holds for many, sequence-based, maximum parsimony and maximum likelihood approaches
proposed in recent papers. For maximum parsimony, a practical approach [2,29–31] is to consider that
the input is partitioned in a number of alignments A1, A2, . . . , Am

, each from a different non-recombining
genomic region (possibly consisting of just one site each), and then take, for each of these alignments, the
best parsimony score Ps(T |A

i

) among all those of the trees displayed by a network N . The parsimony
score of N is then the sum of all the parsimony scores thus obtained. Formally, we have

Ps(N |A1, A2, . . . , Am

) =
mX

i=1

min
T2T (N)

Ps(T |A
i

).

It is clear that if two networks display the same set of trees (as in Fig. 1), then their parsimony score
with respect to any input alignments will be the same — because they take the minimum value over the
same set T (N) — and thus they are indistinguishable to any method based on the maximum parsimony
principle above.

As for maximum likelihood (ML), Nakhleh and collaborators [2, 32,33,38] have proposed an elegant
framework whereby a phylogenetic network N is not only described by a network topology, but also edge
lengths and inheritance probabilities associated to the reticulations of N . As a result, any tree T displayed
by N has edge lengths — allowing the calculation of its likelihood Pr(A|T ) with respect to any alignment
A — and an associated probability of being observed Pr(T |N). The likelihood function with respect to a
set of alignments A1, A2, . . . , Am

, each from a different non-recombining genomic region, is then given by:

Pr(A1, A2, . . . , Am

|N) =
mY

i=1

Pr(A
i

|N) =
mY

i=1

X

T2T (N)

Pr(A
i

|T )Pr(T |N).

Pr(A1, A2, . . . , Am

|N) =
mY

i=1

Z

G

Pr(A
i

|T )p(G|N).

Pr(A1, A2, . . . , Am

|N) =
mY

i=1

p(G
i

|N).

Note Note that an important difference with the consistency-based and parsimony methods described
above is that any tree T displayed by a network has now edge lengths and an associated probability
Pr(T |N).

Unfortunately, this ML framework is also subject to identifiability problems. For example, it does not
allow us to distinguish between networks with topologies N1 and N2 in Fig. 1: for every assignment of
edge lengths and inheritance probabilities to N1, there exist corresponding assignments to N2 that make
the resulting networks indistinguishable, that is, displaying the same trees, with the same edge lengths
and the same probabilities of being observed (see the last section in the Supporting Information, S1 Text).
As a result, the likelihoods of these two networks will be identical, regardless of the data, and no method
based on this definition of likelihood will be able to favour one of them over the other. We refer to S1
Text for a more detailed discussion about networks with inheritance probabilities and likelihood-based
reconstruction.

In general, we believe that these identifiability problems affect all network inference methods which
seek consistency with unordered collections of sequence alignments or pre-inferred attributes such as
clusters, triples, quartets or trees.

PhyloNet	

ML	



The strategy (hill-climbing, MCMC…) 
A1 A2 A3 A4

reticulation-0 networks

reticulation-1 networks

reticulation-r networks

...

rNNI, rSPR,...

?

?

?

rNNI, rSPR,...

rNNI, rSPR,..

INPUT DATA 

The	search	strategy	
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Searching the space of phylogenetic networks 
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Searching the space of phylogenetic networks (rNNI) 
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Searching the space of phylogenetic networks (rSPR) 
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Searching the space of phylogenetic networks 
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Phylogenomics 

Phylogenomics	

genomic
data

detection of homology
(clustering/embedding

problems)

STEP 1

C1 C2 Ck ...

alignement
problem

STEP 2

A1 A2 Ak' ...

construct a tree for 
each data set 

STEP 3

...

super-tree super-network

STEP 4 combine the trees

STEP 3' construct a 
unique

tree

parsimony 
likelihood
bayesian

distance-based 

methods}

STEP 4' combine all 
the data
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Constructing minimal softwired networks

cluster containment: NP-hard

minimization NP-hard, APX-hard

A possible solution ... topological constraints:

galled trees (if every non-trivial biconnected component of N properly
contains exactly one reticulation) (it does not always exist)

galled networks (if every reticulation in N has a tree cycle) (still NP-hard)

level-k networks (maximum reticulation number among biconnected
components of N is k) (still NP-hard)

a b c d e f g h i j k l

Combining tree 

The underlying approach 
 
1.  •  Combinatorial objects such as phylogenetic trees, hierarchical 

clusters or triplets or trinets are constructed from the data of the 
species under study 

 
2.  •  These combinatorial objects are combined into a phylogenetic 

network. The way they are combined and the parameters to 
optimise (e.g. minimizing the hybridization number, i.e. the 
number of reticulations of the network, or the level, i.e. the 
maximum number of reticulations in each biconnected component) 
give a large range of different problems 
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polytomies, in this chapter we will mention when methods interpret soft polytomies
as Adams polytomies and not in the common way. In the next section we present a
review of the most used consensus methods.

3.2 Consensus methods for phylogenetic trees

As stated at the beginning of this chapter, a fundamental problem in classification of
biological data is the question of how to combine the information contained in a set
of trees that classify the same objects into one tree. Recall that the consensus tree
problem requires that input trees have identical sets of taxa. The use of consensus
methods to summarize several trees issued from a unique data set or to compare
trees is widely accepted. More controversial [Barrett et al., 1991] is the use of such
methods for the combination of trees issued from different data sets, i.e., as a tool for
new phylogenetic inferences, since the construction of most consensus trees is guided
by the comparison and the combination of tree topologies, rather than phylogenetic
inference criteria. In this section we present the most used consensus methods, with
the pros and cons of each of them.

The first methods presented below (sections 3.2.1.1-3.2.1.6), except the asym-
metric median tree in Section 3.2.1.4, are all defined for both unrooted and rooted
forests. For the sake of simplicity they are only described here in the unrooted setting
but all of them can be applied to rooted forests (e.g., replacing, in the definitions,
splits with clusters).
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Figure 3.4: Example of a forest of unrooted phylogenetic trees F - The trees
in this forest are used to illustrate the five consensus methods presented in sections
3.2.1.1-3.2.1.6.

3.2.1 Consensus methods defined for both rooted and unrooted
forests

3.2.1.1 Strict consensus tree

The strict consensus tree [McMorris et al., 1983; Sokal and Rohlf, 1981] of a collection
F of unrooted trees is the tree that contains exactly the splits shared by all input
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trees (see Figure 3.5 for an example) i.e., the tree T such that:

S(T ) =
�

Ti�F
S(Ti).

The main advantage of the strict consensus is the simplicity of interpretation: the
splits that appear in all the input trees can be considered as reliable. Though strict
consensus trees were called Nelson trees in Schuh and Farris [1981], Page [1989]
demonstrated that these two methods are not equivalent (see Section 3.2.1.6 for a
description of Nelson trees).
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Figure 3.5: Example of strict consensus tree for the forest depicted in
Figure 3.4 - For this forest the strict and the majority-rule consensus trees are
identical.

The strict consensus tree tends to display numerous polytomies [Funk and
Brooks, 1990; Wilkinson, 1996]. This behavior is sometimes due to incongruence
among the source trees and sometimes to undesirable properties of this consensus
method [Wilkinson, 1995]. Wilkinson and Thorley [2001] proposed a measure of
Consensus Efficiency (CE) that can help to understand whether the lack of resolu-
tion of the strict consensus tree is due to a strong disagreement between input trees
or not. The CE measure can be used to evaluate the efficiency of all strict consen-
sus methods sensu Wilkinson [1994] i.e., methods that retain unanimous agreement
among the source trees.

The use of the strict consensus method to combine trees issued from different
data sets has been criticized by the promoters of the parsimony approach because
the returned tree can be less parsimonious than that obtained by an MP analysis on
the concatenation of all data sets (see the MRP method in Section 3.3.2.1). Other
criticisms come from the advocates of the total evidence approach (Chapter 2) since
the strict-consensus tree can be incompatible with the total evidence tree [Barrett
et al., 1991]. The latter remark is valid for all consensus methods, since all consensus
trees refine the strict consensus tree [see Bryant, 2003].

3.2.1.2 Majority-rule consensus tree

The majority-rule consensus tree of a collection F of unrooted trees is the tree
that contains exactly the splits shared by strictly more than 50% of input trees
[Barthélemy and McMorris, 1986; Margush and Mcmorris, 1981]. See Figure 3.5 for
an example. The 50% rule ensures that all retained splits are compatible since each
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pair of splits appears simultaneously in at least one tree. Given two trees T1 and
T2, the symmetric distance between T1 and T2, denoted by dS(T1, T2), is defined as
the number of splits appearing in one tree but not the other [Robinson and Foulds,
1981]. Barthélemy and McMorris [1986] proved that the majority-rule tree T for a
forest F minimizes:

dS(T, F) =
�

Ti�F
dS(T, Ti) (3.1)

Hence, the majority-rule tree is also a median tree with respect to the symmetric
distance metric. Several supertree methods are also based on a median tree approach
(see Section 3.3.3). Note that the majority-rule consensus tree is not necessarily the
unique median tree. More precisely, Dong and Fernandez-Baca [2009] have recently
shown that majority-rule consensus is the strict consensus of all median trees.

The majority-rule tree is often used to summarize bootstrap trees. Sharkey
and Leathers [2001] criticize the use of this consensus method to combine several
optimal trees for a single data set, claiming that majority-rule consensus tends to
equate reliability with ambiguity. Indeed, ambiguity in the data set can cause an
ambiguous topology, i.e., a topology displaying several polytomies, to be repeated
among the input trees and therefore preferred by this method.

3.2.1.3 Semi-strict consensus tree

When some input trees are not binary, splits that are never contradicted
may occur in some of the trees but not be retained by the two previ-
ously described consensus methods. For example, consider a collection F =
{((a, b), (c, d)), (a, b, c, d), (a, b, c, d), (a, b, c, d)}. In this case, the split ab|cd would
not be retained neither in the strict consensus tree nor in the majority-rule con-
sensus tree, even though this information is present and not contradicted by any
tree (for another example see Figures 3.5 and 3.6). However, this split is retained
in the semi-strict consensus tree, defined as follows: the semi-strict consensus tree,
or combinable component tree [Bremer, 1990], of an unrooted tree collection F is
the tree that contains exactly those splits of S(F) compatible with every tree in F .
This consensus method has been criticized (among others by De Queiroz [1993]) for
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Figure 3.6: Example of semi-strict consensus tree for the forest depicted
in Figure 3.4 - The semi-strict consensus trees contains the split ab|cdef which,
although not contradicted by any tree, is not included neither in the strict consensus
tree nor in the majority-rule consensus tree. For this forest the semi-strict and the
Nelson-Page consensus trees (Section 3.2.1.6) are identical.

greedy consensus

3.2. Consensus methods for phylogenetic trees 47

the fact that the resulting tree can contain splits that appear in only one of the
input trees. Some authors consider the information contained only in one tree as
unreliable but, as Bryant [2003] has pointed out, it is not likely for a split to be
compatible with a random tree, so we can reasonably rely on this information.

Note that the semi-strict consensus tree refines the strict consensus tree and that
they are equal when all source trees are binary.

3.2.1.4 Asymmetric median tree (defined only for unrooted trees)

Given two unrooted trees T1 and T2, we define the asymmetric distance between T1

and T2, denoted by dA(T1, T2), as the number of splits appearing in T2 but not in
T1. The asymmetric median tree, or AMT [Phillips and Warnow, 1996] for a forest
of unrooted trees F is the tree minimizing:

dA(T, F) =
�

Ti�F
dA(T, Ti).

Since the AMT problem for k trees is equivalent to the maximum independent set
problem on k-colored graphs [Phillips and Warnow, 1996], the former problem is
NP-hard for more than two trees. Note that this definition can be easily extended
to the supertree context.

The next two consensus methods are related to the notion of AMT.

3.2.1.5 Greedy consensus tree

The strategy for constructing a greedy consensus tree, also called majority-rule ex-
tended tree [Felsenstein, 2005], consists in building up from the empty set a collec-
tion of compatible splits S by considering splits one at time in decreasing order of
frequency and adding them to S if they are pairwise compatible with all splits pre-
viously added to this set. The greedy consensus tree of F is the tree that contains
exactly the splits in S. Note that this can be seen as a greedy heuristics to find
the AMT [Bryant, 2003]. Greedy consensus trees, as semi-strict consensus trees,
can contain splits appearing in only one of the input trees. Since all bipartitions
with frequency greater than |F|/2 are compatible, a greedy consensus tree always
refines the majority-rule consensus tree. The main problem with this greedy ap-
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Figure 3.7: Example of greedy consensus trees for the forest depicted in
Figure 3.4 - The tree (i) is obtained if the split de|abcf is preferred to the split
ef|abcd, otherwise we obtain the tree (ii).
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polytomies, in this chapter we will mention when methods interpret soft polytomies
as Adams polytomies and not in the common way. In the next section we present a
review of the most used consensus methods.

3.2 Consensus methods for phylogenetic trees

As stated at the beginning of this chapter, a fundamental problem in classification of
biological data is the question of how to combine the information contained in a set
of trees that classify the same objects into one tree. Recall that the consensus tree
problem requires that input trees have identical sets of taxa. The use of consensus
methods to summarize several trees issued from a unique data set or to compare
trees is widely accepted. More controversial [Barrett et al., 1991] is the use of such
methods for the combination of trees issued from different data sets, i.e., as a tool for
new phylogenetic inferences, since the construction of most consensus trees is guided
by the comparison and the combination of tree topologies, rather than phylogenetic
inference criteria. In this section we present the most used consensus methods, with
the pros and cons of each of them.

The first methods presented below (sections 3.2.1.1-3.2.1.6), except the asym-
metric median tree in Section 3.2.1.4, are all defined for both unrooted and rooted
forests. For the sake of simplicity they are only described here in the unrooted setting
but all of them can be applied to rooted forests (e.g., replacing, in the definitions,
splits with clusters).
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Figure 3.4: Example of a forest of unrooted phylogenetic trees F - The trees
in this forest are used to illustrate the five consensus methods presented in sections
3.2.1.1-3.2.1.6.

3.2.1 Consensus methods defined for both rooted and unrooted
forests

3.2.1.1 Strict consensus tree

The strict consensus tree [McMorris et al., 1983; Sokal and Rohlf, 1981] of a collection
F of unrooted trees is the tree that contains exactly the splits shared by all input
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trees (see Figure 3.5 for an example) i.e., the tree T such that:

S(T ) =
�

Ti�F
S(Ti).

The main advantage of the strict consensus is the simplicity of interpretation: the
splits that appear in all the input trees can be considered as reliable. Though strict
consensus trees were called Nelson trees in Schuh and Farris [1981], Page [1989]
demonstrated that these two methods are not equivalent (see Section 3.2.1.6 for a
description of Nelson trees).
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Figure 3.5: Example of strict consensus tree for the forest depicted in
Figure 3.4 - For this forest the strict and the majority-rule consensus trees are
identical.

The strict consensus tree tends to display numerous polytomies [Funk and
Brooks, 1990; Wilkinson, 1996]. This behavior is sometimes due to incongruence
among the source trees and sometimes to undesirable properties of this consensus
method [Wilkinson, 1995]. Wilkinson and Thorley [2001] proposed a measure of
Consensus Efficiency (CE) that can help to understand whether the lack of resolu-
tion of the strict consensus tree is due to a strong disagreement between input trees
or not. The CE measure can be used to evaluate the efficiency of all strict consen-
sus methods sensu Wilkinson [1994] i.e., methods that retain unanimous agreement
among the source trees.

The use of the strict consensus method to combine trees issued from different
data sets has been criticized by the promoters of the parsimony approach because
the returned tree can be less parsimonious than that obtained by an MP analysis on
the concatenation of all data sets (see the MRP method in Section 3.3.2.1). Other
criticisms come from the advocates of the total evidence approach (Chapter 2) since
the strict-consensus tree can be incompatible with the total evidence tree [Barrett
et al., 1991]. The latter remark is valid for all consensus methods, since all consensus
trees refine the strict consensus tree [see Bryant, 2003].

3.2.1.2 Majority-rule consensus tree

The majority-rule consensus tree of a collection F of unrooted trees is the tree
that contains exactly the splits shared by strictly more than 50% of input trees
[Barthélemy and McMorris, 1986; Margush and Mcmorris, 1981]. See Figure 3.5 for
an example. The 50% rule ensures that all retained splits are compatible since each
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pair of splits appears simultaneously in at least one tree. Given two trees T1 and
T2, the symmetric distance between T1 and T2, denoted by dS(T1, T2), is defined as
the number of splits appearing in one tree but not the other [Robinson and Foulds,
1981]. Barthélemy and McMorris [1986] proved that the majority-rule tree T for a
forest F minimizes:

dS(T, F) =
�

Ti�F
dS(T, Ti) (3.1)

Hence, the majority-rule tree is also a median tree with respect to the symmetric
distance metric. Several supertree methods are also based on a median tree approach
(see Section 3.3.3). Note that the majority-rule consensus tree is not necessarily the
unique median tree. More precisely, Dong and Fernandez-Baca [2009] have recently
shown that majority-rule consensus is the strict consensus of all median trees.

The majority-rule tree is often used to summarize bootstrap trees. Sharkey
and Leathers [2001] criticize the use of this consensus method to combine several
optimal trees for a single data set, claiming that majority-rule consensus tends to
equate reliability with ambiguity. Indeed, ambiguity in the data set can cause an
ambiguous topology, i.e., a topology displaying several polytomies, to be repeated
among the input trees and therefore preferred by this method.

3.2.1.3 Semi-strict consensus tree

When some input trees are not binary, splits that are never contradicted
may occur in some of the trees but not be retained by the two previ-
ously described consensus methods. For example, consider a collection F =
{((a, b), (c, d)), (a, b, c, d), (a, b, c, d), (a, b, c, d)}. In this case, the split ab|cd would
not be retained neither in the strict consensus tree nor in the majority-rule con-
sensus tree, even though this information is present and not contradicted by any
tree (for another example see Figures 3.5 and 3.6). However, this split is retained
in the semi-strict consensus tree, defined as follows: the semi-strict consensus tree,
or combinable component tree [Bremer, 1990], of an unrooted tree collection F is
the tree that contains exactly those splits of S(F) compatible with every tree in F .
This consensus method has been criticized (among others by De Queiroz [1993]) for
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Figure 3.6: Example of semi-strict consensus tree for the forest depicted
in Figure 3.4 - The semi-strict consensus trees contains the split ab|cdef which,
although not contradicted by any tree, is not included neither in the strict consensus
tree nor in the majority-rule consensus tree. For this forest the semi-strict and the
Nelson-Page consensus trees (Section 3.2.1.6) are identical.
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the fact that the resulting tree can contain splits that appear in only one of the
input trees. Some authors consider the information contained only in one tree as
unreliable but, as Bryant [2003] has pointed out, it is not likely for a split to be
compatible with a random tree, so we can reasonably rely on this information.

Note that the semi-strict consensus tree refines the strict consensus tree and that
they are equal when all source trees are binary.

3.2.1.4 Asymmetric median tree (defined only for unrooted trees)

Given two unrooted trees T1 and T2, we define the asymmetric distance between T1

and T2, denoted by dA(T1, T2), as the number of splits appearing in T2 but not in
T1. The asymmetric median tree, or AMT [Phillips and Warnow, 1996] for a forest
of unrooted trees F is the tree minimizing:

dA(T, F) =
�

Ti�F
dA(T, Ti).

Since the AMT problem for k trees is equivalent to the maximum independent set
problem on k-colored graphs [Phillips and Warnow, 1996], the former problem is
NP-hard for more than two trees. Note that this definition can be easily extended
to the supertree context.

The next two consensus methods are related to the notion of AMT.

3.2.1.5 Greedy consensus tree

The strategy for constructing a greedy consensus tree, also called majority-rule ex-
tended tree [Felsenstein, 2005], consists in building up from the empty set a collec-
tion of compatible splits S by considering splits one at time in decreasing order of
frequency and adding them to S if they are pairwise compatible with all splits pre-
viously added to this set. The greedy consensus tree of F is the tree that contains
exactly the splits in S. Note that this can be seen as a greedy heuristics to find
the AMT [Bryant, 2003]. Greedy consensus trees, as semi-strict consensus trees,
can contain splits appearing in only one of the input trees. Since all bipartitions
with frequency greater than |F|/2 are compatible, a greedy consensus tree always
refines the majority-rule consensus tree. The main problem with this greedy ap-
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Figure 3.7: Example of greedy consensus trees for the forest depicted in
Figure 3.4 - The tree (i) is obtained if the split de|abcf is preferred to the split
ef|abcd, otherwise we obtain the tree (ii).
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polytomies, in this chapter we will mention when methods interpret soft polytomies
as Adams polytomies and not in the common way. In the next section we present a
review of the most used consensus methods.

3.2 Consensus methods for phylogenetic trees

As stated at the beginning of this chapter, a fundamental problem in classification of
biological data is the question of how to combine the information contained in a set
of trees that classify the same objects into one tree. Recall that the consensus tree
problem requires that input trees have identical sets of taxa. The use of consensus
methods to summarize several trees issued from a unique data set or to compare
trees is widely accepted. More controversial [Barrett et al., 1991] is the use of such
methods for the combination of trees issued from different data sets, i.e., as a tool for
new phylogenetic inferences, since the construction of most consensus trees is guided
by the comparison and the combination of tree topologies, rather than phylogenetic
inference criteria. In this section we present the most used consensus methods, with
the pros and cons of each of them.

The first methods presented below (sections 3.2.1.1-3.2.1.6), except the asym-
metric median tree in Section 3.2.1.4, are all defined for both unrooted and rooted
forests. For the sake of simplicity they are only described here in the unrooted setting
but all of them can be applied to rooted forests (e.g., replacing, in the definitions,
splits with clusters).
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Figure 3.4: Example of a forest of unrooted phylogenetic trees F - The trees
in this forest are used to illustrate the five consensus methods presented in sections
3.2.1.1-3.2.1.6.

3.2.1 Consensus methods defined for both rooted and unrooted
forests

3.2.1.1 Strict consensus tree

The strict consensus tree [McMorris et al., 1983; Sokal and Rohlf, 1981] of a collection
F of unrooted trees is the tree that contains exactly the splits shared by all input
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trees (see Figure 3.5 for an example) i.e., the tree T such that:

S(T ) =
�

Ti�F
S(Ti).

The main advantage of the strict consensus is the simplicity of interpretation: the
splits that appear in all the input trees can be considered as reliable. Though strict
consensus trees were called Nelson trees in Schuh and Farris [1981], Page [1989]
demonstrated that these two methods are not equivalent (see Section 3.2.1.6 for a
description of Nelson trees).
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Figure 3.5: Example of strict consensus tree for the forest depicted in
Figure 3.4 - For this forest the strict and the majority-rule consensus trees are
identical.

The strict consensus tree tends to display numerous polytomies [Funk and
Brooks, 1990; Wilkinson, 1996]. This behavior is sometimes due to incongruence
among the source trees and sometimes to undesirable properties of this consensus
method [Wilkinson, 1995]. Wilkinson and Thorley [2001] proposed a measure of
Consensus Efficiency (CE) that can help to understand whether the lack of resolu-
tion of the strict consensus tree is due to a strong disagreement between input trees
or not. The CE measure can be used to evaluate the efficiency of all strict consen-
sus methods sensu Wilkinson [1994] i.e., methods that retain unanimous agreement
among the source trees.

The use of the strict consensus method to combine trees issued from different
data sets has been criticized by the promoters of the parsimony approach because
the returned tree can be less parsimonious than that obtained by an MP analysis on
the concatenation of all data sets (see the MRP method in Section 3.3.2.1). Other
criticisms come from the advocates of the total evidence approach (Chapter 2) since
the strict-consensus tree can be incompatible with the total evidence tree [Barrett
et al., 1991]. The latter remark is valid for all consensus methods, since all consensus
trees refine the strict consensus tree [see Bryant, 2003].

3.2.1.2 Majority-rule consensus tree

The majority-rule consensus tree of a collection F of unrooted trees is the tree
that contains exactly the splits shared by strictly more than 50% of input trees
[Barthélemy and McMorris, 1986; Margush and Mcmorris, 1981]. See Figure 3.5 for
an example. The 50% rule ensures that all retained splits are compatible since each
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pair of splits appears simultaneously in at least one tree. Given two trees T1 and
T2, the symmetric distance between T1 and T2, denoted by dS(T1, T2), is defined as
the number of splits appearing in one tree but not the other [Robinson and Foulds,
1981]. Barthélemy and McMorris [1986] proved that the majority-rule tree T for a
forest F minimizes:

dS(T, F) =
�

Ti�F
dS(T, Ti) (3.1)

Hence, the majority-rule tree is also a median tree with respect to the symmetric
distance metric. Several supertree methods are also based on a median tree approach
(see Section 3.3.3). Note that the majority-rule consensus tree is not necessarily the
unique median tree. More precisely, Dong and Fernandez-Baca [2009] have recently
shown that majority-rule consensus is the strict consensus of all median trees.

The majority-rule tree is often used to summarize bootstrap trees. Sharkey
and Leathers [2001] criticize the use of this consensus method to combine several
optimal trees for a single data set, claiming that majority-rule consensus tends to
equate reliability with ambiguity. Indeed, ambiguity in the data set can cause an
ambiguous topology, i.e., a topology displaying several polytomies, to be repeated
among the input trees and therefore preferred by this method.

3.2.1.3 Semi-strict consensus tree

When some input trees are not binary, splits that are never contradicted
may occur in some of the trees but not be retained by the two previ-
ously described consensus methods. For example, consider a collection F =
{((a, b), (c, d)), (a, b, c, d), (a, b, c, d), (a, b, c, d)}. In this case, the split ab|cd would
not be retained neither in the strict consensus tree nor in the majority-rule con-
sensus tree, even though this information is present and not contradicted by any
tree (for another example see Figures 3.5 and 3.6). However, this split is retained
in the semi-strict consensus tree, defined as follows: the semi-strict consensus tree,
or combinable component tree [Bremer, 1990], of an unrooted tree collection F is
the tree that contains exactly those splits of S(F) compatible with every tree in F .
This consensus method has been criticized (among others by De Queiroz [1993]) for
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Figure 3.6: Example of semi-strict consensus tree for the forest depicted
in Figure 3.4 - The semi-strict consensus trees contains the split ab|cdef which,
although not contradicted by any tree, is not included neither in the strict consensus
tree nor in the majority-rule consensus tree. For this forest the semi-strict and the
Nelson-Page consensus trees (Section 3.2.1.6) are identical.
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the fact that the resulting tree can contain splits that appear in only one of the
input trees. Some authors consider the information contained only in one tree as
unreliable but, as Bryant [2003] has pointed out, it is not likely for a split to be
compatible with a random tree, so we can reasonably rely on this information.

Note that the semi-strict consensus tree refines the strict consensus tree and that
they are equal when all source trees are binary.

3.2.1.4 Asymmetric median tree (defined only for unrooted trees)

Given two unrooted trees T1 and T2, we define the asymmetric distance between T1

and T2, denoted by dA(T1, T2), as the number of splits appearing in T2 but not in
T1. The asymmetric median tree, or AMT [Phillips and Warnow, 1996] for a forest
of unrooted trees F is the tree minimizing:

dA(T, F) =
�

Ti�F
dA(T, Ti).

Since the AMT problem for k trees is equivalent to the maximum independent set
problem on k-colored graphs [Phillips and Warnow, 1996], the former problem is
NP-hard for more than two trees. Note that this definition can be easily extended
to the supertree context.

The next two consensus methods are related to the notion of AMT.

3.2.1.5 Greedy consensus tree

The strategy for constructing a greedy consensus tree, also called majority-rule ex-
tended tree [Felsenstein, 2005], consists in building up from the empty set a collec-
tion of compatible splits S by considering splits one at time in decreasing order of
frequency and adding them to S if they are pairwise compatible with all splits pre-
viously added to this set. The greedy consensus tree of F is the tree that contains
exactly the splits in S. Note that this can be seen as a greedy heuristics to find
the AMT [Bryant, 2003]. Greedy consensus trees, as semi-strict consensus trees,
can contain splits appearing in only one of the input trees. Since all bipartitions
with frequency greater than |F|/2 are compatible, a greedy consensus tree always
refines the majority-rule consensus tree. The main problem with this greedy ap-
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Figure 3.7: Example of greedy consensus trees for the forest depicted in
Figure 3.4 - The tree (i) is obtained if the split de|abcf is preferred to the split
ef|abcd, otherwise we obtain the tree (ii).
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polytomies, in this chapter we will mention when methods interpret soft polytomies
as Adams polytomies and not in the common way. In the next section we present a
review of the most used consensus methods.

3.2 Consensus methods for phylogenetic trees

As stated at the beginning of this chapter, a fundamental problem in classification of
biological data is the question of how to combine the information contained in a set
of trees that classify the same objects into one tree. Recall that the consensus tree
problem requires that input trees have identical sets of taxa. The use of consensus
methods to summarize several trees issued from a unique data set or to compare
trees is widely accepted. More controversial [Barrett et al., 1991] is the use of such
methods for the combination of trees issued from different data sets, i.e., as a tool for
new phylogenetic inferences, since the construction of most consensus trees is guided
by the comparison and the combination of tree topologies, rather than phylogenetic
inference criteria. In this section we present the most used consensus methods, with
the pros and cons of each of them.

The first methods presented below (sections 3.2.1.1-3.2.1.6), except the asym-
metric median tree in Section 3.2.1.4, are all defined for both unrooted and rooted
forests. For the sake of simplicity they are only described here in the unrooted setting
but all of them can be applied to rooted forests (e.g., replacing, in the definitions,
splits with clusters).
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Figure 3.4: Example of a forest of unrooted phylogenetic trees F - The trees
in this forest are used to illustrate the five consensus methods presented in sections
3.2.1.1-3.2.1.6.

3.2.1 Consensus methods defined for both rooted and unrooted
forests

3.2.1.1 Strict consensus tree

The strict consensus tree [McMorris et al., 1983; Sokal and Rohlf, 1981] of a collection
F of unrooted trees is the tree that contains exactly the splits shared by all input

strict consensus, majority consensus
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trees (see Figure 3.5 for an example) i.e., the tree T such that:

S(T ) =
�

Ti�F
S(Ti).

The main advantage of the strict consensus is the simplicity of interpretation: the
splits that appear in all the input trees can be considered as reliable. Though strict
consensus trees were called Nelson trees in Schuh and Farris [1981], Page [1989]
demonstrated that these two methods are not equivalent (see Section 3.2.1.6 for a
description of Nelson trees).

a d

c f

b e

Figure 3.5: Example of strict consensus tree for the forest depicted in
Figure 3.4 - For this forest the strict and the majority-rule consensus trees are
identical.

The strict consensus tree tends to display numerous polytomies [Funk and
Brooks, 1990; Wilkinson, 1996]. This behavior is sometimes due to incongruence
among the source trees and sometimes to undesirable properties of this consensus
method [Wilkinson, 1995]. Wilkinson and Thorley [2001] proposed a measure of
Consensus Efficiency (CE) that can help to understand whether the lack of resolu-
tion of the strict consensus tree is due to a strong disagreement between input trees
or not. The CE measure can be used to evaluate the efficiency of all strict consen-
sus methods sensu Wilkinson [1994] i.e., methods that retain unanimous agreement
among the source trees.

The use of the strict consensus method to combine trees issued from different
data sets has been criticized by the promoters of the parsimony approach because
the returned tree can be less parsimonious than that obtained by an MP analysis on
the concatenation of all data sets (see the MRP method in Section 3.3.2.1). Other
criticisms come from the advocates of the total evidence approach (Chapter 2) since
the strict-consensus tree can be incompatible with the total evidence tree [Barrett
et al., 1991]. The latter remark is valid for all consensus methods, since all consensus
trees refine the strict consensus tree [see Bryant, 2003].

3.2.1.2 Majority-rule consensus tree

The majority-rule consensus tree of a collection F of unrooted trees is the tree
that contains exactly the splits shared by strictly more than 50% of input trees
[Barthélemy and McMorris, 1986; Margush and Mcmorris, 1981]. See Figure 3.5 for
an example. The 50% rule ensures that all retained splits are compatible since each

semistrict consensus

46 Chapter 3. Methods for combining trees

pair of splits appears simultaneously in at least one tree. Given two trees T1 and
T2, the symmetric distance between T1 and T2, denoted by dS(T1, T2), is defined as
the number of splits appearing in one tree but not the other [Robinson and Foulds,
1981]. Barthélemy and McMorris [1986] proved that the majority-rule tree T for a
forest F minimizes:

dS(T, F) =
�

Ti�F
dS(T, Ti) (3.1)

Hence, the majority-rule tree is also a median tree with respect to the symmetric
distance metric. Several supertree methods are also based on a median tree approach
(see Section 3.3.3). Note that the majority-rule consensus tree is not necessarily the
unique median tree. More precisely, Dong and Fernandez-Baca [2009] have recently
shown that majority-rule consensus is the strict consensus of all median trees.

The majority-rule tree is often used to summarize bootstrap trees. Sharkey
and Leathers [2001] criticize the use of this consensus method to combine several
optimal trees for a single data set, claiming that majority-rule consensus tends to
equate reliability with ambiguity. Indeed, ambiguity in the data set can cause an
ambiguous topology, i.e., a topology displaying several polytomies, to be repeated
among the input trees and therefore preferred by this method.

3.2.1.3 Semi-strict consensus tree

When some input trees are not binary, splits that are never contradicted
may occur in some of the trees but not be retained by the two previ-
ously described consensus methods. For example, consider a collection F =
{((a, b), (c, d)), (a, b, c, d), (a, b, c, d), (a, b, c, d)}. In this case, the split ab|cd would
not be retained neither in the strict consensus tree nor in the majority-rule con-
sensus tree, even though this information is present and not contradicted by any
tree (for another example see Figures 3.5 and 3.6). However, this split is retained
in the semi-strict consensus tree, defined as follows: the semi-strict consensus tree,
or combinable component tree [Bremer, 1990], of an unrooted tree collection F is
the tree that contains exactly those splits of S(F) compatible with every tree in F .
This consensus method has been criticized (among others by De Queiroz [1993]) for

a d

c f

b e

Figure 3.6: Example of semi-strict consensus tree for the forest depicted
in Figure 3.4 - The semi-strict consensus trees contains the split ab|cdef which,
although not contradicted by any tree, is not included neither in the strict consensus
tree nor in the majority-rule consensus tree. For this forest the semi-strict and the
Nelson-Page consensus trees (Section 3.2.1.6) are identical.

greedy consensus
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the fact that the resulting tree can contain splits that appear in only one of the
input trees. Some authors consider the information contained only in one tree as
unreliable but, as Bryant [2003] has pointed out, it is not likely for a split to be
compatible with a random tree, so we can reasonably rely on this information.

Note that the semi-strict consensus tree refines the strict consensus tree and that
they are equal when all source trees are binary.

3.2.1.4 Asymmetric median tree (defined only for unrooted trees)

Given two unrooted trees T1 and T2, we define the asymmetric distance between T1

and T2, denoted by dA(T1, T2), as the number of splits appearing in T2 but not in
T1. The asymmetric median tree, or AMT [Phillips and Warnow, 1996] for a forest
of unrooted trees F is the tree minimizing:

dA(T, F) =
�

Ti�F
dA(T, Ti).

Since the AMT problem for k trees is equivalent to the maximum independent set
problem on k-colored graphs [Phillips and Warnow, 1996], the former problem is
NP-hard for more than two trees. Note that this definition can be easily extended
to the supertree context.

The next two consensus methods are related to the notion of AMT.

3.2.1.5 Greedy consensus tree

The strategy for constructing a greedy consensus tree, also called majority-rule ex-
tended tree [Felsenstein, 2005], consists in building up from the empty set a collec-
tion of compatible splits S by considering splits one at time in decreasing order of
frequency and adding them to S if they are pairwise compatible with all splits pre-
viously added to this set. The greedy consensus tree of F is the tree that contains
exactly the splits in S. Note that this can be seen as a greedy heuristics to find
the AMT [Bryant, 2003]. Greedy consensus trees, as semi-strict consensus trees,
can contain splits appearing in only one of the input trees. Since all bipartitions
with frequency greater than |F|/2 are compatible, a greedy consensus tree always
refines the majority-rule consensus tree. The main problem with this greedy ap-
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b e
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c d

b f

(i) (ii)

Figure 3.7: Example of greedy consensus trees for the forest depicted in
Figure 3.4 - The tree (i) is obtained if the split de|abcf is preferred to the split
ef|abcd, otherwise we obtain the tree (ii).

greedy consensus 

semistrict consensus 

strict consensus, majority consensus 

All trees have the same taxa 
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Trees do not have the same taxon sets  
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The compatibility and the strict compatibility problems for unrooted 
phylogenetic trees, strongly related, respectively, to the notions of 
containing as a minor and containing as a topological minor, Both 
problems are FTP in the number of input trees k, by using 
their expressibility in MSOL.  
But the dependency on k of these algorithms is prohibitively large. 
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We gave the first explicit dynamic programming algorithms for solving 
these problems, both runningin time 2 O(kˆ2)  n, where n is the total size 
of the input. 
 
 
 
Baste el al (2017) Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees. Bulletin of Mathematical Biology. 



Phylogenetic supernetwork inference 

Many possible formulations: 
a b c d e f 

Phylogenetic networks 

An optimization problem where a 
candidate network is evaluated on the 
basis of how well the trees it displays fit 
the data:  

a b c d e f 

Data: 

Find the network N with the lower hybridization number such that the input 
trees are `consistent’ with one of the trees displayed by N 
 

subject to constraints on the complexity of N 

Goal: 

N

. . .

a b c d e f 

Any trees on the same 
taxa:  

a c d e f c f a b d e f 



The HN problem 

The hybridization number problem  

Given: Two rooted binary trees on the same taxon set but 
different topology. 
 
Question: What is the most probable evolutionary history? 
 
Assumptions: Difference is caused by hybridizations, 
parsimony framework 
 
Answer: Network displaying both trees with a minimal 
number of hybridization (reticulation) nodes: hybridization 
network 



Using MAAFs to construct hybridization networks 

Acyclic agreement forests 



Results 

Reconstruction of hybridization networks 

•  NP-hard 
•  FPT  in the reticulation number r 

of the network O(3.18r n) 
•  FPT  in the level k of the 

network O(3.18k n) 

>  Reduction steps: 
o  Subtree reduction 
o  Chain reduction  
o  Cluster reduction 

 

fa b cd e g g b cd e f a



Using MAAFs to construct hybridization networks 

Reconstruction of hybridization networks 

Algorithm

14 / 24

Using MAAFs to construct hybridization networks

hybridization networks 



Results – approx (connection with the DFVS) 

Reconstruction of hybridization networks 

•  no 1.36-approximation, unless P=NP 
•  no (2 − ε)-approximation, unless the unique games conjecture fails 
•  O(log(r)loglog(r))- approximation 
•  d(c+1)-approximation 

Kelk et al. Cycle killer...qu'est-ce que c'est? On the comparative approximability of 
hybridization number and directed feedback vertex set 2012 
van Iersel et al. A practical approximation algorithm for solving massive instances of 
hybridization number. 2012 
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An approximation algorithm for binary trees
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Using the 4-approximation on a normal laptop, we managed to 
construct networks with up to 10,000 leaves and up to 10,000 

reticulations within 10 minutes! 
 
 
 

3 1 



Reconstruction of hybridization networks 

More than 2 trees 



Phylogenetic supernetwork inference 

Many possible formulations: a b c d e f a b c d e f 

Phylogenetic networks 

An optimization problem where a 
candidate network is evaluated on the 
basis of how well the trees it displays fit 
the data:  

a b c d e f 

Data: 
Clusters of taxa: 

Find the network N with the lower hybridization number such that the input 
clusters are `explained’ by one of the trees displayed by N  
 

subject to constraints on the complexity of N 

Goal: 

{a, b}, {d, e}, {d, e, f}, {a, b, c, d, e, f}, {e, f}, {c, d, e, f}, . . .

N



Clusters 

Clusters 

•  cluster containment: NP-hard 
•  minimization NP-hard, APX-hard 
•  A possible solution ... topological constraints: 

o  galled trees (level-1 networks)… it does not always exist 
o  galled networks (if every reticulation in N has a tree cycle)…

still NP-hard  
o  level-k networks … still NP-hard 



Clusters 

Clusters 

CASS algorithm : search for the level-k network containing a set of 
clusters (exact for level-1 and level-2 networks)  
 

van Iersel et al. Phylogenetic networks do not need to be complex: using fewer reticulations 
to represent conflicting clusters. 2010 
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Phylogenetic network inference 

Many possible formulations: a b c d e f 

Phylogenetic networks 

An optimization problem where a 
candidate network is evaluated on the 
basis of how well the trees it displays fit 
the data:  

a b c d e f 

Data: 

Find the network N with the lower hybridization number such 
that the input trees are `consistent’ with the N 
 

subject to constraints on the complexity of N 

Goal: 

N

. . .

a b c d e f 

Any trinets on the same taxa:  
(inferred from other data) 



Trinets 

Trinets 



Examples of incongruencies 

Species/gene trees 
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The	DL	model	

mouse_1 (mouse)

rat_1 (rat)

rat_2 (rat)

dog_1 (dog)

•  Speciation ( ) are the only possible 
events shaping species histories 

•  Speciation ( ), duplication ( ) and 
loss ( ) are the possible events 
shaping gene histories 

•  Each contemporary gene is a leaf 
of G and is associated to the 
corresponding species of S in which 
this gene is collected 

•  Each in G happens at in S 
•  Each  and  event gives birth to 

exactly two genes 
•  The evolution of G along S goes 

forward in time 
 events in G are supposed to 

happen at a in S 

DL model 



•  Speciation ( ) are the only possible 
events shaping species histories 

•  Speciation ( ), duplication ( ) loss ( ) 
and transfers ( ) between sampled/
unsampled  species are the possible 
events shaping gene histories 

•  Each contemporary gene is a leaf of G 
and is associated to the corresponding 
species of S in which this gene is 
collected 

•  Each in G happens at in S 
•  Each  and  event gives birth to 

exactly two genes 
•  The evolution of G along S goes 

forward in time 
•  Each  event is happens between two 

co-existing species. 

The	DTL	model	

DTL model 

n (7)

l (5_0)

k (4)

h (2)

j (3)

i (2)

g (1)



Applications of reconciliaton methods 

Evolution of applications 
  •  Find one of the “good” scenarios (e.g. to detect homology/ 

paralogy)  
o  DTL The best-performing parsimony-based algorithm to date for 

ranked species trees (i.e. we suppose to have knowledge of the 
relative order in which nodes appear in the tree)        O(n2 m) 

o  DTL A modification of the algorithm can be used to reconcile 
against undated species trees                                        O(n m) 

o  DTL Unrooted/non-binary gene trees as input O(m n2 (3d - 2d+1)) 
     where d is the maximum out-degree of any node in G 
o  DTLI  A algorithm for ranked species trees    O(m(n2 +n nk 2k) 2k) 

where k is the maximum number of ILS branches that are 
connected in S and nk is the number of sets of connected ILS 
branches of S (e.g., if we have a group of three adjacent ILS 
branches, k = 3 while nk = 1) 

o  DL on networks                                       O(h2 m n) 
    where h is the number of nodes with 2 parents in the network 
o  DTL on LGT networks                               O(n m) 



Phylogenomics 

Phylogenomics	

genomic
data

detection of homology
(clustering/embedding

problems)

STEP 1

C1 C2 Ck ...

alignement
problem

STEP 2

A1 A2 Ak' ...

construct a tree for 
each data set 

STEP 3

...

super-tree super-network

STEP 4 combine the trees

STEP 3' construct a 
unique

tree

parsimony 
likelihood
bayesian

distance-based 

methods}

STEP 4' combine all 
the data
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réarrangements génomiques

simplification d’arbres multi-étiquetés

construction de super-arbres

réconciliation d’arbres phylogénétiques

comparaison graphique de réseaux

construction de super-réseaux
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X and Y human chromosomes

hogenom

Primates

hogenom

Polygonaceae

Triticeae, Aegilops/Triticum genera

I did not have time to talk about… 

What I did not even mention 
  •  sequence analyses (recombination detection, genome 

rearrangements such as sorting by reversals, or DCJ, orthology 
detection) 
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h
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Fig. 4 A graph G = (V , E)

only if G is 3-colorable. As 3-COLORING is NP-hard, so is
2-DOGS.

Using the same technique as for Theorem 3, we can
prove the same NP-hardness result for S-CONS-2-DOGS
and CONS-2-DOGS. The proofs are identical to that of
Theorem 3, except that in the case of Theorem 4 we con-
struct an arbitrary species tree S on ! in addition to the
constraint graph (H , s).

Theorem 4 S-CONS-2-DOGS is NP-hard.

Theorem 5 CONS-2-DOGS is NP-hard.

Let MINDOGS, S-CONS-MINDOGS, and CONS-
MINDOGS denote the minimization versions of k-DOGS,
S-CONS-k-DOGS, and CONS-k-DOGS respectively, in
which we want to find a solution with the minimum num-
ber of duplication nodes. Let GRAPH COLORING denote
the minimization version of k-COLORING. As GRAPH
COLORING has no polynomial time n1−ϵ′-approximation
for any ϵ′ > 0, unless P=NP [23], we can prove the
following theorem.

Fig. 5 A constraint graph (H = (V ,M#U), s) derived from G by setting
M = ∅ and U = E, and letting s : V → ! be an arbitrary species
assignment such that each gene is mapped to a different species

Theorem 6 For any ϵ > 0, there is no polynomial time
algorithm that takes as input an instance of MINDOGS,
and returns a solution with at most n1−ϵ · k duplication
nodes if there exists a solution with at most k duplication
nodes, unless P = NP.

Proof Let G = (V ,E) be an instance of GRAPH COL-
ORING. Without loss of generality we may assume that G
is connected. Let (H , s) be the constraint graph given by
Lemma 5.
Now for any ϵ > 0, fix an integer n0 and ϵ′ > 0 such

that n1−ϵ + 1 < n1−ϵ′ for any n ≥ n0.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 14):416 Page 260 of 282

Fig. 6 A DS-tree for (H = (V ,M ! U), s). Note that the partition
{a, e}, {b, f }, {c, d} corresponds to a 3-coloring of G. Circles represent
speciation events, and squares represent duplication events

Suppose that there exists a polynomial-time n1−ϵ-
approximation for MINDOGS, i.e. an algorithm that for
any instance (H , s) with n vertices, finds a solution with
at most n1−ϵ · k duplication nodes if there exists a solu-
tion with at most k duplication nodes. We show that there
exists a polynomial-time n1−ϵ′-approximation for GRAPH
COLORING.
Let G be an instance of GRAPH COLORING with n ver-

tices, and suppose without loss of generality that n ≥ n0
(as otherwise the problem can be solved exactly in poly-
nomial time). Let (H , s) be the instance of MINDOGS
constructed from G as above. Now run the supposed
approximation algorithm for MINDOGS on (H , s). If G is
k-colorable for any k > 1, then by Lemma 5, there exists
a solution for (H , s) with at most k − 1 duplication nodes.
Therefore ifG is k-colorable, the algorithm returns a solu-
tion with at most n1−ϵ · (k − 1) duplication nodes. (Note
that we may assume the solution contains at least 1 dupli-
cation node, as otherwise G would be disconnected). Let
(H ′, s) be the orthology graph for this solution. Then by
Lemma 4, we have a n1−ϵ ·(k−1)+1-coloring forH ′. AsG
is a subgraph ofH ′, this is also a n1−ϵ · (k−1)+1-coloring
for G.
As n ≥ n0, n1−ϵ · (k − 1)+ 1 ≤ (n1−ϵ + 1) · k ≤ n1−ϵ′ · k

and so we have a polynomial time n1−ϵ′-approximation for
GRAPH COLORING, a contradiction.

Using the same technique as for Theorem 6, we can
prove the same inapproximability result for S-CONS-
MINDOGS and CONS-MINDOGS. The proofs are iden-
tical to that of Theorem 6, except that in the case of
Theorem 7 we construct an arbitrary species tree S on "

in addition to the constraint graph (H , s).

Theorem 7 For any ϵ > 0, there is no polynomial time
algorithm that takes as input an instance of S-CONS-
MINDOGS, and returns a solution with at most n1−ϵ · k
duplication nodes if there exists a solution with at most k
duplication nodes, unless P = NP.

Theorem 8 For any ϵ > 0, there is no polynomial
time algorithm that takes as input an instance of CONS-
MINDOGS, and returns a solution with at most n1−ϵ · k
duplication nodes if there exists a solution with at most k
duplication nodes, unless P = NP.

To summarise the results in this section: given a con-
straint graph on n vertices, it is NP-hard to find a DS-tree
for that graph with at most k duplication nodes, even
when k = 2. This holds regardless of whether we require
the DS-tree to be consistent, or whether we are given a
species tree that it should be consistent with. Viewed as
a minimization problem, it is NP-hard even to find an
n1−ϵ-approximate solution, for any ϵ > 0.

Results and Discussion
We integrated Algorithm 1 to the software provided at
[24] by the authors of [9]. Note that the previous version
of the program only permitted to check satisfiability and
consistency of a constraint graph with respected to a given
species tree S.
We used the modified software to reanalyze the data set

in [9]. This data set was constructed by randomly choos-
ing 265 gene families of vertebrates with more than 20
genes from Ensembl [25]. Each gene family was then anal-
ysed with ProteinOrtho [26] using 9 different parameter
settings, yielding 2385 different constraint graphs. Here
S is the Ensembl species tree, which can be downloaded
at [27].
For this data set we have that, apart from one case, all

satisfiable constraint graphs are also consistent. In 533 out
of 2385 cases, the constraint graph was found to be con-
sistent, but not consistent with S. We were interested in
finding out how greatly the graphs in this set (denoted
CG) conflicted with S. Indeed, some nodes in the Ensembl
species tree, for example the position of Equus, Tupaia
and Cavia, do not enjoy a consensus in the community, so
some contradictions with S are expected.
Note that we can use the graph G′ outputted by Algo-

rithm 1 to obtain a species tree in the following way: we
compute the set T of all P3(G′, s) and then feed T to the
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