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Sébastien Ratel1, Yann Vaxès1

1LIS, Marseille, France

November 17, 2020

JGA 2020

Chalopin, Chepoi, Mc Inerney, Ratel, Vaxès Distinguishing Balls in Graphs



2/18

Part I: Sample Compression Schemes

Chalopin, Chepoi, Mc Inerney, Ratel, Vaxès Part I: Sample Compression Schemes



3/18

Samples

Given a domain U,

a concept is a subset of U.

a sample is a subset of U where
each element has an associated
label in {−1,+1}.

Realizable sample

For a concept class C ⊆ 2U and a
concept C ∈ C, C realizes a sample X
if, ∀x ∈ X with label −1 and ∀y ∈ X
with label +1, x /∈ C and y ∈ C .

v1

v2

v3

v4

v5

B1(v4)

C: balls of radius 1

X1 = {v1(−1), v3(+1), v4(+1)}

B1(v4) realizes X1.

X2 = {v2(−1), v5(−1)}

No ball realizes X2.
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(Labelled) Sample Compression Schemes

(Labelled) sample compression scheme of size k for a concept class C
A function α compressing a realizable sample X into a (labelled)
sub-sample α(X ) ⊆ X of size at most k from which a function β
reconstructs a concept C ∈ C realizing X .

C: all balls of radius 1 in the house graph.

v1

v2

v3

v4

v5

Sample X

v1

v2

v3

v4

v5

α

Sub-sample α(X )

B1(v4)

v1

v2

v3

v4

v5

β

Concept B1(v4) ∈ C
realizing X
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Related Work for Sample Compression Schemes (SCS)

Defined for learning algorithms [Littlestone & Warmuth, 1986].

Open problem in machine learning: does every concept class of
VC-dimension d admit SCS of size O(d)? [Floyd & Warmuth, 1995].

Labelled SCS (LSCS) of size O(2d) exist [Moran & Yehudayoff, 2016].

Ample sets admit LSCS of size d [Moran & Warmuth, 2016].

Unlabelled SCS (USCS) of size d exist for maximum families
and were characterized for ample sets [Chalopin et al., 2019].

There’s a family whose VC-dim ≤ d but does not admit
USCS of size at most d [Pálvölgyi & Tardos, 2020].
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Results Included in Part I

B(G ): family of balls of any radius in a graph G .

Br (G ): family of balls of radius r in a graph G .

We show:

USCS of size 2 for B(T ) for trees T ;

LSCS (with extra information) of size 2 for Br (T ) for trees T ;

LSCS of size 3 for B(G ) for interval graphs G .
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USCS of Size 2 for B(T ) for metric Trees T

For any realizable sample X ,

Compressor α(X ):

1 if |X+| ≤ 1, then α(X ) = X+;

2 else α(X ) = {u+, v+} (u+, v+: diametral pair of X+).

: vertex in X+

u+ v+

Reconstructor β(α(X )):

1 if |α(X )| = 0, then β(α(X )) = ∅;

2 else, if |α(X )| = 1, then β(α(X )) = B0(α(X ));

3 else |α(X )| = 2 and β(α(X )) = Br (y), where
r = 1

2d(u+, v+) and y is the center of the path P(u+, v+).
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USCS of Size 2 for B(T ) for metric Trees T

1 else |α(X )| = 2 and β(α(X )) = Br (y), where
r = 1

2d(u+, v+) and y is the center of the path P(u+, v+).

: vertex in X+

α(X ) = {u+, v+}

u+ v+

y
B3(y)
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For Br(T ), Use Center Designators

If there exists u ∈ X− such that Br (y) realizes X and

d(u, y) = r + 1, then there’s a center designator.

4

5
6

7

8

9

10

11
0

1

2

3

: vertex at distance r + 1 from u

u

4

5
6

7

8

9

10

11
0

1

2

3

v

y

Blue vertices labelled by DFS from u ∈ X−.

Any vertex v ∈ X forbids a continuous
interval of blue vertices.

If y follows a forbidden interval defined by

v ∈ X and Br (y) realizes X , then v is a

center designator of u that designates y .
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Two key lemmas for Br(T )

Lemma 1

Any ball containing a diametral pair of X+, also contains X+.

Lemma 2

Either there is a center designator or any ball containing a
diametral pair of X+ realizes X .

Chalopin, Chepoi, Mc Inerney, Ratel, Vaxès Part I: Sample Compression Schemes



11/18

LSCS (w/ info) of Size 2 for Br(T ) for Trees T

Compressor α(X ):

1 if |X | ≤ 1, then α(X ) = X ;

2 else, if t ∈ X is a center designator of s ∈ X−, then α(X ) = {t, s};

3 otw, α(X ) = {u+, v+} (diametral pair of X+) or α(X ) = X+ if |X+| = 1.

Reconstructor β(α(X )):

1 if |α(X )| = |α(X−)| ≤ 1, then β(α(X )) is any ball avoiding α(X−);

2 else, if |α(X )| = |α(X+)| ≥ 1, then β(α(X )) is any ball containing α(X+);

3 otw, α(X ) = {t, s} and β(α(X )) is the ball Br (y) where t is the center
designator of s that designates y .
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LSCS of size 3 for B(G ) for interval graphs G

Farthest pair of a subgraph H of an interval graph

The vertices u, v in H such that the interval of u ends farthest to the left
and the interval of v begins farthest to the right.

u

v

Key Lemma

Any ball containing a farthest pair of X+, contains X+.
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Part II: Representation Maps
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Representation Maps

Representation map of size k for a concept class C
A function ρ assigning to each C ∈ C, a sample XC of size at most
k that is realizable by C , and such that, for any two C1,C2 ∈ C,
C1 ∩ (ρ(C1) ∪ ρ(C2)) 6= C2 ∩ (ρ(C1) ∪ ρ(C2)) if C1 6= C2.

v1

v2

v3

v4

v5

Let Ci = B1(vi ) and C = {C1,C3,C4}.

Let ρ(C1) = v1,

ρ(C3) = v5,

ρ(C4) = v2.

C1 ∩ (ρ(C1) ∪ ρ(C3)) = {v1, v5} 6= ∅ = C3 ∩ (ρ(C1) ∪ ρ(C3)),

C1 ∩ (ρ(C1) ∪ ρ(C4)) = {v1, v2} 6= {v2} = C4 ∩ (ρ(C1) ∪ ρ(C4)),

C3 ∩ (ρ(C3) ∪ ρ(C4)) = {v2} 6= {v2, v5} = C4 ∩ (ρ(C3) ∪ ρ(C4)).
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Related Work for Representation Maps and Results Included in Part II

Representation maps were defined to characterize and construct
USCS for maximum classes [Kuzmin and Warmuth, 2007].

Characterization was extended to ample classes [Chalopin et al., 2019].

We show:

Representation maps of size 2 for B(T ) for trees T ;

Representation maps of size 2 for B(G ) for interval graphs G ;
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Rep. maps of size 2 for trees and interval graphs

Trees T :

For any vertex x ∈ V (T ) and any r ≥ 0, ρ(Br (x)) = {u+
x , v

+
x },

where u+
x , v

+
x is a diametral pair of Br (x).

Interval graphs G :

For any vertex x ∈ V (G ) and any r ≥ 0, ρ(Br (x)) = {ux , vx},
where ux , vx is a farthest pair of Br (x).
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Further Work

We are studying SCS and Rep. maps for balls in graphs for
cycles and cacti.

Also, balls of radius 1 for SCS for planar graphs.

Other graph classes would be interesting.

Does every family of balls of VC-dimension d admit SCS
of size O(d)?
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Graph Class Rep. map USCS LSCS
Trees (B(T )) ≤ 2 ≤ 2

Trees (Br (T )) ≤ 2 (≤ 2 w/ info) ≤ 6

Interval graphs (B(G )) ≤ 2 ≤ 3

Interval graphs (Br (G )) ≤ 2 ≤ 3

Cycles (B(G )) ≤ 3 ≤ 3

Cacti (B(G )) ≤ 4 ? ?

Thanks!
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