Distinguishing Balls in Graphs

Jérémie Chalopin?, Victor Chepoi!, Fionn Mc Inerney?,
Sébastien Ratel', Yann Vaxes!

1LIS, Marseille, France
November 17, 2020

JGA 2020

1/18

Chalopin, Chepoi, Mc Inerney, Ratel, Vaxes Distinguishing Balls in Graphs



Part |: Sample Compression Schemes

2/18

Chalopin, Chepoi, Mc Inerney, Ratel, Vaxes Part I: Sample Compression Schemes



Given a domain U,
@ a concept is a subset of U.

@ a sample is a subset of U where
each element has an associated
label in {—1,+1}.

Realizable sample

For a concept class C C 2Y and a
concept C € C, C realizes a sample X
if, Vx € X with label —1 and Vy € X
with label +1, x ¢ C and y € C.
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Given a domain U,
@ a concept is a subset of U.

@ a sample is a subset of U where
each element has an associated
label in {—1,+1}.

Realizable sample C: balls of radius 1

For a concept class C C 2Y and a X1 = {vi(—1), v3(+1), va(+1)}

concept C € C, C realizes a sample X Bi(va) realizes X
if, Vx € X with label —1and ¥y € X v
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Given a domain U, V3
@ a concept is a subset of U.
Vo Vg
@ a sample is a subset of U where
each element has an associated
label in {—1,+1}. Vi Vs

Realizable sample C: balls of radius 1

For a concept class C C 2Y and a X1 = {vi(—1), v3(+1), va(+1)}

.concept C E.C, C realizes a sample X Bi(va) realizes Xi.
if, Vx € X with label —1 and Vy € X
with label +1, x ¢ C and y € C. Xo ={vo(=1), vs(-1)}
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Given a domain U, V3

@ a concept is a subset of U.

Vo Vg
@ a sample is a subset of U where
each element has an associated
label in {—1,+1}. Vi Vs
Realizable samp|e C: balls of radius 1
For a concept class C C 2Y and a X1 = {vi(—1), v3(+1), va(+1)}

concept C € C, C realizes a sample X
if, Vx € X with label —1 and Vy € X
with label +1, x ¢ C and y € C. Xo ={vo(=1), vs(-1)}

No ball realizes X5.

Bi(vs) realizes Xi.
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(Labelled) Sample Compression Schemes

(Labelled) sample compression scheme of size k for a concept class C

A function o compressing a realizable sample X into a (labelled)
sub-sample a(X) C X of size at most k from which a function 3
reconstructs a concept C € C realizing X.
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(Labelled) Sample Compression Schemes

(Labelled) sample compression scheme of size k for a concept class C

A function oz compressing a realizable sample X into a (labelled)
sub-sample a(X) C X of size at most k from which a function 3
reconstructs a concept C € C realizing X.

C: all balls of radius 1 in the house graph.

V3
Vo Vg
Vi Vs
Sample X
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(Labelled) Sample Compression Schemes

(Labelled) sample compression scheme of size k for a concept class C

A function oz compressing a realizable sample X into a (labelled)
sub-sample a(X) C X of size at most k from which a function 3
reconstructs a concept C € C realizing X.

C: all balls of radius 1 in the house graph.

V3 V3

Vi Vs %1 Vs

Sample X Sub-sample a(X)
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(Labelled) Sample Compression Schemes

(Labelled) sample compression scheme of size k for a concept class C

A function oz compressing a realizable sample X into a (labelled)
sub-sample a(X) C X of size at most k from which a function 3
reconstructs a concept C € C realizing X.

C: all balls of radius 1 in the house graph.

=1

Sample X Sub-sample a(X)  Concept Bi(va) € C
realizing X
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Related Work for Sample Compression Schemes (SCS)

@ Defined for learning algorithms [Littlestone & Warmuth, 1986].
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Related Work for Sample Compression Schemes (SCS)

@ Defined for learning algorithms [Littlestone & Warmuth, 1986].

@ Open problem in machine learning: does every concept class of
VC-dimension d admit SCS of size O(d)? [Floyd & Warmuth, 1995].
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Related Work for Sample Compression Schemes (SCS)

@ Defined for learning algorithms [Littlestone & Warmuth, 1986].

@ Open problem in machine learning: does every concept class of
VC-dimension d admit SCS of size O(d)? [Floyd & Warmuth, 1995].

o Labelled SCS (LSCS) of size O(29) exist [Moran & Yehudayoff, 2016].
e Ample sets admit LSCS of size d [Moran & Warmuth, 2016].

o Unlabelled SCS (USCS) of size d exist for maximum families
and were characterized for ample sets [Chalopin et al., 2019].

o There's a family whose VC-dim < d but does not admit
USCS of size at most d [Palvélgyi & Tardos, 2020].
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Results Included in Part |

B(G): family of balls of any radius in a graph G.
B,(G): family of balls of radius r in a graph G.

We show:

@ USCS of size 2 for B(T) for trees T;
@ LSCS (with extra information) of size 2 for B,(T) for trees T;

@ LSCS of size 3 for B(G) for interval graphs G.
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USCS of Size 2 for B(T) for metric Trees T

For any realizable sample X,

Compressor «(X):
Q if [ XT| <1, then a(X) = XT;

@ clse a(X) = {u", v} (ut,vT: diametral pair of XT).
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USCS of Size 2 for B(T) for metric Trees T

For any realizable sample X,

Compressor «(X):
Q if [ XT| <1, then a(X) = XT;
@ clse a(X) = {u", v} (ut,vT: diametral pair of XT).

@®: vertex in Xt

ut L é)v+
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USCS of Size 2 for B(T) for metric Trees T

For any realizable sample X,

Compressor o(X):

Q if |[XT| <1, then a(X) = X;

@ else a(X) = {ut, vt} (ut, vt: diametral pair of X*).
Reconstructor 5(a(X)):

Q if |a(X)| =0, then 5(a(X)) = 0;

@ else, if |a(X)| = 1, then B(a(X)) = Bo(a(X)):

© else |a(X)| =2 and S(a(X)) = B,(y), where

r=21d(ut,v") and y is the center of the path P(u™, v ). .
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USCS of Size 2 for B(T) for metric Trees T

Q else |a(X)| =2 and S(a(X)) = B, (y), where
r=2d(ut,v") and y is the center of the path P(u™t,v ™).

®: vertex in Xt

a(X)={ut, vt}
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For B,(T), Use Center Designators

If there exists u € X~ such that B,(y) realizes X and
d(u,y) = r + 1, then there's a center designator.

@ : vertex at distance r + 1 from u Blue vertices labelled by DFS from u € X~
0
11 L) 1
[ J ([ J
10. ° 2
e ou e 3
8® ®4
[ J ([}
7 L4 5
6 9/18
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For B,(T), Use Center Designators

If there exists u € X~ such that B,(y) realizes X and
d(u,y) = r + 1, then there's a center designator.

@ : vertex at distance r + 1 from u Blue vertices labelled by DFS from u € X~
0
11 ° 1
¢ ¢ Any vertex v € X forbids a continuous
10. PY 2 interval of blue vertices.
e ou e 3
If y follows a forbidden interval defined by
P [ A% Y . .
8 4 v € X and B,(y) realizes X, then v is a
oy Y center designator of u that designates y.
7 g 5
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Two key lemmas for B,(T)

Any ball containing a diametral pair of X, also contains X*.

Either there is a center designator or any ball containing a
diametral pair of X™ realizes X.
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LSCS (w/ info) of Size 2 for B,(T) for Trees T

Compressor a(X):

@ if |X| <1, then a(X) = X;
@ else, if t € X is a center designator of s € X™, then a(X) = {t,s};

@ otw, a(X) = {u™, v} (diametral pair of XT) or a(X) = XT if | XT| = 1.
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LSCS (w/ info) of Size 2 for B,(T) for Trees T

Compressor a(X):

@ if |X| <1, then a(X) = X;
@ else, if t € X is a center designator of s € X™, then a(X) = {t,s};

@ otw, a(X) = {u™, v} (diametral pair of XT) or a(X) = XT if | XT| = 1.
Reconstructor 3(a(X)):
Q if [a(X)| = |a(X7)| <1, then B(a(X)) is any ball avoiding (X ™);

Q clse, if |a(X)| = |a(XT)| > 1, then B(a(X)) is any ball containing a(X™);

@ otw, a(X) = {t,s} and B(a(X)) is the ball B,(y) where t is the center
designator of s that designates y. 11/18
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LSCS of size 3 for B(G) for interval graphs G

Farthest pair of a subgraph H of an interval graph

The vertices u, v in H such that the interval of u ends farthest to the left
and the interval of v begins farthest to the right.
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LSCS of size 3 for B(G) for interval graphs G

Farthest pair of a subgraph H of an interval graph

The vertices u, v in H such that the interval of u ends farthest to the left
and the interval of v begins farthest to the right.

v
u

Any ball containing a farthest pair of X*, contains X*.
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Part Il: Representation Maps
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Representation Maps

Representation map of size k for a concept class C

A function p assigning to each C € C, a sample X¢ of size at most
k that is realizable by C, and such that, for any two C;, G, € C,
GN(p(G)Up(Q)) # GN(p(G)Up(Q)) if G # G
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Representation Maps

Representation map of size k for a concept class C

A function p assigning to each C € C, a sample X¢ of size at most
k that is realizable by C, and such that, for any two C;, G, € C,
GN(p(G)Up(Q)) # GN(p(G)Up(Q)) if G # G

v3 Let G = Bl(v,-) and C = {Cl, Gs, C4}
Let p(Cl) = v,
Vo V4
/)( (:23) = Vs,
p(Ca) = v
VI @——@ V5
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Representation Maps

Representation map of size k for a concept class C

A function p assigning to each C € C, a sample X¢ of size at most
k that is realizable by C, and such that, for any two C;, G, € C,
GN(p(G)Up(Q)) # GN(p(G)Up(Q)) if G # G

v3 Let G = Bl(v,-) and C = {Cl, Gs, C4}
Let p(Cl) = v,
Vo V4
/)( (:23) = Vs,
p(Ca) = v
VI @——@ V5

G N(p(C)Up(G)) = {vi,vs} # 0 = G N (p(C1) U p(G3)),
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Representation Maps

Representation map of size k for a concept class C

A function p assigning to each C € C, a sample X¢ of size at most
k that is realizable by C, and such that, for any two C;, G, € C,
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Vo V4
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p(Ca) = v
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Representation Maps

Representation map of size k for a concept class C

A function p assigning to each C € C, a sample X¢ of size at most
k that is realizable by C, and such that, for any two C;, G, € C,

GN(p(G)Up(Q)) # GN(p(G)Up(Q)) if G # G

v3 Let G = Bl(v,-) and C = {Cl, Gs, C4}
Let p(Cl) = v,
Vo V4
p(Cg) = Vs,
p(Ca) = v
VI @——@ V5

GN(p(G)Up(G)) ={v1,vs} # 0 =GN (p(Cr)Up(G)),
G N (p(G) Up(G)) =A{v1,vo} # {va} = G N (p(C) U p(Ga)),
GN(p(G)Up(G)) ={vo} # {vo, w5} = G N (p(G)Up(Ca)). 48
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Related Work for Representation Maps and Results Included in Part |l

Representation maps were defined to characterize and construct
USCS for maximum classes [Kuzmin and Warmuth, 2007].

Characterization was extended to ample classes [Chalopin et al., 2019].
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Related Work for Representation Maps and Results Included in Part |l

Representation maps were defined to characterize and construct
USCS for maximum classes [Kuzmin and Warmuth, 2007].

Characterization was extended to ample classes [Chalopin et al., 2019].

We show:
@ Representation maps of size 2 for B(T) for trees T;

@ Representation maps of size 2 for B(G) for interval graphs G;
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Rep. maps of size 2 for trees and interval graphs

Trees T:

For any vertex x € V(T) and any r > 0, p(B,(x)) = {ul, v},
where uf, v is a diametral pair of B,(x).

XX

Interval graphs G:

For any vertex x € V(G) and any r > 0, p(B,(x)) = {ux, v},
where uy, vy is a farthest pair of B,(x).
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Further Work

@ We are studying SCS and Rep. maps for balls in graphs for
cycles and cacti.

@ Also, balls of radius 1 for SCS for planar graphs.
@ Other graph classes would be interesting.

@ Does every family of balls of VC-dimension d admit SCS
of size O(d)?

17/18

Chalopin, Chepoi, Mc Inerney, Ratel, Vaxes Part II: Representation Maps



Graph Class Rep. map | USCS LSCS
Trees (B(T)) <2 <2
Trees (B,(T)) <2 (<2 w/ info) <6
Interval graphs (B(G)) <2 <3
Interval graphs (B,(G)) <2 <3
Cycles (B(G)) <3 <3
Cacti (B(G)) <4 ? ?

Thanks!

18/18

Chalopin, Chepoi, Mc Inerney, Ratel, Vaxes Part II: Representation Maps



