Distinguishing Balls in Graphs

Jérémie Chalopin¹, Victor Chepoi¹, **Fionn Mc Inerney**¹, Sébastien Ratel¹, Yann Vaxès¹

¹LIS, Marseille, France

November 17, 2020

JGA 2020

Part I: Sample Compression Schemes

Given a domain U,

- a concept is a subset of U.
- a sample is a subset of U where each element has an associated label in {-1,+1}.

Realizable sample

For a concept class $C \subseteq 2^U$ and a concept $C \in C$, C realizes a sample X if, $\forall x \in X$ with label -1 and $\forall y \in X$ with label +1, $x \notin C$ and $y \in C$.

Given a domain U,

- a concept is a subset of U.
- a sample is a subset of U where each element has an associated label in {-1, +1}.

Realizable sample

For a concept class $C \subseteq 2^U$ and a concept $C \in C$, C realizes a sample X if, $\forall x \in X$ with label -1 and $\forall y \in X$ with label +1, $x \notin C$ and $y \in C$.

 \mathcal{C} : balls of radius 1

Given a domain U,

- a concept is a subset of U.
- a sample is a subset of *U* where each element has an associated label in {-1, +1}.

Realizable sample

For a concept class $C \subseteq 2^U$ and a concept $C \in C$, C realizes a sample X if, $\forall x \in X$ with label -1 and $\forall y \in X$ with label +1, $x \notin C$ and $y \in C$.

C: balls of radius 1 $X_1 = \{v_1(-1), v_3(+1), v_4(+1)\}$

Given a domain U,

- a concept is a subset of U.
- a sample is a subset of U where each element has an associated label in {-1, +1}.

Realizable sample

For a concept class $C \subseteq 2^U$ and a concept $C \in C$, C realizes a sample X if, $\forall x \in X$ with label -1 and $\forall y \in X$ with label +1, $x \notin C$ and $y \in C$.

C: balls of radius 1 $X_1 = \{v_1(-1), v_3(+1), v_4(+1)\}$ $B_1(v_4)$ realizes X_1 .

Given a domain U,

- a concept is a subset of U.
- a sample is a subset of *U* where each element has an associated label in {-1, +1}.

Realizable sample

For a concept class $C \subseteq 2^U$ and a concept $C \in C$, C realizes a sample X if, $\forall x \in X$ with label -1 and $\forall y \in X$ with label +1, $x \notin C$ and $y \in C$.

C: balls of radius 1 $X_1 = \{v_1(-1), v_3(+1), v_4(+1)\}$ $B_1(v_4)$ realizes X_1 . $X_2 = \{v_2(-1), v_5(-1)\}$

Given a domain U,

- a concept is a subset of U.
- a sample is a subset of *U* where each element has an associated label in {-1, +1}.

Realizable sample

For a concept class $C \subseteq 2^U$ and a concept $C \in C$, C realizes a sample X if, $\forall x \in X$ with label -1 and $\forall y \in X$ with label +1, $x \notin C$ and $y \in C$.

C: balls of radius 1 $X_1 = \{v_1(-1), v_3(+1), v_4(+1)\}$ $B_1(v_4)$ realizes X_1 . $X_2 = \{v_2(-1), v_5(-1)\}$ No ball realizes X_2 .

(Labelled) sample compression scheme of size k for a concept class C

A function α compressing a realizable sample X into a (labelled) sub-sample $\alpha(X) \subseteq X$ of size at most k from which a function β reconstructs a concept $C \in C$ realizing X.

(Labelled) sample compression scheme of size k for a concept class C

A function α compressing a realizable sample X into a (labelled) sub-sample $\alpha(X) \subseteq X$ of size at most k from which a function β reconstructs a concept $C \in C$ realizing X.

 $\mathcal{C}:$ all balls of radius 1 in the house graph.

Sample X

(Labelled) sample compression scheme of size k for a concept class C

A function α compressing a realizable sample X into a (labelled) sub-sample $\alpha(X) \subseteq X$ of size at most k from which a function β reconstructs a concept $C \in C$ realizing X.

 \mathcal{C} : all balls of radius 1 in the house graph.

(Labelled) sample compression scheme of size k for a concept class C

A function α compressing a realizable sample X into a (labelled) sub-sample $\alpha(X) \subseteq X$ of size at most k from which a function β reconstructs a concept $C \in C$ realizing X.

 \mathcal{C} : all balls of radius 1 in the house graph.

Related Work for Sample Compression Schemes (SCS)

• Defined for learning algorithms [Littlestone & Warmuth, 1986].

Related Work for Sample Compression Schemes (SCS)

- Defined for learning algorithms [Littlestone & Warmuth, 1986].
- Open problem in machine learning: does every concept class of VC-dimension d admit SCS of size O(d)? [Floyd & Warmuth, 1995].

Related Work for Sample Compression Schemes (SCS)

- Defined for learning algorithms [Littlestone & Warmuth, 1986].
- Open problem in machine learning: does every concept class of VC-dimension d admit SCS of size O(d)? [Floyd & Warmuth, 1995].
 - Labelled SCS (LSCS) of size $O(2^d)$ exist [Moran & Yehudayoff, 2016].
 - Ample sets admit LSCS of size *d* [Moran & Warmuth, 2016].
 - Unlabelled SCS (USCS) of size *d* exist for maximum families and were characterized for ample sets [Chalopin et al., 2019].
 - There's a family whose VC-dim ≤ d but does not admit USCS of size at most d [Pálvölgyi & Tardos, 2020].

 $\mathcal{B}(G)$: family of balls of any radius in a graph G.

 $\mathcal{B}_r(G)$: family of balls of radius r in a graph G.

We show:

- USCS of size 2 for $\mathcal{B}(T)$ for trees T;
- LSCS (with extra information) of size 2 for $\mathcal{B}_r(T)$ for trees T;
- LSCS of size 3 for $\mathcal{B}(G)$ for interval graphs G.

For any realizable sample X,

Compressor $\alpha(X)$:

1 if
$$|X^+| \le 1$$
, then $\alpha(X) = X^+$;

2 else $\alpha(X) = \{u^+, v^+\}$ (u^+, v^+) : diametral pair of X^+).

For any realizable sample X,

Compressor $\alpha(X)$:

1 if
$$|X^+| \le 1$$
, then $\alpha(X) = X^+$;

2 else $\alpha(X) = \{u^+, v^+\}$ (u^+, v^+) : diametral pair of X^+).

: vertex in X⁺

For any realizable sample X,

Compressor $\alpha(X)$:

1 if
$$|X^+| \le 1$$
, then $\alpha(X) = X^+$;

2 else $\alpha(X) = \{u^+, v^+\}$ (u^+, v^+) : diametral pair of X^+).

For any realizable sample X,

Compressor $\alpha(X)$:

• if
$$|X^+| \leq 1$$
, then $\alpha(X) = X^+$;

2 else $\alpha(X) = \{u^+, v^+\}$ (u^+, v^+) : diametral pair of X^+).

Reconstructor $\beta(\alpha(X))$:

• if
$$|\alpha(X)| = 0$$
, then $\beta(\alpha(X)) = \emptyset$;

2) else, if
$$|lpha(X)| = 1$$
, then $\beta(lpha(X)) = B_0(lpha(X));$

Solution else $|\alpha(X)| = 2$ and $\beta(\alpha(X)) = B_r(y)$, where $r = \frac{1}{2}d(u^+, v^+)$ and y is the center of the path $P(u^+, v^+)$.

For $\mathcal{B}_r(T)$, Use Center Designators

If there exists $u \in X^-$ such that $B_r(y)$ realizes X and d(u, y) = r + 1, then there's a center designator.

• : vertex at distance r + 1 from u

Blue vertices labelled by DFS from $u \in X^-$.

For $\mathcal{B}_r(T)$, Use Center Designators

If there exists $u \in X^-$ such that $B_r(y)$ realizes X and d(u, y) = r + 1, then there's a center designator.

• 3

• : vertex at distance r + 1 from u

11

10

8

9

Blue vertices labelled by DFS from $u \in X^-$.

Any vertex $v \in X$ forbids a continuous interval of blue vertices.

For $\mathcal{B}_r(T)$, Use Center Designators

If there exists $u \in X^-$ such that $B_r(y)$ realizes X and d(u, y) = r + 1, then there's a center designator.

• : vertex at distance r + 1 from u

Blue vertices labelled by DFS from $u \in X^-$.

11 10_ • 3 9 11 8 5

Any vertex $v \in X$ forbids a continuous interval of blue vertices.

If y follows a forbidden interval defined by $v \in X$ and $B_r(y)$ realizes X, then v is a center designator of u that designates y.

Lemma 1

Any ball containing a diametral pair of X^+ , also contains X^+ .

Lemma 2

Either there is a center designator or any ball containing a diametral pair of X^+ realizes X.

LSCS (w/ info) of Size 2 for $\mathcal{B}_r(T)$ for Trees T

Compressor $\alpha(X)$:

• if
$$|X| \leq 1$$
, then $\alpha(X) = X$;

2 else, if $t \in X$ is a center designator of $s \in X^-$, then $\alpha(X) = \{t, s\}$;

3 otw, $\alpha(X) = \{u^+, v^+\}$ (diametral pair of X^+) or $\alpha(X) = X^+$ if $|X^+| = 1$.

LSCS (w/ info) of Size 2 for $\mathcal{B}_r(T)$ for Trees T

Compressor $\alpha(X)$:

• if
$$|X| \leq 1$$
, then $\alpha(X) = X$;

2 else, if $t \in X$ is a center designator of $s \in X^-$, then $\alpha(X) = \{t, s\}$;

3 otw, $\alpha(X) = \{u^+, v^+\}$ (diametral pair of X^+) or $\alpha(X) = X^+$ if $|X^+| = 1$.

Reconstructor $\beta(\alpha(X))$:

1 if $|\alpha(X)| = |\alpha(X^-)| \le 1$, then $\beta(\alpha(X))$ is any ball avoiding $\alpha(X^-)$;

2 else, if $|\alpha(X)| = |\alpha(X^+)| \ge 1$, then $\beta(\alpha(X))$ is any ball containing $\alpha(X^+)$;

Otw, α(X) = {t, s} and β(α(X)) is the ball B_r(y) where t is the center designator of s that designates y.

11/18

LSCS of size 3 for $\mathcal{B}(G)$ for interval graphs G

Farthest pair of a subgraph H of an interval graph

U

The vertices u, v in H such that the interval of u ends farthest to the left and the interval of v begins farthest to the right.

V

Chalopin, Chepoi, Mc Inerney, Ratel, Vaxès Part I: Sample Compression Schemes

LSCS of size 3 for $\mathcal{B}(G)$ for interval graphs G

Farthest pair of a subgraph H of an interval graph

The vertices u, v in H such that the interval of u ends farthest to the left and the interval of v begins farthest to the right.

Part II: Representation Maps

Representation map of size k for a concept class C

A function ρ assigning to each $C \in C$, a sample X_C of size at most k that is realizable by C, and such that, for any two $C_1, C_2 \in C$, $C_1 \cap (\rho(C_1) \cup \rho(C_2)) \neq C_2 \cap (\rho(C_1) \cup \rho(C_2))$ if $C_1 \neq C_2$.

Representation map of size k for a concept class C

A function ρ assigning to each $C \in C$, a sample X_C of size at most k that is realizable by C, and such that, for any two $C_1, C_2 \in C$, $C_1 \cap (\rho(C_1) \cup \rho(C_2)) \neq C_2 \cap (\rho(C_1) \cup \rho(C_2))$ if $C_1 \neq C_2$.

Let
$$C_i = B_1(v_i)$$
 and $C = \{C_1, C_3, C_4\}$.
Let $\rho(C_1) = v_1$,
 $\rho(C_3) = v_5$,
 $\rho(C_4) = v_2$.

Representation map of size k for a concept class C

A function ρ assigning to each $C \in C$, a sample X_C of size at most k that is realizable by C, and such that, for any two $C_1, C_2 \in C$, $C_1 \cap (\rho(C_1) \cup \rho(C_2)) \neq C_2 \cap (\rho(C_1) \cup \rho(C_2))$ if $C_1 \neq C_2$.

Let
$$\rho(C_1) = v_1$$
,
 $\rho(C_3) = v_5$,
 $\rho(C_4) = v_2$.

Let $C_i = B_1(v_i)$ and $C = \{C_1, C_3, C_4\}$.

 $C_1 \cap (\rho(C_1) \cup \rho(C_3)) = \{v_1, v_5\} \neq \emptyset = C_3 \cap (\rho(C_1) \cup \rho(C_3)),$

Representation map of size k for a concept class C

A function ρ assigning to each $C \in C$, a sample X_C of size at most k that is realizable by C, and such that, for any two $C_1, C_2 \in C$, $C_1 \cap (\rho(C_1) \cup \rho(C_2)) \neq C_2 \cap (\rho(C_1) \cup \rho(C_2))$ if $C_1 \neq C_2$.

Let
$$C_i = B_1(v_i)$$
 and $C = \{C_1, C_3, C_4\}.$

et
$$\rho(C_1) = v_1$$
,
 $\rho(C_3) = v_5$,
 $\rho(C_4) = v_2$.

 $C_1 \cap (\rho(C_1) \cup \rho(C_3)) = \{v_1, v_5\} \neq \emptyset = C_3 \cap (\rho(C_1) \cup \rho(C_3)),$ $C_1 \cap (\rho(C_1) \cup \rho(C_4)) = \{v_1, v_2\} \neq \{v_2\} = C_4 \cap (\rho(C_1) \cup \rho(C_4)),$

Representation map of size k for a concept class C

A function ρ assigning to each $C \in C$, a sample X_C of size at most k that is realizable by C, and such that, for any two $C_1, C_2 \in C$, $C_1 \cap (\rho(C_1) \cup \rho(C_2)) \neq C_2 \cap (\rho(C_1) \cup \rho(C_2))$ if $C_1 \neq C_2$.

 $C_1 \cap (\rho(C_1) \cup \rho(C_3)) = \{v_1, v_5\} \neq \emptyset = C_3 \cap (\rho(C_1) \cup \rho(C_3)),$ $C_1 \cap (\rho(C_1) \cup \rho(C_4)) = \{v_1, v_2\} \neq \{v_2\} = C_4 \cap (\rho(C_1) \cup \rho(C_4)),$ $C_3 \cap (\rho(C_3) \cup \rho(C_4)) = \{v_2\} \neq \{v_2, v_5\} = C_4 \cap (\rho(C_3) \cup \rho(C_4)).$ 14/18Chalopin, Chepoi, Mc Inerney, Ratel, Vaxès

Representation maps were defined to characterize and construct USCS for maximum classes [Kuzmin and Warmuth, 2007].

Characterization was extended to ample classes [Chalopin et al., 2019].

Representation maps were defined to characterize and construct USCS for maximum classes [Kuzmin and Warmuth, 2007].

Characterization was extended to ample classes [Chalopin et al., 2019].

We show:

- Representation maps of size 2 for $\mathcal{B}(T)$ for trees T;
- Representation maps of size 2 for $\mathcal{B}(G)$ for interval graphs G;

Trees T:

For any vertex $x \in V(T)$ and any $r \ge 0$, $\rho(B_r(x)) = \{u_x^+, v_x^+\}$, where u_x^+, v_x^+ is a diametral pair of $B_r(x)$.

Interval graphs G:

For any vertex $x \in V(G)$ and any $r \ge 0$, $\rho(B_r(x)) = \{u_x, v_x\}$, where u_x, v_x is a farthest pair of $B_r(x)$.

- We are studying SCS and Rep. maps for balls in graphs for cycles and cacti.
- Also, balls of radius 1 for SCS for planar graphs.
- Other graph classes would be interesting.
- Does every family of balls of VC-dimension *d* admit SCS of size *O*(*d*)?

Graph Class	Rep. map	USCS	LSCS
Trees $(\mathcal{B}(T))$	≤ 2	≤ 2	
Trees $(\mathcal{B}_r(T))$	≤ 2		$(\leq 2 \text{ w/ info}) \leq 6$
Interval graphs $(\mathcal{B}(G))$	≤ 2	≤ 3	
Interval graphs $(\mathcal{B}_r(G))$	≤ 2		<u>≤</u> 3
Cycles $(\mathcal{B}(G))$	<u>≤</u> 3	≤ 3	
Cacti $(\mathcal{B}(G))$	<u>≤</u> 4	?	?

Thanks!