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Balls in graphs and ball hypergraphs

Given graph G and r > 0

I r -ball : Br (v) = {u ∈ V | dist(u, v) 6 r}
I ball hypergraph : H(G ) with V (H) = V (G ) and

E (H) ⊆ {Br (v) | v ∈ V (G ), r > 0}
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Packing

I Given a collection of balls Bi of G
Packing : set of mutually disjoint Bi

I ν(H) = maximum size of packing

2 / 12



Packing

I Given a collection of balls Bi of G
Packing : set of mutually disjoint Bi

I ν(H) = maximum size of packing

2 / 12



Covering

I Given a collection of balls Bi of G
Covering (Transversal) : set of vertices intersecting every ball

I τ(H) = minimum size of covering
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Packing-covering duality

Given H any hypergraph

ν(H) 6 τ(H)

packing covering

I Erdős-Pósa property : Does there exist a function f : N→ N
s.t. τ(H) 6 f (ν(H)) ?

I linear EP property : Does there exist a constant c s.t.
τ(H) 6 c · ν(H) ?
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Planar graphs

Conjecture (Gavoille, Peleg, Raspaud, Sopena, 2001)

There exists a constant ρ such that for every planar graph G with
r -ball packing number 1, the vertices of G can be covered with at
most ρ balls of radius r .

I Proved by Chepoi, Estellon, and Vaxès in 2007 X

Conjecture (Chepoi, Estellon, Vaxès, 2007)

There exists a constant ρ such that for every integer r > 0, every
planar graph G , and every r -ball hypergraph H of G , we have
τ(H) 6 ρ · ν(H).
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Polynomial bound

Theorem (Bousquet, Thomassé, 2015)

There exists a constant c such that for every integer r > 0, every
planar graph G , and every r -ball hypergraph H of G , we have
τ(H) 6 c · ν(H)11.

Theorem (Bousquet, Thomassé, 2015)

For every integer t > 1, there exists a constant ct such that for
every integer r > 0, every Kt-minor free graph G , and every r -ball
hypergraph H of G , we have τ(H) 6 ct · ν(H)2t+1.
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Linear bound

Theorem (Bousquet, Cames van Batenburg, Esperet, Joret,
Lochet, M, Pirot, 2020)

For every integer t > 1, there is a constant ct such that

τ(H) 6 ct · ν(H)

for every Kt-minor free graph G and every ball hypergraph H of G .
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Proof tools

I Bounding function for ball hypergraphs with different radii:

ft : N→ R such that τ(H) 6 ft(ν(H))

I Bootstrapping:
I If ν(H) small, use ft
I Otherwise, shrink ν(H) by constant factor without spending too

much
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Global bounding function

Show τ(H) 6 ft(ν(H)) with ft(n) = O(n log n))

Ingredrients :

I Linear programming relaxations :

ν(H) 6 ν∗(H) = τ∗(H) 6 τ(H)

I Ding-Seymour-Winkler (1994) :
τ(H) = O(d · τ∗(H) log τ∗(H)) if H has VC-dimension d

I Bousquet-Thomassé (2015) : H has VC-dimension 6 t − 1

I We show : ν∗(H) = O(ν(H))
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Bootstrap

I Graphs with ”small” packing number:
τ(H) = O(ν(H) log ν(H)) for each ball hypergraph with fixed
radius

I Graphs with ”big” packing number:
I Fix a maximum matching B in H
I E1 set of edges of H intersecting ”few” balls of B
I E2 set of edges of H intersecting ”many” balls of B
I For E1, E2 find a suitable auxilary hypergraph H1, H2 s.t.
τ(H) 6 τ(H1) + τ(H2)

I Bound τ(H1) and τ(H2) separately
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Further research

I Can we improve the constant in our main Theorem, which is
exponential in t?

I Can we extend our result to other graph classes ?
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MERCI POUR VOTRE ATTENTION !

Questions ?
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