next up previous contents index
Next: DenseMatrix Up: Backsolve Previous: backsolve   Contents   Index


backsolve2


\begin{usage}
backsolve2(a,p,st,r,c,d)\\ backsolve2(a,p,st,r,b,d)
\end{usage}

\begin{signatures}
backsolve2:& (M,Z $\to$\ Z,\htmlref{\texttt{PrimitiveArray}...
...rray} Z,Z,M,R)$\to$(M,\htmlref{\texttt{Vector}}{Vector} R)\\\end{signatures}

\begin{params}
{\em a} & M & A matrix representing a Row Echelon Form (REF)\\ ...
...} & R & A maximal denominator needed for a dependence relation\\\end{params}



\begin{descr}
Backsolves a triangular system in a minimal way.
The triple $(a,...
...rm th}}$\ column is called
leading if $j=st(i)$\ for some $i$).\\\end{descr}

\begin{retval}
backsolve2(a,p,st,r,c,d) returns a primitive vector $v$\ such t...
... $s(j,l)\neq 0$\ only if the ${j}^{{\rm th}}$\ column
is leading.\end{retval}


Manuel Bronstein 2000-12-13