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ABSTRACT
We describe a new algorithm for computing special function
solutions of the form y(x) = m(x)F (ξ(x)) of second order
linear ordinary differential equations, where m(x) is an ar-
bitrary Liouvillian function, ξ(x) is an arbitrary rational
function, and F satisfies a given second order linear ordi-
nary differential equation. Our algorithm, which is based
on finding an appropriate point transformation between the
equation defining F and the one to solve, is able to find all
rational transformations for a large class of functions F , in
particular (but not only) the 0F1 and 1F1 special functions
of mathematical physics, such as Airy, Bessel, Kummer and
Whittaker functions. It is also able to identify the values of
the parameters entering those special functions, and can be
generalized to equations of higher order.

1. INTRODUCTION
Algorithms and software for computing closed form solu-
tions of linear ordinary differential equations have improved
significantly in the past decade, but mostly in the direc-
tion of computing their Liouvillian solutions (see e.g. [1, 8,
9]). In particular, computing the Liouvillian solutions of
second order linear ordinary differential equations has be-
come a routine task in recent versions of several computer
algebra systems. The situation is different with respect to
solving such equations in terms of non–Liouvillian special
functions. While it is possible to detect whether the solu-
tions of an equation can be expressed in terms of the solu-
tions of equations of second order [7], there is no complete
algorithm for deciding whether such solutions can be ex-
pressed in terms of the solutions of specific equations, usu-
ally the ones defining known special functions. This is a
restricted instance of the equivalence problem for second-
order linear ODEs [3]: given a target equation y′′ = uy with
u ∈ C(x) and a known fundamental solution set {F1, F2}
(for example the Airy equation y′′ = xy), and an arbitrary
input equation y′′ = vy with v ∈ C(x), to find functions

m(x) and ξ(x) such that {m(x)F1(ξ(x)), m(x)F2(ξ(x))} is a
fundamental solution set of y′′ = vy. This is the equivalent
to looking for a point transformation of the form

x → ξ(x) y → m(x)y (1)

that transforms y′′ = uy into y′′ = vy. It is classically
known that all second-order linear ODEs are equivalent un-
der the group of transformations of the form (1), hence that
an appropriate transformation always exists [4]. However,
the functions ξ(x) and m(x) are given implicitely by differen-
tial equations themselves, so this does not provide explicit
solutions in terms of F . We are interested in this paper
in determining whether an explicit transformation of the
form (1) exists, with ξ ∈ C(x) and m a Liouvillian function,
and to compute it when it exists. Applying the transfor-
mation (1) to y′′ = uy and matching the coefficients of the
resulting equation with y′′ = vy (or equivalently, substitut-
ing y = m(x)F (ξ(x)) in y′′ = vy) one obtains the equations

m = ξ′−1/2 and

3ξ′′2 − 2ξ′ξ′′′ + 4u(ξ)ξ′4 − 4vξ′2 = 0 , (2)

so the remaining problem is to solve the above equation ex-
plicitely. Methods using that approach have appeared, in
particular [10], who proceeds heuristically by trying various
candidates functions ξ with undetermined constants param-
eters in (2). Each attempt yields systems of algebraic equa-
tions for the undetermined constants (and parameters of the
special functions), and those equations can then be solved
by existing computer algebra systems.

Our main contribution in this paper is an algorithm for com-
puting all the solutions ξ ∈ C(x) of (2). Our algorithm is
applicable whenever the target equation y′′ = uy has an ir-
regular singularity at infinity, in addition to any number
of affine singularities of arbitrary type. This allows our
algorithm to handle the 0F1 and 1F1 special functions of
mathematical physics (e.g. the Airy, Bessel, Kummer and
Whittaker functions) as well as non-hypergeometric ones.
We also show that if the input equation has no Liouvillian
solution, then our algorithm decides whether there is any
solution of the form m(x)F (ξ(x)) for F any solution of the
target equation. Our algorithm has been implemented in the
computer algebra system Maple and our implementation
can be tried interactively on the web1. While the abilities

1http://www.inria.fr/cafe/Manuel.Bronstein/
cathode/kovacic_demo.html



of the Maple 7 differential equations solver have also been
improved regarding solutions in terms of special functions2

our algorithm is able to solve a larger class of examples, e.g.

4(x−1)8
d2y

dx2
= (3−50x+61x2−60x3+45x4−18x5+3x6)y(x) ,

whose solutions can be expressed in terms of Airy functions
with rational functions as arguments (see examples below).

We would like to thank the referees for their numerous com-
ments, in particular for pointing out the link with the equiv-
alence problem.

2. FORMAL CHANGE OF VARIABLE
The differential equations for ξ and m that result from hav-
ing (1) map a given operator to another given one can al-
ways be obtained by substituting y = m(x)F (ξ(x)) in the
corresponding differential equation, and this is a classic con-
struction. We describe it in this section using differential
polynomials and linear algebra, in a way that is easily per-
formed in a computer algebra system for linear operators of
arbitrary order.

Let (k,′ ) be a differential field, k[D;′ ] be the ring of dif-
ferential operators with coefficients in k, and L = Dn +∑n−1

i=0 aiD
i ∈ k[D;′ ] be an operator of order n > 0. Let

M, Z be differential indeterminates over k, G0, . . . , Gn−1

be algebraic indeterminates over k〈M, Z〉 and extend the
derivation ′ to k {M, Z} [G0, . . . , Gn−1] via G′i = Z′Gi+1 for
0 ≤ i < n − 1 and G′n−1 = −Z′

∑n−1
i=0 aiGi. Let y = MG0.

Since y is a linear form in G0, . . . , Gn−1 and ′ preserves the
total degree in G0, . . . , Gn−1, the successive derivatives of
y are all linear forms in G0, . . . , Gn−1, so y, y′, . . . , y(n) are
linearly dependent over k〈M, Z〉. Since for i < n, Gi ap-

pears with the nonzero coefficient MZ′i in y(i) but does not
appear in y(i−1), the elements y, y′, . . . , y(n−1) must be lin-
early independent over k〈M, Z〉, so there is a unique linear

dependence of the form y(n) +
∑n−1

i=0 biy
(i) = 0, which can

be computed by linear algebra over k〈M, Z〉. Define then

LM,Z = Dn +

n−1∑
i=0

biD
i ∈ k〈M, Z〉[D;′ ]

to be the generic M − Z associate of L.

Given a differential extension K of k and any m, ξ ∈ K such
that mξ′ 6= 0, we can specialize LM,Z at M = m and Z = ξ,
and we denote the resulting operator Lm,ξ. If k contains an
element x such that x′ = 1 and if the elements of k can be
viewed as functions3 in x, then for any f ∈ k, we write f(ξ)
for the result of evaluating f at x = ξ. Replacing each ai by
ai(ξ) in Lm,ξ, we obtain a new operator, which we denote
Lx→ξ,y→my. By construction, it has the following property:
if L(y) = 0 for some y in a differential extension of k, then
Lx→ξ,y→my(my(ξ)) = 0. So if F1, . . . , Fn is a fundamental
solution set of L, then mF1(ξ), . . . , mFn(ξ) are solutions of

2See e.g. http://lie.uwaterloo.ca/odetools/hyper3.htm
where the candidate ξ = (axk + b)/(cxk + d) is tried.
3This is obviously the case when k = C(x) for some con-
stant field C, and Seidenberg’s Embedding Theorem [5, 6]
implies that is is also the case when k is a finitely generated
differential extension of Q(x).

Lx→ξ,y→my. Since,

Wr(mF1(ξ), . . . , mFn(ξ)) = mnξ′NWr(F1, . . . , Fn)(ξ)

for some integer N > 0, it follows that mF1(ξ), . . . , mFn(ξ)
is a fundamental solution set of Lx→ξ,y→my (in other words,
the transformation (1) sends L into Lx→ξ,y→my).

Let now R = Dn +
∑n−1

i=0 ciD
i ∈ k[D;′ ] be another operator

and suppose that there exist m, ξ in a differential exten-
sion of k such that mξ′ 6= 0 and mF1(ξ), . . . , mFn(ξ) are
solutions of R. Then, mF1(ξ), . . . , mFn(ξ) is a fundamental
solution set of both R and of Lx→ξ,y→my. Since they are
both monic and of order n, we must have R = Lx→ξ,y→my.
Equating the coefficients of the same powers of D in R and
Lx→ξ,y→my yield a system of n nonlinear ordinary differen-
tial equations that m and ξ must satisfy. Finding a funda-
mental solution set of the form mF1(ξ), . . . , mFn(ξ) of R is
thus reduced to solving those equations.

We can also ask a weaker question, namely does R admit
some solution of the form mF (ξ) where F is a nonzero so-
lution of L and mξ′ 6= 0. In that case, we can only say
that R and Lx→ξ,y→my have a nontrivial right factor in
k〈m, ξ〉[D;′ ], so we cannot generate equations for m and
ξ. However, if we request in addition that R be irreducible
in k〈m, ξ〉[D;′ ], then the existence of such a solution implies
that R = Lx→ξ,y→my, hence that m and ξ satisfy the n
equations generated. In particular, a second order equation
with no Liouvillian solution over k must be irreducible over
any Liouvillian extension of k, so if such an equation has
a solution of the form mF (ξ) with mξ′ 6= 0 and m and ξ
Liouvillian over k, then R = Lx→ξ,y→my.

3. SECOND ORDER EQUATIONS
We carry out explicitly in this section the derivation of the
above nonlinear differential equations in the case of second-
order operators. Computing the generic M −Z associate of
L = D2 + a1D + a0 ∈ k[D;′ ], we get

y = MG0, y′ = M ′G0 + MG′0 = M ′G0 + MZ′G1 ,

and

y′′ = M ′′G0 + M ′G′0 + M ′Z′G1 + MZ′′G1 + MZ′G′1

= M ′′G0 + (2M ′Z′ + MZ′′)G1 −MZ′2(a0G0 + a1G1)

= (M ′′ − a0MZ′2)G0 + (2M ′Z′ + MZ′′ − a1MZ′2)G1 .

A calculation of the linear dependence between y, y′ and y′′

shows that

LM,Z = D2 −
(

2
M ′

M
+

Z′′

Z′
− a1Z

′
)

D (3)

−
((

M ′

M

)′
− M ′2

M2
− M ′

M

Z′′

Z′
+ a1Z

′M
′

M
− a0Z

′2
)

.

Let now v ∈ k be given. As explained in the previous section,
if there are m and ξ in a differential extension of k such that
mξ′ 6= 0 and either

• mF1(ξ) and mF2(ξ) are solutions of y′′ = vy, where
and F1, F2 is a fundamental solution set of L, or

• mF (ξ) is a solution of y′′ = vy, where F is some solu-
tion of L, m and ξ are Liouvillian over k and y′′ = vy
has no Liouvillian solution,



then D2 − v = Lx→ξ,y→my. Using (3) and equating the
coefficients of D1 and D0 on both sides, we get

2
m′

m
+

ξ′′

ξ′
− a1(ξ)ξ

′ = 0 (4)

and(
m′

m

)′
− m′2

m2
− m′

m

ξ′′

ξ′
+ a1(ξ)ξ

′m
′

m
− a0(ξ)ξ

′2 = v . (5)

Equation (4) implies that

m′

m
=

1

2

(
a1(ξ)ξ

′ − ξ′′

ξ′

)
(6)

and using that to eliminate m′/m from (5) we obtain

3ξ′′2 − 2ξ′ξ′′′ +
(
a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ)
)
ξ′4 − 4vξ′2 = 0 ,

(7)
which is equation (2) when a1 = 0 and a0 = −u.

4. RATIONAL SOLUTIONS FOR ξ
We now proceed to show that for a large class of target
operators L, there is an algorithm for computing all the
rational solutions ξ of (7). Suppose from now on that our
differential field k is a rational function field k = C(x) where
x′ = 1 and c′ = 0 for all c ∈ C. Recall that the order at
∞ is the function ν∞(q) = − deg(q) for q ∈ C[x] \ {0}, and
given an irreducible p ∈ C[x], the order at p is the function

νp(q) = max{n ∈ Z such that pn|q}

for q ∈ C[x] \ {0}. Both functions are extended to fractions
via ν∞(a/b) = ν∞(a) − ν∞(b) and νp(a/b) = νp(a) − νp(b).
By convention, ν∞(0) = νp(0) = +∞. Furthermore, for
a, b ∈ C(x), they satisfy the following properties (where ν
stands for either ν∞ or νp):

• ν(ab) = ν(a) + ν(b),

• ν(a + b) ≥ min(ν(a), ν(b))

• ν(a) 6= ν(b) =⇒ ν(a + b) = min(ν(a), ν(b)),

• ν(a) < 0 =⇒ ν(b(a)) = −ν∞(b)ν(a),

• ν∞(a) < 0 =⇒ ν∞(a′) = ν∞(a) + 1,

• νp(a) < 0 =⇒ νp(a′) = νp(a)− 1.

Given an hypothesis on the pair (a0, a1), the following gives
an ansatz with a finite number of undetermined constants
for the rational solutions of (7).

Theorem 1. Let
∏

i Qi
i be the squarefree decomposition

of the denominator of v ∈ C(x). If ν∞(a2
1 + 2a′1 − 4a0) < 2,

then any solution ξ ∈ C(x) of (7) can be written as ξ = P/Q
where

Q =
∏

i

Qi
(2−ν∞(a2

1+2a′1−4a0))i+2 ∈ C[x] , (8)

and P ∈ C[x] is such that either deg(P ) ≤ deg(Q) + 1 or

deg(P ) = deg(Q) +
2− ν∞(v)

2− ν∞(a2
1 + 2a′1 − 4a0)

(9)

Proof. Write

∆ = a2
1 + 2a′1 − 4a0 , δ = ν∞(∆)

and suppose that δ < 2. The solution ξ = 0 can certainly
be written in the above form, so let ξ ∈ C(x)∗ be a nonzero
solution of (7), and p ∈ C[x] be an irreducible such that
νp(ξ) < 0. Then, νp(ξ′′2) = νp(ξ′ξ′′′) = 2νp(ξ) − 4 and
νp(ξ′4) = 4νp(ξ)− 4. In addition,

νp(a1(ξ)
2 + 2a′1(ξ)− 4a0(ξ)) = νp(∆(ξ)) = −δνp(ξ) ,

so

νp

(
(a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ))ξ
′4) = (4− δ)νp(ξ)− 4 .

Since δ < 2, (4− δ)νp(ξ)− 4 < 2νp(ξ)− 4, so

νp

(
3ξ′′2 − 2ξ′ξ′′′ + (a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ))ξ
′4) =

(4− δ)νp(ξ)− 4 .

Thus, we must have νp(4vξ′2) = (4 − δ)νp(ξ) − 4. Since
νp(4vξ′2) = νp(v) + 2νp(ξ)− 2, we get

νp(v) = (2− δ)νp(ξ)− 2 ≤ −3 .

This implies that the affine poles of ξ are among the poles
of v of multiplicity 3 or more. Furthermore,

νp(ξ) =
νp(v) + 2

2− δ
(10)

so ξ must be of the form ξ = P/Q where P ∈ C[x] and

Q =
∏

i

Qi
(2−δ)i+2

Suppose now that deg(P ) > deg(Q)+1. Then, ν∞(ξ) < −1,
so ν∞(ξ′4) = 4ν∞(ξ) + 4 and

ν∞(a1(ξ)
2 − 4a0(ξ)) = ν∞(∆(ξ)) = −δν∞(ξ) ,

which implies that

ν∞
(
(a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ))ξ
′4) = (4− δ)ν∞(ξ) + 4 .

In addition, ν∞(ξ′′2) = 2ν∞(ξ) + 4 and either ν∞(ξ′ξ′′′) =
2ν∞(ξ) + 4 when ν∞(ξ) < −2, or ν∞(ξ′ξ′′′) ≥ −1 when
ν∞(ξ) = −2. Since δ < 2, (4 − δ)ν∞(ξ) + 4 < 2ν∞(ξ) + 4,
and (4− δ)ν∞(ξ) + 4 = 2δ − 4 < −1 when ν∞(ξ) = −2, so

ν∞
(
3ξ′′2 − 2ξ′ξ′′′ + (a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ))ξ
′4) =

(4− δ)ν∞(ξ) + 4

in any case. We must then have ν∞(4vξ′2) = (4−δ)ν∞(ξ)+
4. Since ν∞(4vξ′2) = ν∞(v) + 2ν∞(ξ) + 2, we get

ν∞(v) = (2− δ)ν∞(ξ) + 2 (11)

and the theorem follows.

We note that the upper bound deg(P ) ≤ deg(Q) + 1 can be
improved when δ < 0. In that case, if deg(P ) = deg(Q) + 1,
then ν∞(ξ) = −1, so an argument similar to the above shows
that

ν∞
(
3ξ′′2 − 2ξ′ξ′′′ + (a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ))ξ
′4) = δ < 0 .

We must then have ν∞(4vξ′2) = δ, so ν∞(v) = δ and (9)
holds. Therefore, when ν∞(a2

1 + 2a′1 − 4a0) < 0, either
deg(P ) ≤ deg(Q) or deg(P ) is given by (9).



When it is applicable, Theorem 1 yields an immediate al-
gorithm for computing all the solutions ξ ∈ C(x) of (7)
given v ∈ C(x) as input: we substitute

∑n
j=0 cjx

j/Q for ξ

in (7), where Q is given by (8), n is the upper bound on
deg(P ) given by Theorem 1 and the cj are undetermined
constants. This yields a nonlinear system Σ of algebraic
equations for the cj , whose solutions correspond to all the
solutions ξ ∈ C(x) of (7). Since any constant satisfies (7), Σ
always has the line of solutions (c0, . . . , cn) = λ(q0, . . . , qn)
where Q = q0 + q1x + · · · + qnxn (note that n is always at
least deg(Q)). Those solutions do not satisfy the condition
mξ′ 6= 0, so we adjoin to Σ the additional equation

n∑
j=0

(qjcN − qNcj)wj = 1 (12)

where w0, . . . , wn are new indeterminates and N is chosen
such that qN 6= 0. Any solution of this augmented system
must satisfy qjcN 6= qNcj for some j, which implies that the
corresponding ξ ∈ C(x) is a nonconstant solution of (7). In
addition, when a0 and a1 contain parameters (as in the case
of families of special functions, e.g. Bessel functions), con-
sidering them as unknowns in Σ allows the values of those
parameters to be found also (this is illustrated in the ex-
amples below). Essentially all the computation time of our
algorithm is spent finding a solution of Σ, a problem whose
complexity is exponential in deg(P ).

Our approach can obviously be used to find all the rational
solutions ξ ∈ C(x) of (7), it just means searching for so-
lutions of Σ in C rather than C. Of more interest, it can
also be used to find some algebraic function solutions of (7).
Indeed, equations (10) and (11) provide the ramifications of
ξ at the singularities of the equation and at infinity, so it is
natural to look for solutions of the form

ξ = P
(
x1/(2−ν)

) ∏
i>2

Q
(i−2)/(2−ν)
i (13)

where ν = ν∞(a2
1 + 2a′1 − 4a0) and P ∈ C[x]. To bound

deg(P ), we note that (11) is valid for ν∞(ξ) ≤ −2 only, so
either

deg(P ) < (2− ν∞(a2
1 + 2a′1 − 4a0))(deg(Q) + 2)

or

deg(P ) = (2− ν∞(a2
1 + 2a′1 − 4a0)) deg(Q) + 2− ν∞(v) .

As for rational functions, substituting a candidate with un-
determined constant coefficients for ξ yields a nonlinear al-
gebraic system for those coefficients. This method does not
yield all the algebraic functions solutions of (7) however.

Once a nonconstant solution ξ is found (rational or other-
wise), the corresponding m is given by (6), which can be
integrated yielding

m = ξ′−
1
2 e

1
2

∫
a1(ξ)ξ′ (14)

5. CLASSICAL SPECIAL FUNCTIONS
We now apply the algorithm of the previous section to classi-
cal classes of 0F1 and 1F1 special functions, all satisfying the
hypothesis of Theorem 1. Although Kummer and Whittaker
functions are rationally equivalent, we explicit the solving al-
gorithm for both of them, allowing users to choose one over
the other.

5.1 Airy functions
The operator defining the Airy functions is L = D2 − x, so
a1 = 0, a0 = −x and equation (7) becomes

3ξ′′2 − 2ξ′ξ′′′ + 4ξξ′4 − 4vξ′2 = 0 . (15)

Since a2
1 + 2a′1 − 4a0 = 4x, ν∞(a2

1 + 2a′1 − 4a0) = −1 < 0,
so by Theorem 1 and the remark following it, any solution
of (15) must be of the form ξ = P/Q where

Q =
∏

i

Qi
3i+2 ∈ C[x] ,

and P ∈ C[x] is such that either deg(P ) ≤ deg(Q) or

deg(P ) = deg(Q) +
2− ν∞(v)

3
.

Finally, since a1 = 0, equation (14) becomes

m =

√
1

ξ′
(16)

5.2 Bessel functions
The operator defining the Bessel and modified Bessel func-
tions is

L = D2 +
1

x
D + ε− ν2

x2

where ε = 1 for the Bessel functions and ε = −1 for the
modified Bessel functions. Therefore, a1 = 1/x and a0 =
ε− ν2/x2, so equation (7) becomes

3ξ′′2 − 2ξ′ξ′′′ + (4ν2 − 1)
ξ′4

ξ2
− 4εξ′4 − 4vξ′2 = 0 . (17)

Since

a2
1 + 2a′1 − 4a0 =

4ν2 − 1

x2
− 4ε ,

ν∞(a2
1 + 2a′1 − 4a0) = 0 < 2, so by Theorem 1, any solution

of (17) must be of the form ξ = P/Q where

Q =
∏

i

Qi
2i+2 ∈ C[x] ,

and P ∈ C[x] is such that either deg(P ) ≤ deg(Q) + 1 or

deg(P ) = deg(Q) + 1− ν∞(v)

2
.

Finally, since a1 = 1/x, equation (14) becomes

m =

√
ξ

ξ′
(18)

5.3 Kummer functions
The operator defining the Kummer functions is

L = D2 +
(ν

x
− 1

)
D − µ

x
,

so a1 = ν/x− 1, a0 = −µ/x and equation (7) becomes

3ξ′′2−2ξ′ξ′′′+(ν2−2ν)
ξ′4

ξ2
+(4µ−2ν)

ξ′4

ξ
+ξ′4−4vξ′2 = 0 .

(19)
Since

a2
1 + 2a′1 − 4a0 = 1 +

4µ− 2ν

x
+

ν2 − 2ν

x2
,



ν∞(a2
1 + 2a′1 − 4a0) = 0 < 2, so by Theorem 1, any solution

of (19) must be of the form ξ = P/Q where

Q =
∏

i

Qi
2i+2 ∈ C[x] ,

and P ∈ C[x] is such that either deg(P ) ≤ deg(Q) + 1 or

deg(P ) = deg(Q) + 1− ν∞(v)

2
.

Finally, since a1 = ν/x− 1, equation (14) becomes

m = e−
1
2

∫
ξ

√
ξν

ξ′

5.4 Whittaker functions
The operator defining the Whittaker functions is

L = D2 −
(

1

4
− µ

x
− 1/4− ν2

x2

)
,

so a1 = 0, a0 = −1/4+µ/x+(1/4−ν2)/x2 and equation (7)
becomes

3ξ′′2 − 2ξ′ξ′′′ +

(
1− 4µ

ξ
− 1− 4ν2

ξ2

)
ξ′4 − 4vξ′2 = 0 . (20)

Since

a2
1 + 2a′1 − 4a0 = 1− 4µ

x
− 1− 4ν2

x2
,

ν∞(a2
1 + 2a′1 − 4a0) = 0 < 2, so by Theorem 1, any solution

of (17) must be of the form ξ = P/Q where

Q =
∏

i

Qi
2i+2 ∈ C[x] ,

and P ∈ C[x] is such that either deg(P ) ≤ deg(Q) + 1 or

deg(P ) = deg(Q) + 1− ν∞(v)

2
.

Finally, since a1 = 0, equation (14) becomes

m =

√
1

ξ′
(21)

as in the case of Airy functions.

6. EXAMPLES
6.1 Airy functions
We start by solving the equation given at the end of the
introduction in terms of Airy functions. The equation is
y′′ = vy with

v =
3− 50x + 61x2 − 60x3 + 45x4 − 18x5 + 3x6

4(x− 1)8
,

so ν∞(v) = 2 and its denominator is 4(x − 1)8. Therefore,
any solution ξ ∈ C(x) of (17) must be of the form

ξ =
P

(x− 1)3

where P ∈ C[x] is of degree 0, 1, 2 or 3. Substituting ξ =
(c0 + c1x + c2x

2 + c3x
3)/(x − 1)3 in (15) yields a system

of 14 algebraic equations. The nonconstant condition (12)
becomes

(3c0 + c1)w1 + (−3c0 + c2)w2 + (c0 + c3)w3 − 1 = 0

and solving the resulting system for c0, c1, c2, c3, w1, w2 and
w3 yields the 3 solutions

ξ =
x(x− 2)

(x− 1)2
and ξ = −

(
1±

√
−3

) x(x− 2)

2(x− 1)2
.

Using (16) we compute

m =

√
1

ξ′
= c(x− 1)3/2

for some constant c. Therefore, a basis of the solutions of
y′′ = vy is given by

(x− 1)3/2Ai

(
x(x− 2)

(x− 1)2

)
and (x− 1)3/2Bi

(
x(x− 2)

(x− 1)2

)
where Ai and Bi are Airy functions.

6.2 Bessel functions
We now look for solutions in terms of modified Bessel func-
tions of

y′′ − (v0 + v1x)ny = 0 where n > 0 and v1 6= 0 . (22)

Letting v = (v0 + v1x)n, ν∞(v) = −n and its denominator
is 1, so any solution ξ ∈ C(x) of (17) must be a polynomial
of degree 0, 1, or 1 + n/2. Substituting ξ = c0 + c1x in (17)
yields

c4
1(1 + 4εc2

0 − 4ν2) + 8εc0c
5
1x + 4εc6

1x
2

(c0 + c1x)2
= −4c2

1(v0 + v1x)n ,

whose only solution for n > 0 and v1 6= 0 is c1 = 0. There-
fore, any nonconstant solution must be a polynomial of de-
gree exactly 1+n/2, which implies that there can be such so-
lutions only when n is even. We proceed with n = 4, which is
the smallest even value for which Maple 7 is unable to solve
the above equation. Substituting ξ = c0 + c1x + c2x

2 + c3x
3

in (17) yields a system of 15 algebraic equations. The non-
constant condition (12) becomes

c1w1 + c2w2 + c3w3 + 1 = 0

and solving the resulting system for c0, c1, c2, c3, w1, w2, w3

and ν with parameters v0 and v1 and ε = −1 yields the 4
solutions

ν = ±1

6
, ξ = ±1

3

(v0 + v1x)3

v1
.

Using (18) we compute

m =

√
ξ

ξ′
= c

√
v0 + v1x

for some constant c. Therefore, a basis of the solutions
of (22) for n = 4 is given by

√
v0 + v1x I1/6

(
1

3

(v0 + v1x)3

v1

)
and

√
v0 + v1x K1/6

(
1

3

(v0 + v1x)3

v1

)
where Iν and Kν are the modified Bessel functions of the
first and second kinds.



6.3 Whittaker functions
For an example with two parameters to identify, we look for
solutions in terms of Whittaker functions of

y′′ + (ax4 + bx)y = 0 where a 6= 0 , (23)

which is Kamke’s example 2.16 [2] with a specific integer
choice for c. Letting v = −(ax4 + bx), ν∞(v) = −4 and its
denominator is 1, so any solution ξ ∈ C(x) of (20) must be
a polynomial of degree 0, 1, or 3. Substituting ξ = c0 + c1x
in (20) yields

4ac4
1x

6 + lower terms = 0 ,

which implies c1 = 0 whenever a 6= 0. Therefore, any non-
constant solution must be a polynomial of degree exactly 3.
Substituting ξ = c0+c1x+c2x

2+c3x
3 in (20) yields a system

of 15 algebraic equations. The nonconstant condition (12)
becomes

c1w1 + c2w2 + c3w3 + 1 = 0

and solving the resulting system for c0, c1, c2, c3, w1, w2, w3, ν
and µ with parameters a and b yields the 2 solutions

µ =
1

6

b√
−a

, ν = ±1

6
, ξ =

2

3
x3√−a .

Using (21) we compute

m =

√
1

ξ′
=

c

x

for some constant c. Therefore, a basis of the solutions
of (23) is given by

1

x
M b

6
√
−a

, 1
6

(
2

3
x3√−a

)
and

1

x
W b

6
√
−a

, 1
6

(
2

3
x3√−a

)
where Mµ,ν and Wµ,ν are Whittaker functions.

6.4 An algebraic transformation ξ
We illustrate the use of the algebraic candidate (13) by solv-
ing the Airy equation y′′ = xy in terms of modified Bessel
functions, thereby recovering classical expressions of Airy
functions as Bessel functions. Letting v = x, ν∞(v) = −1
and its denominator is 1, so any solution ξ ∈ C(x) of (17)
must be a polynomial of degree 0 or 1. Substituting ξ =
c0 + c1x in (17) yields

−4c4
1x

3 + lower terms = 0 ,

which implies c1 = 0, hence that (17) has no nonconstant
rational solution. However, formula (13) yields the algebraic
candidate ξ = P (

√
x) where P is a polynomial of degree

0, 1, 2 or 3. Substituting ξ = c0+c1x
1/2+c2x+c3x

3/2 in (17)
yields a system of 17 algebraic equations. The nonconstant
condition (12) becomes

c1w1 + c2w2 + +c3w3 + 1 = 0

and solving the resulting system for c0, c1, c2, c3, w1, w2, w3

and ν with ε = −1 yields the 4 solutions

ν = ±1

3
, ξ = ±2

3
x3/2 .

Using (18) we compute

m =

√
ξ

ξ′
= c

√
x

for some constant c. Therefore, a basis of the solutions of
the Airy equation y′′ = xy is given by

√
x I1/3

(
2

3
x3/2

)
and

√
x K1/3

(
2

3
x3/2

)
where Iν and Kν are the modified Bessel functions of the
first and second kinds. It follows that the Airy functions Ai
and Bi can be expressed as linear combinations

√
x

(
c1I1/3

(
2

3
x3/2

)
+ c2K1/3

(
2

3
x3/2

))
and the constants c1 and c2 can be found by looking at their
values at two points.
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