
A First Course on Aldor with libaldor

Peter Broadbery Manuel Bronstein

March 8, 2002

1 Introduction

The Aldor language (formerly known as A] and axiomxl) is the language used
by the extension compiler in the Axiom system. It also allows you to create
stand-alone executables which may be distributed without Axiom.

These notes are not intended to be a complete description of the language, but
show you how to get started with Aldor and how to use the compiler. A more
complete description is contained in the user guide.

You must have libaldor properly installed and compiled before running this
tutorial, as well as have your environment variables ALDORLIBROOT, IN-
CPATH and LIBPATH properly set. See the libaldor user guide for more
information.

2 First Contact

Although Aldor is primarily a compiled language, the use of an interactive inter-
preted system is often praised as an aid for the rapid prototyping of programs.
To address this need for rapid feedback, the compiler provides an interactive
interpreter for evaluating expressions in the Aldor language.

These notes contain examples of interactive input to the Aldor interpreter.
There are three kinds of lines in the text that follows:

• Lines starting with “>>” represent commands that you can type into the
interpreter (you should not type the “>>” when you type the command).

• Lines immediately following the input represent the output from the in-
terpreter.

1

• Lines starting with “--” represent comments in Aldor and serve to explain
the following input commands.

• The interpreter prefixes every prompt with an index number

It is possible to retrieve previously computed values via the command:

#int history on

To begin an interactive session, start by typing “aldor -gloop” at the com-
mand line. The interpreter will respond with a prompt which includes a line
number and a prompt: “>>”. You can now enter commands at the prompt.
Sections 2.1 to 2.6 are meant to be ran in the same interactive session. If you
prefer copying and pasting rather than typing commands, all the input lines for
the interactive sessions of this tutorial are provided in the files session1.as,
session2.as, session3.as and session4.as.

2.1 Values

Aldor doesn’t have any built-in knowledge about the values (for example num-
bers, strings and identifiers) it is likely to see, and these have to be loaded to
get a reasonable environment (this is the same as “#include ” in C).

-- basic include for all aldorlib clients

>> #include "aldor"

-- include the following only when using an interactive session

>> #include "aldorinterp"

We can now look at certain values

>> "hello"

hello @ String

In the Aldor world, integer literals (for example the character sequence “123”)
may represent different types (for example 32-bit machine integers, arbitrary
precision integers, integers mod n, etc), so the default is that no integer type is
in scope.

>> 1

^

[L4 C1] #1 (Error) No meaning for identifier ‘1’.

2

To put a type into scope, it must be imported. Importing arbitrary precision
integers isn’t a problem:

>> import from Integer

Integer here is a type which exports lots of useful operations on arbitrary-
precision integers. We discuss domains in more depth later.

Now we can do some calculations:

>> 1

1 @ AldorInteger

>> 123456789*98765432

12193263098917848 @ AldorInteger

-- The normal precedence rules apply for infix operators:

>> 4 + 3 * 2

10 @ AldorInteger

-- Parentheses are used for grouping

>> 2*(3+4)

14 @ AldorInteger

-- Function calls can be written with parentheses around the arguments

>> next(10)

11 @ AldorInteger

-- Where there is a single argument, the parentheses are optional, and

-- aguments associate to the right.

>> next next 10

12 @ AldorInteger

-- Application has higher precedence than all arithmetic operators

>> next 2 * next 3

12 @ AldorInteger

There are several other numeric types in the libaldor library. These include:

MachineInteger machine-precision integers

MachineFloat single precision (32-bit) floats

Boolean boolean values (true/false)

2.2 Control

Aldor supports a variety of control and conditional constructs.

3

-- Blocks are sequences of expressions enclosed in braces. Normally

-- each expression is evaluated in order with the last value returned.

>> {2; 3; 4; 5}

5 @ AldorInteger

-- A "fat arrow" expression can cause an early abnormal exit.

>> {2 < 3 => 4; 5}

4 @ AldorInteger

-- The expression "a => b" means "if a then exit (with value) b".

>> (2 < 1 => 4; 5)

5 @ AldorInteger

-- You can also write the previous two expressions as "conditionals".

>> if 2 < 3 then 4 else 5

4 @ AldorInteger

>> if 2 < 1 then 4 else 5

5 @ AldorInteger

-- You can store values into a local variable using infix :=.

>> x := 2 + 2

4 @ AldorInteger

-- The value of the local variable can be used in other expressions.

>> y := {2 < x => 7; 11}

7 @ AldorInteger

-- There are practically no restrictions as to what kinds of

-- expressions can be nested within others.

>> (y := 2) + (2 < 3 => 7; 11) * (if 2 < 1 then (w := 4) else 5)

37 @ AldorInteger

-- Printing is done using "stdout" with the << operator.

>> stdout << "The value of x + y is " << x + y

The value of x + y is 6 () @ TextWriter

-- Printing "newline" causes printing to begin on the next line.

>> stdout << "The value is " << (if x < y then 2+2 else 2+3) << newline

The value is 5

() @ TextWriter

Note that normal Aldor syntax requires semi-colon or a closing bracket to ter-
minate a statement. However, the interpreter is more liberal and will treat a
newline as a statement terminator.

You may have noticed that the type of a print call is “TextWriter”. This is
a very flexible output type used by the library as a standard way of printing

4

information. It can also be used for output to strings, filters, etc.

Note that the value returned by an output statement is printed as “()” — this
indicates that the interpreter didn’t find a method for printing the value.

2.3 Function definitions

-- Functions are created using infix +->.

-- You must supply the parameter and target types.

>> increment := (x: Integer): Integer +-> x + 1

() @ (x: AldorInteger) -> AldorInteger

-- A function can be stored in a local variable like any other value.

>> increment 2

3 @ AldorInteger

-- The arguments supplied to a function must have the correct type.

>> increment "hello"

..........^

[L25 C11] #1 (Error) Argument 1 of ‘increment’ did not match with

any possible parameter type.

The rejected type is String.

Expected type AldorInteger.

-- The usual way to define a function is using an ==.

>> inc(x: Integer): Integer == x + 1

Defined inc @ (x: AldorInteger) -> AldorInteger

>> inc 2

3 @ AldorInteger

-- The == signifies that "inc" is a constant (and should not be changed).

-- Reply ’n’ when asked whether to redefine inc.

>> inc(x: Integer): Integer == x + 2

Redefine? (y/n): n

^

[L28 C1] #1 (Error) Constant ‘inc’ cannot be redefined.

-- Remember that function application has higher precedence

-- than arithmetic operations.

>> inc 2*3

9 @ AldorInteger

-- Define the factorial function.

>> fact(n: Integer): Integer == {

n < 2 => 1;

n * fact (n - 1)

}

5

Defined fact @ (n: AldorInteger) -> AldorInteger

>> fact 30

265252859812191058636308480000000 @ AldorInteger

Aldor also allows default values for arguments:

>> incr(x: Integer, amount: Integer == 1): Integer == x + amount;

Defined incr @ (x: AldorInteger, amount: AldorInteger == 1) -> AldorInteger

>> incr(12)

13 @ AldorInteger

>> incr(13,7)

20 @ AldorInteger

Here incr is defined to take two arguments, but the second may be omitted
when calling the function.

2.4 Collections

-- Now for some fun with lists.

>> import from List Integer

-- The bracket operation (’[’ and ’]’) creates a list from its

-- elements. The operation is imported from List, not a builtin

-- function.

>> [1, 3, 5, 7, 9, 11]

[1,3,5,7,9,11] @ List(AldorInteger)

-- Another way to create the same list is to use a loop.

>> [i for i in 1..11 by 2]

[1,3,5,7,9,11] @ List(AldorInteger)

-- Loops can count backwards as well.

>> [2*i for i in 11..1 by -2]

[22,18,14,10,6,2] @ List(AldorInteger)

-- Another way is to use a "such that" clause (introduced by ’|’).

>> [2*i for i in 11..1 by -1 | odd? i]

[22,18,14,10,6,2] @ List(AldorInteger)

-- Let us bring machine integers and lists of them in scope too,

-- this will create some ambiguity for integer constants!

>> import from MachineInteger, List MachineInteger;

6

-- Since both MachineInteger and Integer are now in scope

-- the expression -1 could mean two different things.

>> k := -1

^

[L66 C1] #1 (Error) The type of the assignment cannot be inferred.

The possible types of the right hand side (‘- 1’) are:

-- MachineInteger

-- AldorInteger

-- You can specify which value you mean using a declaration.

>> k: MachineInteger := -1

-1 @ MachineInteger

-- Another way to specify is to restrict an expression (using ’@’)

-- to a particular type.

>> m := (-1 @ Integer)

-1 @ AldorInteger

-- A while construct tests before a value is collected (ignore the warning)

>> u := [(k := k + 2) while k < 11]

[1,3,5,7,9,11] @ List(MachineInteger)

.......^

[L69 C8] #1 (Warning) Implicit local ‘k’ is a parameter, ...

-- You can also iterate over a list-valued expression.

>> v := [z for z in u | z < 9]

[1,3,5,7] @ List(MachineInteger)

-- To extract an element of a list, apply the list to an index.

>> ww := [u.i for i in 1..5@MachineInteger by 2]

[1,5,9] @ List(MachineInteger)

-- the "@MachineInteger" indicates that the integer 5 should be

-- treated as a MachineInteger.

-- This can be avoided with declaring i to have a default type

>> default i: MachineInteger

@ Category ==

-- Two for-constructors can be given in parallel.

>> [i*j for i in 1..10 for j in u]

[1,6,15,28,45,66] @ List(MachineInteger)

-- In general, any number of constructs can be given in parallel.

-- The following runs over the 1, 3, 5, 7, 9 in parallel with

-- the values in u, collecting the products p of the

-- corresponding elements until p exceeds 24.

>> [p for i in 1..10 | odd? i for j in u while (p := i*j) < 24]

[1,9] @ List(MachineInteger)

7

-- Constructs may be arbitrarily nested but you must import

-- what you need.

>> import from List List MachineInteger

-- Now we can form lists of lists of integers.

>> [[i*j for i in 1..2] for j in u]

[[1,2],[3,6],[5,10],[7,14],[9,18],[11,22]] @ List(List(MachineInteger))

2.5 Iterations

-- Display the even-numbered integers between -5 and +5

>> for i in -5..5 | even? i repeat stdout << i << space

-4 -2 0 2 4

-- To go on to the next iteration, use "iterate"

>> for i in -5..5 repeat {

odd? i => iterate;

stdout << i << space

}

-4 -2 0 2 4

-- To exit a loop early, use "break"

>> for i in -5.. repeat {

odd? i => iterate;

i > 5 => break;

stdout << i << space

}

-4 -2 0 2 4

-- As with collections, iterators can use while

>> { x:= 0;

while x < 10 repeat { stdout << x << " "; x := x+1 }

stdout << newline }

0 1 2 3 4 5 6 7 8 9

() @ TextWriter

-- without any guards, repeat will iterate forever

>> repeat { stdout << "Hit Ctrl-C to stop " << newline }

Hit Ctrl-C to stop

Hit Ctrl-C to stop

Hit Ctrl-C to stop

...

2.6 General iteration

Aldor provides a builtin type Generator which allows one to treat iteration in

8

a uniform way. This allows the “f(x) for x in ...” examples above to be
applicable to many different types.

For example,

>> l: List MachineInteger := [i for i in 1..10];

[1,2,3,4,5,6,7,8,9,10] @ List(MachineInteger)

>> for i in l repeat { stdout << i << space }

1 2 3 4 5 6 7 8 9 10

>> import from Array MachineInteger;

>> a: Array MachineInteger := [i for i in 1..10];

[1,2,3,4,5,6,7,8,9,10] @ Array(MachineInteger)

>> for i in a repeat { stdout << i << space }

1 2 3 4 5 6 7 8 9 10

In Aldor, the Array version looks identical to the List version, but the al-
gorithms for building and traversing the two objects are quite different. In
fact, Aldor makes it easy to write such iteration routines through a type called
Generator.

The “generate” construct is used to build a generator. For example, say we
wanted a way of looping over two user supplied lists (of integers, for example),
alternately selecting from one then the other. That is we want to be able to say
something like:

for x in both(a, b) repeat g(x)

and have g called with the first item in a, then the first in b, then the second in
a, and so on. Obviously we could achieve the same thing by merging the lists,
and then iterating over the combined list, but this wastes storage if we don’t
modify the lists in-place, and time and effort if we do.

Providing that we know what g is, we can write this pretty easily1:

both(l1: List Integer, l2: List Integer): () == {

for s1 in l1 for s2 in l2 repeat {

g(s1);

g(s2);

}

}

1do not type this function in your interactive session, since the function g is undefined

9

Did I mention the lists were the same length? In any case, if we don’t know
what g is, or we are trying to “do something” with the value returned by g,
we need to go back and change this code. If the iteration were more complex
(for example, we had a tree and a list rather than two lists), this will start to
become unpleasant.

So, we try to abstract what this iteration is doing, and try to turn that into a
real object. How about:

>> both(l1:List Integer, l2:List Integer):Generator Integer == {

generate {

for s1 in l1 for s2 in l2 repeat {

yield s1;

yield s2;

}

}

}

Defined both @

(l1: List(AldorInteger), l2: List(AldorInteger)) -> Generator(AldorInteger)

Here the word “generate” wraps the body and “yield” is used where we want
to produce a value.

The “generate” form constructs an “object” that when asked for a new value
will execute its body in the usual way until a “yield” statement is reached.
The yield then evaluates its argument, and this value is then given back to
the requester of the value. When another value is requested, control starts
immediately after the yield and proceeds up to the next yield. The “request”
for a value is such that the generator object can say if no more values are
available, so this process will finish nicely.

Once we have have a Generator in our hands, we can iterate over it (this is with
the interpreter):

-- Something simple:

>> for z in both([1,2,3,4,5],[5,4,3,2,1]) repeat { stdout << z << space }

1 5 2 4 3 3 4 2 5 1

-- we can build the combined list using a collection:

>> [s for s in both([1, 2], [10, 3])]

[1, 10, 2, 3] @ List(AldorInteger)

Of course, one can write functions that work on generators producing a new
one. For example:

>> filter(f: MachineInteger -> Boolean,

10

g: Generator MachineInteger): Generator MachineInteger == {

generate {

for z in g repeat { if f(z) then yield z }

}

}

Defined filter @ (f: MachineInteger -> Boolean,

g: Generator(MachineInteger)) -> Generator(MachineInteger)

This function can be used to select the interesting values from an iteration:

>> for z in filter(odd?, i*i for i in -10..10) repeat {

stdout << z << space }

81 49 25 9 1 1 9 25 49 81

In this example, the inner “for” loop creates a generator which will generate
the squares of all the integers from -10 to 10. This is then passed to the filter
function, which produces a generator that selects only the odd ones.

It is important to note that no values are produced by the first line in the
example. This allows us to apply “filter” to generators that produce an
unbounded number of values.

-- Produces low, low+1,...,high - 1, high,

-- high-1, ..., low + 1, low, low + 1, etc...

>> upAndDown(low: MachineInteger,

hi: MachineInteger): Generator MachineInteger == generate {

repeat {

for z in low..hi repeat yield z;

for z in (hi-1)..(low+1) by -1 repeat yield z;

}

}

Defined upAndDown @ (low: MachineInteger, hi: MachineInteger)

-> Generator(MachineInteger)

>> for i in 1..10 for z in filter(even?, upAndDown(1,10)) repeat {

stdout << z << space }

2 4 6 8 10 8 6 4 2 2

Note that the collection syntax introduced earlier for creating lists is really just
a shorthand method for getting a generator, followed by a call to an operation
“bracket”, which constructs the list from the generator. In this way, the syntax
for creating and manipulating sequences is quite uniform.

The Aldor compiler contains an optimizer which (amongst other things) can
turn a generator construct into extremely efficient code. If the optimizer is not
used, then iteration code does tend to be slow.

11

2.7 Streams

As we have seen, generators can be used to generate infinitely many elements.
However, the collections we have seen until now are limited to containing only
finitely many elements. libaldor provides a type Stream whose elements are
infinite collections. There are many different ways to create a stream, the easiest
being bracketing an infinite iterator:

-- Declaring a variable to be of a type T automatically imports from T

>> evens:Stream Integer := [n for n in 1@Integer .. | even? n]

[...] @ Stream(AldorInteger)

The result is displayed as [. . .] because streams are lazy object: their elements
are computed only when requested by the user or by a computation involving
the stream. Since no element of evens has been computed, no values are shown.
However, streams store all the values previously computed in a dense array, so
values are never computed more than once. You can thus think of streams as
infinite generators with a memory.

-- Let’s check the 6th positive even integer

>> evens.5

12 @ AldorInteger

-- See all the elements of evens that have been computed so far

>> evens

[2,4,6,8,10,12,...] @ Stream(AldorInteger)

There are many useful ways besides generators to create streams, for example
by giving a function that computes the nth element, or even a function that
uses the elements s.0, . . . , sn−1 to compute the element s.n. Since values are
stored once computed and never recomputed, streams provide an efficient way
to evaluate recursive functions. For example, the Fibonacci numbers can be
computed in linear time (and space) via a stream:

-- Given that s is a stream storing the Fibonacci numbers up to index n-1,

-- this function computes the Fibonacci number of index n

>> genfib(n:MachineInteger, s:Stream Integer):Integer == {

n = 0 or n = 1 => 1;

s(n-1) + s(n-2);

}

Defined genfib @ (n: MachineInteger, s: Stream(AldorInteger)) -> AldorInteger

-- This creates the stream of all the Fibonacci numbers

>> fib := stream genfib;

[...] @ Stream(AldorInteger)

12

-- Let’s check the 15-th Fibonnaci number

>> fib 14

610 @ AldorInteger

-- See all the elements of fib that have been computed so far

>> fib

[1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,...] @ Stream(AldorInteger)

-- Streams can be iterated like any other data structure

-- but make sure to add another clause to avoid infinite loops!

>> for n in fib while n < 100 repeat stdout << n << space

1 1 2 3 5 8 13 21 34 55 89

3 Programs

The interpreter is a convenient way of testing programs and writing one-line
functions, but for larger programs, it is easier to use the compiler.

The following file “sort0.as” is a short method for sorting an array in-place.
Note that the “!” of “bubbleSort!” is part of the name of the function. It has
no special meaning in Aldor but is used by convention in libaldor to indicate
that this function modifies its argument.

#include "aldor"

bubbleSort!(arr: Array MachineInteger): Array MachineInteger == {

import from MachineInteger;

for i in #(arr)-1 .. 0 by -1 repeat {

for j in 1..i repeat {

if arr.(j-1) > arr.j then {

t := arr(j-1);

arr.(j-1) := arr.j;

arr.j := t;

}

}

}

arr

}

To compile the file, do:

% aldor sort0.as

This will produce an intermediate file, sort0.ao. This contains a compiled
version of the program, plus information on the names defined by sort0.as.

13

Once it is compiled, you can use it within the interpreter:

% aldor -gloop

>> #include "aldor"

>> #include "aldorinterp"

-- This tells the compiler that the file sort0.ao is interesting

>> #library Sort0 "sort0.ao"

-- Libraries are imported in the same way as domains:

>> import from Sort0

-- bubbleSort! should now be in scope.

>> bubbleSort!

() @ (arr: Array(MachineInteger)) -> Array(MachineInteger)

-- Now we try something:

>> bubbleSort! [4,1]

.......^.^

[L6 C8] #1 (Error) No meaning for integer-style literal ‘4’.

[L6 C10] #2 (Error) No meaning for identifier ‘1’.

-- whoops, we haven’t imported from MachineInteger yet.

>> import from MachineInteger

>> bubbleSort!([4,3,1,5,7])

%8 >> bubbleSort!([4,3,1,5,7])

.......^

[L8 C8] #1 (Error) Argument 1 of ‘bracket’ did not match any possible...

The rejected type is MachineInteger.

Expected type Character.

-- Or arrays...

>> import from Array MachineInteger

-- This ought to work...

>> bubbleSort!([4,3,1,5,7])

[1,3,4,5,7] @ Array(MachineInteger)

-- How about a big array:

>> bubbleSort!([x for x in 100..1 by -1])

[1,2,3,4,5,6,7,8,9,10,...

-- The built-in sort! from Array MachineInteger should be somewhat faster:

>> sort!([x for x in 100..1 by -1])

[1,2,3,4,5,6,7,8,9,10,...

14

As it stands, sort0.as contains only a library function. We can turn it into a
real program by adding asome top-level statements. sort1.as is the same as
sort0.as with the following additions:

-- No need to call this "main", but an additional function

-- keeps the top-level name-space free from clutter.

main():() == {

import from MachineInteger, Array MachineInteger;

import from TextWriter; -- for ’stdout’

import from WriterManipulator; -- for ’endnl’

arr := [x*(x-5) for x in 100..1 by -1];

bubbleSort! arr;

-- endnl sends a newline and flushes the stream

stdout << arr << endnl;

}

-- call the function.

main();

Compile this with “aldor -ginterp sort1.as”. This should compile the file,
and execute the resulting intermediate code, printing the sorted array.

Of course, we could put this function into a new file and put the following at
the head of the file:

#library mysort "sort0.ao"

import from mysort;

inline from mysort; -- optional

to use the original library. The “inline” statement is optional, but will enable
more optimisations to occur. It has a syntax similar to “import”, but it states
that the result of compilation is allowed to depend on the code generated for
the libraries listed (not simply their existence). This allows the production of
significanty better code, at the expense of having to recompile the file whenever
the named libraries change.

To produce an executable, compile with

% aldor -fx -laldor -y$ALDORLIBROOT/lib sort1.as

This should then produce a file “sort1” which when run, prints the same result.
It is also possible to use “-grun” which compiles the program (as with -fx),
and then runs it, but does not save the executable for future runs. Typically
-ginterp is a little faster than -grun as only one compilation stage is needed,
but this depends on the execution time of the resulting program. In any case,
if it is meant to be run more than once, then -fx is the preferred option.

15

The compiler has an optimizer which can improve performance dramatically.
The “-q3” option to the compiler will invoke the optimizer before the .ao file
is produced.

Use the “-h” option to the compiler to see what other options are available.

3.1 Some Language Features

In order to make Aldor programs more readable, a variety of shorthands are
provided. We have alreay seen one of these — the bracket notation. In this
case, an expression such as [a] is interpreted as bracket(a).

Other examples are:

• :: – “a::T” is equivalent to the form “coerce(a)@T”.

• apply – “arr.b” is equivalent to the form “apply(arr, b)”.

• set! – “arr.b := c” is equivalent to the form “set!(arr, b, c)”.

4 Some useful types

In this section we describe some useful built-in types. They are commonly
used as part of the representation of other objects. You should start a fresh
interactive session for this section and include both aldor and aldorinterp.

4.1 Records

Aldor provides a basic structure type, called Record, which can be used to
aggregate data, similar to struct in C.

A Record type looks like:

Record(id1 : Type1, id2 : Type2, ...)

The easiest way to explain is by example:

-- A record is a type, just like any other.

>> import from MachineInteger, Record(name: String, age: MachineInteger);

16

-- square brackets create a new object

>> newBod := ["Ethel T. Aardvark", 21];

() @ Record(name: String, age: MachineInteger)

-- record elements are referenced by function application.

-- normally, a dot is used to ensure that the call parses as expected.

>> newBod.name

Ethel T. Aardvark @ String

>> newBod.age

21 @ MachineInteger

>> newBod(age)

21 @ MachineInteger

>> newBod age

21 @ MachineInteger

-- Records can be updated too:

-- Here the left side of the := is a function application.

>> newBod.age := newBod.age + 1;

22 @ MachineInteger

The function application notation for accessing and updating elements of a
record are shorthands for the equivalent:

>> apply(newBod, age)

22 @ MachineInteger

>> set!(newBod, age, 21)

21 @ MachineInteger

Records are created through the bracket operation “[]” above, and also by a
function called record for the same purpose (this is useful when there are many
different bracket operations in scope).

4.2 Unions

Aldor provides a union type, called Union which is used to hold one of a selection
of different types. This is similar to the “union” construct in C.

A Union type looks like:

Union(id1 : Type1, id2 : Type2, ...)

17

This can contain an object of type Type1, or an object of type Type2, etc. The
interface to this type is similar to that of records.

For example,

>> import from Union(s: String, i: MachineInteger);

-- create one of these chaps

>> u := union(12);

() @ Union(s: String, i: MachineInteger)

-- or you can use brackets

>> v := ["Hello"]

() @ Union(s: String, i: MachineInteger)

-- we can test which branch an object is a member of:

>> if u case s then stdout << "I’m a string with value: " << u.s;

-- we can destructively update the contents of a union

>> u.s := "A string";

A string @ String

-- and check what it is again:

>> if u case s then stdout << "I’m a string with value: " << u.s;

I’m a string with value: A string

4.3 Enumerations

Frequently, one needs a type whose elements come from some small set of iden-
tifiers. This is provided by the Enumeration type.

An Enumeration type looks like:

Enumeration(id1 : Type, id2 : Type, ...)

which may be abbreviated to:

’id1, id2, . . .’

For example,

>> import from ’red, green, blue’;

>> x := red;

18

() @ Enumeration(red: Type, green: Type, blue: Type)

>> if x = green then stdout << "Strewth";

One use of enumeration types is to allow a mechanism for using keywords in
signatures. For example,

>> import from List MachineInteger, ’first, second’;

>> element(l: List MachineInteger, tag: ’first, second’):MachineInteger == {

tag = first => first l;

tag = second => first rest l;

never;

}

-- called with:

>> element([1,2,3], second);

2 @ MachineInteger

-- also, we can use the apply notation:

>> apply(l:List MachineInteger,tag:’first,second’):MachineInteger==element(l,tag);

-- can be called with

>> apply([1,2,3], second)

2 @ MachineInteger

-- or

>> [1,2,3].second

2 @ MachineInteger

In case you were wondering, the syntax for record and union access is imple-
mented this way.

5 Types and other sources of confusion

Most of the features we have seen so far (statements, conditionals, iteration,
etc) have direct equivalents in most other programming languages. The major
distinguishing feature of Aldor is its type system, which has some analogues in
other languages, but no direct equivalent. However, the underlying principles
do exist in other languages, and these ideas are quite simple.

The type system in Aldor provides the principal means of extending the lan-
guage, in this case by adding new libraries. In this section we give a practical
introduction to defining types.

19

As before, you should start a fresh interactive session for this section and include
both aldor and aldorinterp. A first example is in the definition of packages,
where we want a group of related operations with a well-defined interface which
can then be used by other programs:

>> SimpleListStringOperations: with {

firstOccurence: (List String, String) -> MachineInteger;

sort: (List String, (String, String) -> Boolean) -> List String;

} == add {

firstOccurence(l: List String, s: String): MachineInteger == {

(l, n) := find(s, l);

n;

}

-- insertion sort.

sort(l:List String, lt:(String,String) -> Boolean):List String == {

local insrt(x: String, l: List String): List String == {

empty? l or lt(x, first l) => cons(x, l);

cons(first l, insrt(x, rest l));

}

res:List String := empty;

for s in l repeat res := insrt(s, res);

res;

}

}

There are several things to notice here:

• The “with” keyword takes a sequence of declarations and turns them into
a group of operations (this group is called a category).

• The “add” keyword takes a sequence of definitions and forms an object
that exports definititions, and supplies a way of retrieving the definititions
given a declaration. The type of an add expression is a category which
matches the exports of the add body.

• Functions can be nested.

Once we’ve defined it, we can test it:

>> import from SimpleListStringOperations, List String;

>> firstOccurence(["a", "b"], "a")

1 @ MachineInteger

It seems natural to ask if there is a way of parameterizing the package by the
argument type of the list, so we don’t limit ourselves to lists of strings. How do
we do this? Well, we can write a function:

20

SimpleListOperations(S: PrimitiveType): with {

firstOccurence: (List S, S) -> MachineInteger;

sort: (List S, (S, S) -> Boolean) -> S;

} == add {

--- this is the same as before with S replacing

--- String

}

Aside: If we were being truly lazy, we would have called the parameter “String”
and left the body unchanged — domain names are just like any other constant,
after all.

The ’S’ here is declared as being a “PrimitiveType” which is a type (a category
in fact) representing all the objects that export an equality operation (this
includes Integers, Strings, and many other types in libaldor).

It is possible to abstract this further (we do depend on a concrete value “List”
that could be replaced by a parameter), but I’ll leave that as an exercise.

5.1 Categories

As mentioned above, a “with” expression in the definition of SimpleListOpera-
tions forms something called a Category. This is a set of declarations, usually
related in some way. In this section, we explore these objects.

As an example, consider a program that compares the efficiency of several dif-
ferent list processing operations. We might want to write this as something
like:

TestAlgorithms(NthFindSortAndStuff): () == {

l := [x for x in 1..1000]

time(firstOccurence, l, 10);

...

}

where “NthFindSortAndStuff” is a (somewhat poorly named) group of oper-
ations that includes an implementation of “firstOccurence”. We then want
to pass each of these operations to a function “time” which presumably prints
a number representing how fast these functions are. In Aldor, this is pretty
simple:

TestAlgorithms(Algorithms: with {

-- local macro definition

macro MZ == MachineInteger;

21

firstOccurence: (List MZ, MZ) -> MZ;

...

}

): () == {

import from Algorithms;

...

}

We can then pass in, for example, SimpleListOperationsOnMachineInte-
gers, SimpleListOperations(MachineInteger), etc. Note that the identifier
“SimpleListOperations” refers to a function (you can confirm this using the
interpreter), and so cannot be passed into this function.

We would like to use this mechanism to identify the common parts of types such
as Integer, MachineInteger, MachineFloat, etc. . . all of which have a complement
of arithmetic operations, equality operations, printing operations, etc. In order
to do this, we use “%” to refer to “this type”, so that all these domains satisfy
the following category:

with {

*: (%, %) -> %;

+: (%, %) -> %;

-: (%, %) -> %;

...

}

In mathematics it is common for several structures to be defined by the same
operations, but have different properties (for example, ring, commutative ring,
integral domain, etc. . .). For this reason we treat named categories slightly
differently.

+++ The category of lattices: structures with a partial ordering

+++ operation such that every pair has a lower and an upper bound

define Lattice: Category == PrimitiveType with {

-- Partial implies that the function may not always have a value

< : (%, %) -> Partial Boolean; ++ partial order

/\: (%, %) -> %; ++ upper bound

\/: (%, %) -> %; ++ lower bound

}

Aside: Note the use of descriptions — these are comments introduced by ++
rather than --. They are kept with the definition by the compiler, and can be
searched using the appropriate tools. A description introduced by +++ refers
to the following definition, while a description introduced by ++ refers to the
preceding definition.

22

This defines a category “Lattice”. As opposed to the anonymous “with” ex-
pressions above, an object only belongs to this category by assertion, not simply
by having the right exports.

In the SimpleListOperations examples above, we could restrict S to be of type
“TotallyOrderedType” (a category provided by libaldor) so only types with
a total order on their values are suitable. This would enable us to export the
function:

sort: List S -> S;

that would use the total order provided by S. Its implementation would be

sort(l:List S): List S == sort(l, <);

where < stands for the ordering provided by the type S.

5.2 Domains

We now move onto defining new concrete types (one view of categories is as
abstract types). This is pretty easy now we know about packages and categories:
A domain is simply an add body that contains references to “%”. An example
of a simple domain is:

>> Wrapped: with {

wrap: MachineInteger -> %;

unwrap: % -> MachineInteger;

++ these are such that unwrap(wrap(x)) = x

} == add {

macro Rep == MachineInteger;

wrap(n: MachineInteger): % == per n;

unwrap(x: %): MachineInteger == rep x;

}

>> import from MachineInteger, Wrapped;

-- this is an error

>> wrap(10) + 5

^

[L13 C1] #1 (Error) Argument 1 of ‘+’ did not match any possible...

The rejected type is Wrapped.

Expected one of:

-- String

-- MachineInteger

23

-- as is this:

>> unwrap(5)

........^

[L14 C9] #1 (Error) Argument 1 of ‘unwrap’ did not match any possible...

The rejected type is MachineInteger.

Expected type Wrapped.

-- Compare this with the ‘‘typedef’’ construct in C.

A few things to note here:

• A domain is exactly the same as a package, except that the signatures of
the domain exports include %.

• A domain always contains a line “macro Rep == ...” which supplies a
type that is used to implement the new domain. This is called the repre-
sentation.

• The macros rep and per switch between the domain’s type and its repre-
sentation. rep yields an object of type Rep, per yields an object of type
%.

When writing a domain, there are two important choices to be made:

• The interface to the domain

• How to represent the domain

The interface will typically be a group of categories, plus some explicit opera-
tions. In the previous example, we are not a member of any named category,
and our explict exports are wrap and unwrap. The exact categories and explicit
operations will tend to be obvious from how you want to use the domain.

The representation of the domain will depend on the interface and how you
want to implement the operations. In many cases, the representation will be a
record or union type, but there are no restrictions.

In the example above, all the category requests is a domain which can be con-
verted to and from MachineInteger. The most efficient way of doing this is to
represent values from the domain by MachineIntegers, and use the representa-
tion macros to switch between the two.

Of course, we might want to do things differently:

24

Wrapped: with {

wrap: MachineInteger -> %;

unwrap: % -> MachineInteger;

} == add {

macro Rep == MachineInteger;

import from Rep;

wrap(n: MachineInteger): % == per(n-1);

unwrap(x: %): MachineInteger == rep(x)+1;

}

Here a wrapped integer is represented by one less than the original integer. Note
that the external interface is unchanged; No user of this domain will be able
to detect the change, except perhaps by examining the speed of the wrap and
unwrap operations.

In this case we need to import from Rep to get the + and - operations, and
this is generally the case. It is clearer to say “import from Rep’’ rather than
from MachineInteger as we are thinking of the operations as coming from the
representation of the domain, not specifically from MachineInteger.

As with packages, there is no problem forming a function so that we can use
this for types other than MachineInteger.

Simple(S: Type): with {

wrap: S -> %;

unwrap: % -> S;

} == add {

macro Rep == S;

wrap(n: S): % == per n;

unwrap(x: %): S == rep x;

}

In order to make this type a little more useful, we make it a member of the
category OutputType. This type means that the elements can be written to
output streams such as stdout, and many domains in libaldor are members
of this category, so there is no reason why this domain can’t be.

The definition of OutputType in libaldor is:

define OutputType: Category == with {

<<: (TextWriter, %) -> TextWriter;

}

You can use the interpreter to see what exports a category requires, simply by
typing its name:

25

>> OutputType

() @ Category == with <<: (TextWriter, %) -> TextWriter

To make our Simple domain into an OutputType, we simply assert that it is, and
add the appropriate definition. Note however that since our new function uses
<< from S, we need to restrict the parameter S to be itself of type OutputType
rather than simply any Type2:

Simple(S: OutputType): OutputType with {

wrap: S -> %;

unwrap: % -> S;

} == add {

macro Rep == S;

wrap(n: S): % == per n;

unwrap(x: %): S == rep x;

(out:TextWriter) << (s:%): TextWriter == {

import from String, Rep;

-- print a left-paren,

-- then ’s’ viewed as an element of S,

-- then a right-paren.

out << "(" << rep s << ")";

}

}

The exports of an add body are checked against the category, and the compiler
will raise an error if any are left out. For example, if any of the functions within
the previous add body were omitted, the compiler would raise an error.

5.3 Default Operations

Once we have defined a category we find that many operations can be imple-
mented using only the exports of the category, and do dot require infomation
about how the domain is represented. For example, in the category Totally-
OrderedType provided by libaldor, once we have a ’<’ operation we can define
the >, <=, >=, min and max operations as3:

(a:%) > (b:%):Boolean == ~(a <= b);

(a:%) >= (b:%):Boolean == ~(a < b);

(a:%) <= (b:%):Boolean == (a < b) or (a = b);

max(a:%, b:%):% == { a < b => b; a };

min(a:%, b:%):% == { a < b => a; b };

2you may want to compile this domain with S declared as Type only, to see the reaction of
the compiler

3 ˜means boolean negation in libaldor

26

Can we avoid having to write this code for every TotallyOrderedType? The
answer is yes, via default operations. These are operations defined inside a with
body, which are then inherited by all domains that belong to that category.

Thus, the definition of TotallyOrderedType in libaldor looks like4:

define TotallyOrderedType:Category == PrimitiveType with {

< : (%, %) -> Boolean;

> : (%, %) -> Boolean;

<= : (%, %) -> Boolean;

<= : (%, %) -> Boolean;

min: (%, %) -> %;

max: (%, %) -> %;

default {

(a:%) > (b:%):Boolean == ~(a <= b);

(a:%) >= (b:%):Boolean == ~(a < b);

(a:%) <= (b:%):Boolean == (a < b) or (a = b);

max(a:%, b:%):% == { a < b => b; a };

min(a:%, b:%):% == { a < b => a; b };

}

}

If a domain defines its own >, <=, >=, min or max operation then the default
version will not be used.

5.4 Category Inheritance

You may have noticed the “PrimitiveType with” in the preceding category
expression. Allowing named categories in “with” expressions allows one to say
things like “Every Field is a Ring”, and “every OrderedField is a Field”.

For example:

define Field: Category == Ring with {

inv: % -> %; -- argument is asserted to be nonzero

}

define OrderedField: Category == Join(Field, TotallyOrderedType) with {

...

}

The “Join” operation combines the operations from each of its arguments into
a single category. This allows a form of multiple inheritance. It is also possible
to list the parents of a category inside the “with” body:

4the actual definition has a couple more exported functions

27

define OrderedField: Category == with {

Field;

TotallyOrderedType;

...

}

Pick whichever looks tidier.

5.5 Domain inheritance

There are often cases where one domain is an “extended subset” of another
domain — for example, the domain of non-negative integers shares many of the
properties of rings, although we don’t necessarily want all of them (for example,
subtraction is no longer a closed operation).

In this case, you can define a domain as above, using “Integer” as its repre-
sentation, but you will quickly find that a lot of the operations will have have
rather trivial definitions. For example, “+” will be:

(a:%) + (b:%):% == per(rep(a) + rep(b));

This can become painful quite quickly, so Aldor provides a mechanism allowing
the definitions from the Integer domain to be included in the exports of the
new domain. This is called domain inheritance. Using this, the definition of
NonNegativeInteger will look like:

NonNegativeInteger: Join(OutputType, TotallyOrderedType) with {

-- we use ‘‘+’’ to create non-negs ints and coerce to go back

+: Integer -> %;

coerce: % -> Integer;

} == Integer add {

macro Rep == Integer;

import from Rep;

coerce(x: %): Integer == rep x;

+(x: Integer): % == {

import from String; -- for the error function

x < 0 => error "NNI: negative value";

per x;

}

}

The important change here is the “Integer add”, which makes NonNegative-
Integer inherit Integer’s implementations of equality, total ordering, printing,
etc. . . .

28

Note that we still need a Rep type, because the implementations of coerce and
+ use the rep and per macros. When inheriting in this fashion, the Rep type
must match the type mentioned before the add.

5.6 Summary of types

In the preceeding section we have defined a lot of inter-related terminology, and
a fair number of concepts, so here is a brief recap:

• A category is a collection of declarations of related constants5 and is
formed via either “with” or “Join”.

• A domain defines a group of constants and is formed using “add”.

• The special value “%” refers to “the type currently being defined”.

• Categories may define “default operations”. These are operations defined
in terms of the other declarations in the category, and are inherited by
domains. A domain may over-ride a default implementation.

• Categories inherit operations from their parents, forming a directed graph.
If a domain belongs to a particular category, then it aslo belongs to the
parents of the category. The parents are given on the left-hand side of the
“with” construct, or inside the body of the construct.

• Domains may use add-inheritance to satisfy their exports.

5.7 Domains and Category Membership

In many cases, the implementation of an operation can be more efficient if we
have additional information about a parameter. For example,

gcd(R: EuclideanDomain, x: R, y: R): R == {

-- insert the euclidean algorithm here

}

Now, if R happens to belong to a Field, then everything is a whole lot more
trivial:

gcd(R: Field, x: R, y: R): R == if zero? x and zero? y then 0 else 1;

5A constant is a symbol assigned via “==”, that cannot be assigned a second time once
assigned, as opposed to a variable, assigned via “:=”, which can change its value later.

29

Can we use the additional information about R in this case?

gcd(R: EuclideanDomain, x: R, y: R): R == {

R has Field => if zero? x and zero? y then 0 else 1;

-- insert the euclidean algorithm here

}

The “has” test allows us to see what categories R belongs to at runtime, rather
than compile time.

As well as allowing algorithm selection at runtime, Aldor also allows you to
selectively export operations from a domain or category based on conditions.
For example, in our Simple(S) example above, we had to restrict S to be of
type OutputType in order to define the printing of objects. Instead, we could be
more permissive and conditionaly define Simple(S) to be of type OutputType
only if S is also of that type. In order to support this, category expressions
may contain conditional exports. Similarly definitions, both within “add and
“default” expressions can be conditional:

Simple(S: Type): with {

if S has OutputType then OutputType;

wrap: S -> %;

unwrap: % -> S;

} == add {

macro Rep == S;

wrap(n: S): % == per n;

unwrap(x: %): S == rep x;

if S has OutputType then {

(out:TextWriter) << (s:%): TextWriter == {

import from String, Rep;

out << "(" << rep s << ")";

}

}

}

For a more mathematical example: one can build polynomials over any ring
to form another ring, but a polynomial built over a field will be a euclidean
domain, and consequently have a computable gcd:

define UnivariatePolynomial(R: Ring): Ring with {

if R has Field then EuclideanDomain;

} == add {

...

if R has Field then {

gcd(x: %, y: %): % == {

-- insert your favorite Euclidean algorithm here.

30

}

}

...

}

NB: Conditionals can be very useful, but overuse can lead to very confusing
code.

6 Interfacing with other languages

One of the design goals of Aldor was that it should be possible to both call and
be called from libraries written in other languages. In order to do this, there is
a builtin “Type” called Foreign, which can be viewed as an interface to other
languages.

6.1 Using functions from other libraries

For example, most C libraries contain a function called unlink, which deletes
a file and returns a code indicating successful or unsuccessful completion. If we
wanted to use this function from Aldor, then we do this:

>> import { unlink: String -> MachineInteger } from Foreign C;

This tells the compiler that there is a function named unlink that is available.
The compiler will then treat this name specially, and use the C calling conven-
tions in order to call it. Consequently, calling it is really easy:

>> confirmAndRemove(name:String):MachineInteger == {

import from TextWriter, TextReader, Character;

stdout << "Are you sure you want to remove " << name << "? ";

answer:String := << stdin;

answer := map(lower)(answer); -- make lower case

answer = "yes" or answer = "y" => unlink name;

-1;

}

>> confirmAndRemove "foo"

Are you sure you want to remove foo? no

-1 @ MachineInteger

Aside: Typing “yes” will not work in the interpreter as it cannot dynamically
link to new C functions.

31

UNLINK(2) Linux Programmer’s Manual UNLINK(2)

NAME

unlink - delete a name and possibly the file it refers to

SYNOPSIS

#include <unistd.h>

int unlink(const char *pathname);

DESCRIPTION

unlink deletes a name from the filesystem. If that name

was the last link to a file and no processes have the file

open the file is deleted and the space it was using is

made available for reuse.

If the name was the last link to a file but any processes

still have the file open the file will remain in existence

until the last file descriptor referring to it is closed.

If the name referred to a symbolic link the link is

removed.

If the name referred to a socket, fifo or device the name

for it is removed but processes which have the object open

may continue to use it.

RETURN VALUE

On success, zero is returned. On error, -1 is returned,

and errno is set appropriately.

Figure 1: A Manual page for some C routine

32

Note that constants work just like functions and can be imported from Foreign
too.

Aside: Since the underscore is used as an escape character in Aldor, rather than
backslash as in C, you must replace every underscore appearing in a C name by
’__’ in its Aldor counterpart.

As well as String, other libaldor types may be used in signatures (i.e. proto-
types) of foreign functions:

libaldor C
Boolean long
MachineInteger long
SingleFloat float
Character char
String char*
PrimitiveMemoryBlock char*
PackedPrimitiveArray Byte char*
PackedPrimitiveArray Character char*
PackedPrimitiveArray SingleFloat float*
PackedPrimitiveArray DoubleFloat double*
Pointer void*
PrimitiveArray void**
PrimitiveArray MachineInteger long*
File FILE*
GMPFloat mpf t
GMPInteger mpz t

Strings in libaldor are represented by zero-terminated strings, as in C.

6.2 Exporting functions to C

As you might guess from the previous section, exporting functions to C is pretty
simple. In fact, the syntax is very familiar:

export {

is__prime: MachineInteger -> Boolean;

} to Foreign C;

is__prime(x: MachineInteger): Boolean == ...

This can be compiled into an object file using “aldor -fo”, and then linked in
the usual way. You will need to link the final program to the Aldor runtime

33

library — the easiest way to find out what this is is to compile a stand-alone
program with -v and see what libraries it uses. Note that exporting constants to
C requires more work, as you have to ensure that the exporting file is initialized
properly.

7 Exceptions

7.1 Introduction

What happens when something goes wrong in a function? For example, your
system detects an error in some parameters, or that it can’t perform a particular
operation (eg. opening a file).

Using normal call and return code, you have two options:

The function can cause the program to halt, eg. by a call to “error”, or it can
return a Partial type which can indicate a failed call.

The former may be a little extreme, especially if the program is in some way
interactive.

The latter option then causes every function that calls it to have to be aware
of the failure case. This makes the funcions’s interface more complicated, and
may sometimes be impossible. For example, consider the division exported
by ArithmeticType — it has the signature (%, %) -> % and is expected to
yield a value. Consequently we aren’t allowed to return a union object even
if we wanted to (we don’t, because unions can be quite costly to create, when
compared with the time needed to do a division).

A more consise way of signalling error conditions is provided by the exceptions
mechanism (for those familiar with C++ exceptions, this should be unsurpris-
ing). There are four parts to the mechanism:

1. Throwing (or raising) an exception

2. Catching exceptions that we are interested in

3. Declaring which exceptions may be raised by an expression

4. Defining exceptions

The first two are fairly standard, and the syntax is similar to that of many other
languages (especially C++). The last two have their roots in the Aldor type
system.

34

7.2 Throwing Exceptions

The syntax for raising an error is:

throw <E>

where <E> is an expression evaluating to an exception object. When an excep-
tion is thrown, execution of the current function halts, and control is passed
to the most recent handler (note that this uses dynamic scope for determining
“most recent”). The type of an except expression is “Exit” (but see later) — ie.
no value is created by the expression, but control does not pass the expression
(compare this with the return statement, for example). An except statement is
therefore a way of causing a function to terminate abnormally.

7.3 Catching Exceptions

To catch an exception the syntax is:

try Expr catch id in handler always stmts

where Expr is the expression we are protecting, id is an identifier, handler is
an (optional) error handler and stmts are some (optional) statements to do any
resource freeing on abnormal exits.

When a handler is executed, the id is bound to whatever exception was raised.
The handler block is then evaluated.

Typically it will look something like:

try ... catch E in {
E has ZeroDivideType => ...
E has BadReductionType => ...
E has FileExceptionType => ...
true => throw E;
never;

}

Where each item on the right hand side of the has denotes an exception type.
The last two lines are currently required, but may go away at some point.

Each branch of the handler block (the parts after “=>”) should evaluate to the
same type as that of the expression protected by the handler.

35

This is so that one can do:

n := try divide(a, x) catch E in { E has ZeroDivideType => 22; ... }

which will attempt the division, and if successful assign the result to “n”, oth-
erwise if a division by zero exception is raised, then “n” will have the value
22.

After the handler has been executed, any forms in the “always” part of the
try expression are evaluated. These are guarenteed to be evaluated even if the
handler itself raises an exception.

The typical reason to use an always block is to deallocate any resources the
function may have allocated, for example:

f := open(file);
try doWonderfulThings(f, data) always close(f);

Note that the ’catch id in ...’ part is also optional providing an always part
is supplied.

This will ensure that the file is always closed regardless of what exceptions are
thrown by the call to doWonderfulThings.

7.4 Exception types

It is possible to declare what exceptions are thrown by a particular expression.
This is done using the “throw” keyword as an infix operator (the two uses are
rarely confused). The operator takes two arguments, a base type and a (possible
empty) comma-separated list of exception objects. Typically, the throw keyword
is applied to the return types of functions to indicate which exceptions they can
raise, for example:

foo: (...) -> ... throw (x1,x2,x3...)

This indicates that foo may only raise exceptions x1,x2,x3, etc. The programs
behaviour is undefined if other exceptions are raised. To indicate that a function
raises no exceptions, the tuple should be empty. If there is no ’throw’ clause on
the return type, then the compiler assumes that any exception may be raised
by the function. This does lead to some unsafe code — for example:

36

justDie(): MachineInteger == throw ZeroDivide;

badIdea(): MachineInteger throw () == justDie();

Here ’badIdea’ indicates that it will not raise an exception, while ’justDie’ will
always raise ZeroDivide. The compiler may warn the user in this situation,
but not at the moment.

The compiler will however check if any exceptions are explicitly raised that do
not satisy the functions signature, for example:

foo(): MachineInteger throw ZeroDivide == {
throw FileError;

}

will not compile. This also works within try blocks:

bar(): () throw Ex1 == {
try zzz() catch E in {

E has ExA => throw ZeroDivide; --- error
E has ExB => throw Ex1; --- OK
true => throw E --- error
never

}
}

Here, the final case has to be modified to return the exception Ex1, or deleted
so the program will halt on the “never” statement.

The ’throw’ qualifier on types works just like any other type constructor, and
so you can use it as part of a type as normal:

foo(fn: MachineInteger -> MachineInteger throw ()): () == ...

indicates that the argument to foo must be a function that never raises an
exception. Naturally, there are only a few places where it makes sense to use
these types.

NB: I simplified things earlier when I said that the type of an throw statement
was Exit — the actual type of “throw X” is “Exit throw X”. This indicates
that flow of contol stops, but the exception X may be raised. Exactly what we
wanted, surprisingly enough.

37

7.5 Defining Exceptions

An exception definition is made up of two parts — a category definition and a
domain definition. The category definition provides a means to specify related
exceptions (so that ’ZeroDivideType’ may inherit from ’ArithmeticErrorType’
for example), and the domain definition provides a mechanism for creating the
exception.

For example,

define ZeroDivideType: Category == ArithmeticErrorType with;
ZeroDivide: ZeroDivideType == add;

If ZeroDivide is defined this way, then any handler with “E has Arithmetic-
ErrorType” will also catch ZeroDivide exceptions.

This mechanism also allows one to create parameterized exceptions:

define ZeroDivideType(R: Ring): Category == ArithmeticErrorType with;
ZeroDivide(R: Ring): ZeroDivideType R == add;

and to have values defined within the exception:

define FileExceptionType: Category == ArithmeticErrorType with {
name: String;

}

FileException(vvv: String): FileExceptionType == add {
name: String == vvv;

}

In fact, there is a myriad of ways to insert values into exceptions:

foo():() == {
...
throw (add {name: String == <calculation>})@FileExceptionType;
...

}

is one, which has the single advantage that “name” will only be calculated if it
is actually used. Defining a ’lazy’ version of FileException is a much better
thing to do in this situation.

38

Another example that keeps the add definition simple, but sort of loses it with
respect to the number of objects defined.

define FileExceptionType: Category == ExceptionType with {
name(): String;

}

define FileExceptionType(vvv: String): Category == FileExceptionType with {
default name(): String == vvv;

}

FileException(v: String): FileExceptionType v == add;

8 Introductory Assignments

This section provides a few example exercises which provide a feel for how to
write programs in Aldor. They are arranged in approximate order of difficulty.

8.1 Hello world

Write a function to print the words “hello world” on the console.

Feel good about it.

8.2 Factorial

Write a function that calculates the factorial function, defined by:

n! =
{

1 if n < 2
n ∗ (n− 1)! otherwise

The function should work on arbitrary precision integers.

This can be done in two ways: by recursion, or by iteration. The definition
above is ideal for recursion, while the rule n! = 1∗ . . . ∗ (n−1)∗n is appropriate
for the iterative version.

39

8.3 Summing a list

Write a function that returns the sum of all the elements in a list. The program
should be as general as possible, especially if you have read the section on types.

8.4 Summing an arbitrary sequence

The previous exercise produced a value from a list. What about arrays, trees,
and other aggregates? Write a function that sums all the elements from a
generator, and returns that sum. Review the section on collections if necessary.

8.5 Reducing things

The reduce function (in Axiom it is called “/”) takes an associative function and
a sequence and repeatedly applies the function to the sequence. It is defined as:
reduce(f, l) = first l, if the sequence contains 1 element reduce(f, l) = f(first l,
reduce(f, rest l))

Write both recursive and iterative versions.

As in the “sum” example, modify either program to work with an arbritrary
sequence.

Do exercise 8.3 again.

8.6 Tails

Write a function tails(S:Type, l:List S): Generator List S == ... that
returns a generator for the sequence l, rest l, rest rest l,... and that
ends when all the nonempty tails have been yielded. For example:

l:List MachineInteger := [1,2,3,4];

for t in tails(MachineInteger, l) repeat stdout << t << newline;

should print

[1,2,3,4]

[2,3,4]

[3,4]

[4]

40

8.7 Generators

Re-write the “both” example so that the lists do not have to be the same size.
When one list is exhausted, simply use the remaining elelements from the other
list. Exercise 8.6 may be useful here.

9 Type Assignments

There are lots of possible domains that you should be able to implement. De-
pending on inclination, you could try series, complex numbers, quaternions,
simple polynomials, trees, heaps, tables, etc. If none of the exercises below
looks interesting, feel free to roll your own.

9.1 Sorted Lists

Use add-inheritance to build a domain of sorted lists. This is a list whose
elements are guarenteed to be in sorted order. Many operations are identical to
those from List, but a few will differ, for example, construction. The domain
should be of category BoundedFiniteLinearStructureType, and any others
you think are useful. Since there is already a type SortedList in libaldor,
use a different name.

9.2 Sorting Package

Write a package exporting a few sort algorithms for arrays of integers. For
example insertion sort, bubble sort and so on.

Modify this to work with arrays. Generalise as far as you can.

9.3 Substrings

In this exercise you will complete the definition of a SubString domain, whose
objects are represented by a string, a starting position within the string, and a
substring length. The SubString domain can then be used to write non-copying
string processing functions.

This example also introduces the equivalence between the expression “x::T”
in Aldor, and the application “coerce(x)@T.” This kind of mechanism allows
programmers to overload the behavior of certain keywords in Aldor.

41

--- Substrings.

#include "aldor"

-- (a) Fill in the definitions for substring, coerce, <<.

-- substring creates a new substring object from a string,

-- a starting position, and a length.

-- coerce copies the characters from the string

-- into a new string.

-- << is the function for printing the substring

-- which is required by BasicType.

-- sample provides a default substring.

SubString: OutputType with {

substring: (String, MachineInteger, MachineInteger) -> %;

++ construct a substring of a string

coerce: % -> String;

++ copies the substring into a new string

}

== add {

macro MZ == MachineInteger;

macro Rep == Record(str: String, start: MZ, len: MZ);

import from Rep;

substring(str: String, start: MZ, end: MZ): % == ...

coerce(substr: %): String == ...

(out: TextWriter) << (sub: %): TextWriter == ...

}

-- (b) Write a function which takes a string and splits it

-- into a list of words from the string which are delimited

-- by spaces and newlines.

-- (c) Write a function which takes a string and generates

-- the words from the string.

You may want to try changing the representation of this type to a String,
and comparing the relative execution times of functions (b) and (c) using each
version.

42

