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Failures happen often... but how do we cope with them?

(Not so) Secret data

Tsubame 2: 962 failures during last 18 months so µ = 13 hrs

Blue Waters: 2-3 node failures per day

Titan: a few failures per day

Tianhe 2: wouldn’t say

The question is: Given an application and a platform, which
tolerance solutions is the best? How should it be used?

Many proposed fault-tolerance solutions but...

Experiments are impossible

Experiments on petascale machines are too expensive
Exascale platforms does not exist yet
We do not know (exactly) what exascale platforms will be

Need for modelization, analysis, and simulation
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Background: coordinated checkpointing protocols

Coordinated checkpoints over all
processes

Global restart after a failure

P0

P1

P2

m1 m2 m3

m4 m5
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Fault Prediction and Coordinated Checkpointing

Fault predictor

Imperfect predictor

Recall = Predicted faults
Faults : percentage of faults predicted

Precision= Predicted faults
Predictions : percentage of predictions

corresponding to faults

Predicted “time” of failure: either exact date or time interval

Questions

Should predictions always be trusted?

How do predictions impact checkpointing policies?

Is it always beneficial to use a predictor?
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Fault Prediction and Coordinated Checkpointing

Predicted “time” of failure = exact date

First-order analysis

Optimal algorithms to decide whether and when to take
predictions into account

Optimal value of the checkpointing period

Recall is more important than precision

Predicted “time” of failure = time interval

New approach with two periodic modes: one outside
prediction windows, and one inside prediction windows

Optimal checkpointing periods

Results of the analytical study are corroborated by simulations
(validity of model and accuracy of approach)
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Silent Error Detection and Coordinated Checkpointing

Context

No immediate detection of silent errors

Necessity of a detection mechanism

Two models

Errors detected (by an oracle) after a delay
Errors detected through a user-initiated verification mechanism

Questions

First model: impact of detection latency on checkpointing
policy?

Second model: when to invoke the verification mechanism?
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Silent Error Detection and Coordinated Checkpointing

Errors detected (by an oracle) after a delay

Exponential failure and latency distributions: no impact of
latency distribution on optimal checkpointing strategy

Finite memory: lower bound on period to guarantee that at
least one valid checkpoint is live (within a risk threshold)

Errors detected through a user-initiated verification mechanism

Either k checkpoints for one verification or
k verifications for one checkpoint

Analytical formula for the waste

Optimal checkpointing and verification periods
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Detailed result

A unified model for assessing checkpointing protocols at
extreme-scale

by George Bosilca, Aurélien Bouteiller, Élisabeth Brunet, Franck
Cappello, Jack Dongarra, Amina Guermouche, Thomas Hérault,
Yves Robert, Frédéric Vivien, Dounia Zaidouni

Journal of Concurrency and Computation: Practice and
Experience, Wiley InterScience, 2013, DOI: 10.1002/cpe.3173

https://hal.inria.fr/hal-00908447
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Background: coordinated checkpointing protocols

Coordinated checkpoints over all
processes

Global restart after a failure

P0

P1

P2

m1 m2 m3

m4 m5

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back
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Background: hierarchical protocols

Clusters of processes

Coordinated checkpointing
protocol within clusters

Message logging protocols
between clusters

Only processors from failed group
need to roll back

P0

P1

P2

P3

m1

m2

m3

m4

m5

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Faster re-execution with logged messages
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Which checkpointing protocol to use?

Coordinated checkpointing

, No risk of cascading rollbacks

, No need to log messages

/ All processors need to roll back

/ Rumor: May not scale to very large platforms

Hierarchical checkpointing

/ Need to log inter-groups messages
• Slowdowns failure-free execution
• Increases checkpoint size/time

, Only processors from failed group need to roll back

, Faster re-execution with logged messages

, Rumor: Should scale to very large platforms
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Coordinated checkpointing

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: checkpointing blocks all computations
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Coordinated checkpointing

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunk

Processing the first chunk

Time

Time spent checkpointing

Time spent working

Non-blocking model: checkpointing has no impact on
computations (e.g., first copy state to RAM, then copy RAM to
disk)
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Coordinated checkpointing

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: checkpointing slows computations down: during
a checkpoint of duration C , the same amount of computation is
done as during a time αC without checkpointing (0 ≤ α ≤ 1)
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Waste in fault-free execution

T

CT − C

P2

P3

P0

P1

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Time elapsed since last checkpoint: T

Amount of computations executed: Work = (T − C ) + αC

Waste[FF ] = T−Work
T = (1−α)

T
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Waste due to failures

P0

P3

P2

P1

Time spent checkpointingTime spent working Time spent working with slowdown

Time

Failure can happen

1 During computation phase

2 During checkpointing phase
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Waste due to failures in computation phase

P2

P1

P3

P0

Time spent working Time spent checkpointing Time spent working with slowdown

Time

ROMA project-team Checkpointing strategies:Towards exascale 13/ 27



Total waste

∆

αC CT − CRDTlost

P2

P1

P0

P3

Time spent checkpointingTime spent working Time spent working with slowdown

Re-executing slowed-down workRecovery timeDowntime

T

Time

Waste[fail ] =
1

µ

(
D + R + αC +

T

2

)
Optimal period Topt =

√
2(1− α)(µ− (D + R + αC ))C
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Hierarchical checkpointing

T

α(G−g+1)C

RD G .C

T−G .C−Tlost

TlostTlost

G2

G4

Gg

G1

G5

Re-executing slowed-down workRecovery timeDowntime

Time spent working Time spent working with slowdownTime spent checkpointing

Time

Processors partitioned into G groups

Each group includes q processors

Inside each group: coordinated checkpointing in time C (q)

Inter-group messages are logged
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Accounting for message logging: Impact on work

/ Logging messages slows down execution:
⇒ Work becomes λWork, where 0 < λ < 1
Typical value: λ ≈ 0.98

, Re-execution after a failure is faster:
⇒ Re-Exec becomes Re-Exec

ρ , where ρ ∈ [1..2]
Typical value: ρ ≈ 1.5

Waste[FF ] =
T − λWork

T

Waste[fail ] =
1

µ

(
D(q) + R(q) +

Re-Exec

ρ

)
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Accounting for message logging: Impact on checkpoint size

Inter-groups messages logged continuously

Checkpoint size increases with amount of work executed
before a checkpoint /
C0(q): Checkpoint size of a group without message logging

C (q) = C0(q)(1 + βWork)⇔ β =
C (q)− C0(q)

C0(q)Work

Work = λ(T − (1− α)GC (q))

C (q) =
C0(q)(1 + βλT )

1 + GC0(q)βλ(1− α)
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Three case studies

Coord-IO
Coordinated approach: C = CMem = Mem

bio
where Mem is the memory footprint of the application

Hierarch-IO
Several (large) groups, I/O-saturated
⇒ groups checkpoint sequentially

C0(q) =
CMem

G
=

Mem

Gbio

Hierarch-Port
Very large number of smaller groups, port-saturated
⇒ some groups checkpoint in parallel
Groups of qmin processors, where qminbport ≥ bio
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Three applications

1 2D-stencil

2 Matrix product

3 3D-Stencil

Computing β for 2D-Stencil
C (q) = C0(q) + Logged Msg = C0(q)(1 + βWork)

Real n × n matrix and p × p grid
Work = 9b2

sp
, b = n/p

Each process sends a block to its 4 neighbors

Hierarch-IO:

1 group = 1 grid row

2 out of the 4 messages are logged

β = Logged Msg
C0(q)Work = 2pb

pb2(9b2/sp)
=

2sp
9b3
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Four platforms: basic characteristics

Name Number of Number of Number of cores Memory I/O Network Bandwidth (bio) I/O Bandwidth (bport)
cores processors ptotal per processor per processor Read Write Read/Write per processor

Titan 299,008 16,688 16 32GB 300GB/s 300GB/s 20GB/s
K-Computer 705,024 88,128 8 16GB 150GB/s 96GB/s 20GB/s
Exascale-Slim 1,000,000,000 1,000,000 1,000 64GB 1TB/s 1TB/s 200GB/s
Exascale-Fat 1,000,000,000 100,000 10,000 640GB 1TB/s 1TB/s 400GB/s

Name Scenario G (C (q)) β for β for
2D-Stencil Matrix-Product

Coord-IO 1 (2,048s) / /
Titan Hierarch-IO 136 (15s) 0.0001098 0.0004280

Hierarch-Port 1,246 (1.6s) 0.0002196 0.0008561

Coord-IO 1 (14,688s) / /
K-Computer Hierarch-IO 296 (50s) 0.0002858 0.001113

Hierarch-Port 17,626 (0.83s) 0.0005716 0.002227

Coord-IO 1 (64,000s) / /
Exascale-Slim Hierarch-IO 1,000 (64s) 0.0002599 0.001013

Hierarch-Port 200,0000 (0.32s) 0.0005199 0.002026

Coord-IO 1 (64,000s) / /
Exascale-Fat Hierarch-IO 316 (217s) 0.00008220 0.0003203

Hierarch-Port 33,3333 (1.92s) 0.00016440 0.0006407
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Plotting formulas – Platform: Titan

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind
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Platform: K-Computer

Stencil 2D Matrix product Stencil 3D

Waste as a function of processor MTBF µind
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Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!
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Plotting formulas – Platform: Exascale

Waste = 1 for all scenarios!!!

Goodbye Exascale?!
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Plotting formulas – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product Stencil 3D
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Waste as a function of processor MTBF µind , C = 1, 000
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Plotting formulas – Platform: Exascale with C = 100

Stencil 2D Matrix product Stencil 3D
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Waste as a function of processor MTBF µind , C = 100
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Simulations – Platform: Exascale with C = 1, 000

Stencil 2D Matrix product
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Makespan (in days) as a function of processor MTBF µind , C = 1, 000
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Simulations – Platform: Exascale with C = 100

Stencil 2D Matrix product
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Subjects addressed

Combining silent error detection and checkpointing

Checkpointing algorithms and fault prediction

A unified model for assessing checkpointing protocols at
extreme-scale

Multi-criteria checkpointing strategies: Optimizing
response-time versus resource utilization

Optimal checkpointing period: Time vs. energy

Revisiting the double checkpointing algorithm

Using group replication for resilience on exascale systems

Assessing the Impact of ABFT and Checkpoint Composite
Strategies
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