
Overview of Component Model related Activities

C2S@Exa IPL
Programming Model Pole

Christian Perez

2015, January 13

Programming a Parallel Application

(High level) Parallel Languages
• HPF, PGAS, …
�Not yet mature

Platform Oriented Models
• Multi-core � Threads, OpenMP
• GPU � Cuda, OpenCL, OpenAPP
• Multi-node � MPI

�Many versions of the same code

�Difficult to maintain all versions synchronized
�Difficult to keep specific machine optimizations
�Low code reuse

2

Software Component

Technology that advocates for composition
• Old idea (late 60’s)

• Assembling rather than developing

Many types of composition operator
• Spatial, temporal, …. composition

Assembly of component
• Primitive & composite components

Many models
• Salome, CCA, CCM, Fractal, OGSi, SCA, …

C2

C3 C4

C5

C1 C5

C6 (Composite)

3

Motivation for High Level Component Model

Enable code-reuse

Let expert develop a piece of code

Enable adaptation when re-using code

Let re-use code with parameterization options

Enable any kind of composition operators

Do not impose any communication models

Enable efficient implementation of composition operators

Let have (resource) specific implementations

PhD of J. Bigot (INSA Rennes, 2010)

4

High Level Component Model (HLCM)
Overview

Primitive Components
• Computation core
• No coupling

HLCM Assembly
• Logical Architecture
• Platform independent

Primitive Components
• Computation core
• No coupling

Low Level Assembly
• Initialization code
• Platform specific

Copy

Platform description
Developer view Runtime view

L2C

Compile
Optimize

5

Major concepts
• Component model (hierarchical)

- Primitive and composite

• Connector based
- Primitive and composite

• Generic model
- Support meta-programming (template à la C++)

• Static
Implementation
• HLA to L2C compiler (GPL, http://hlcm.gforge.inria.fr)

ConnectorComponent Component

roles

HLA

Low Level Component Model (L2C)

Developed by J. Bigot & C. Perez

A minimalist component model for HPC
• Primitive component creation/deletion & connection
• An (optional) launcher

Features
• No L2C code between components @ runtime
• Support native interactions

- C++, (FORTRAN in progress), MPI, CORBA

• Extensible
• Experiments up to 8,192 MPI processes

LGPL, http://hlcm.gforge.inria.fr

6

Designing 3D FFT Assemblies with L2C

Study how L2C can handle variability of 3D FFT codes
• Assembly adaptation

• Component replacement

3D FFT L2C Implementation
• 1D / 2D domain decomposition

• Load balancing

• Basic overlapping

Experimental results
• Easy to handle variants (code highly reused between assembly)

• High performance (competitive with reference implementations)

7

Reconfigurable HPC Component Model:
directMod

Goals
• Scalability
• Separation of concerns
• Reuse

Principles
• Flat
• Arbitrary locking units (domains)
• Standalone transformations
• Transformation adapters

Model
• Full syntax
• Operational semantics

- Multithread call stacks

• Transformation semantics

Evaluation at model level
• Self-refining ring (~1D AMR)

- Easy reuse across variants w/ and

w/out work stealing

• 2D AMR
- ~ 30 different transformations

- fine control of transformations

8

A directMOD implementation on top of L2C:
directL2C

Limitations
• Multithreaded MPI performance

- MadMPI

• Locking code error prone

Preliminary results
• Ring example

- Simple transformation code

(8 lines of C++)
- Scalability on Grid’5000 up to 128 cores

- ~5ns static overhead (mutex)

9

Component Models and Data Flows

Two orthogonal concerns

• Structure description: component model (eg, L2C)

• Task dependencies: data flow model (eg, StarPU, XKaapi)

Goal

• Merge both concerns into a common HPC model

- Define a L2C+StarPU related model

- Apply it to Gysela5D / retrieve problematic patterns from Gysela5D

• PhD organization

- Jérôme Richard’s C2S@Exa PhD (11/2014-10/2017)

- Advisor: C. Perez (Avalon/Inria) & J. Bigot (CEA/MdS)

- Participants: O. Aumage (Storm/Inria) & G. Latu (CEA-IRFM)

- Weekly audioconference

- One week visit of Jérôme @ MdS in December 2014

10

Conclusion

Scientific tracks
• Component model evolution

- Adaptable, static programming CM: HLCM

- Simple, efficient execution CM: L2C

- Large scale reconfigurable execution CM: directMod/L2C

- Efficient component+task CM: Jérôme’s PhD

• HPC applications
- 3D FFT, domain decomposition, AMR, Gysela5D

Resources
• C2S@Exa PhD

• 2 year PIA ELCI Post –Doc

• Strong collaboration with CEA (Gysela5D) & Storm (StarPU)

11

