

Static and dynamic processing of discrete data structures

C2S@Exa

François Pellegrini

Contents

- 1. Context
- 2. Works
- 3. Results to date
- 4. Perspectives

Context

(nría_

François Pellegrini - Pole 3: Discrete data structures - January 13, 2015

Purpose

· Means and ends: discrete data structures:

- Graphs
 - "Mesh-like", not "social network-like"
- Meshes
- Create locality (\rightarrow pole 3)
 - Compute efficient partitions / mappings of graphs / meshes
 - Improve cache locality by adequate local numbering
- Enable PDE solver writers to focus on their "core business" (\rightarrow pole 2)
 - Hide all the MPI "plumbing work"
 - Contribute to efficient parallelization
 - At the node level

People and support

- F. Pellegrini
 - Formerly Bacchus team, now TADaaM since 01/01/2015
 ("Topology-Aware System-Scale Data Management for High-Perfor mance Computing Applications")
- S. Fourestier
 - PhD defended on 20/06/2013
 - Left project on 11/2014
- C. Lachat
 - PhD defended on 13/12/2013
 - ADT "El Gaucho" from 01/10/2012 to 30/09/2014
 - PIA ELCI ("Bull") ASAP

(nría_

François Pellegrini - Pole 3: Discrete data structures - January 13, 2015

The Scotch project

- Toolbox of graph partitioning methods, which can be used in numerous contexts
- Sequential Scotch library (v6.0)
 - Graph and mesh partitioning
 - Static mapping (edge dilation)
 - Graph and mesh reordering
 - Clustering
 - Graph repartitioning and remapping
- Parallel PT-Scotch library (v6.0)
 - Graph partitioning (edge)
 - Static mapping (edge dilation)
 - Graph reordering
 - Graph repartitioning, remapping (v6.1)

Three challenges

- Scalability
 - How will the algorithms behave for large numbers of processing elements?
- Heterogeneity
 - How will the architecture of the target machine impact performance?
- Asynchronicity
 - Will our algorithms still be able to rely on fast collective communication?

Design constraints

- Parallel algorithms have to be carefully designed
 - Algorithms for distributed memory machines
 - Preserve independence between the number of parts k and the number of processing elements P on which algorithms are to be executed
 - Algorithms must be "quasi-linear" in |V| and/or |E|
 - Constants should be kept small
- · Data structures must be scalable
 - In |V| and/or |E|: graph data must not be duplicated
 - In P and k: arrays in k|V|, k^2 , kP, P|V| or P^2 are forbidden

Architectural considerations matter

- High-end machines comprise very large numbers of processing units, and will possess NUMA / heterogeneous architectures
- Impacts on our research:
 - Target architecture has to be taken into account
 - Do static mapping and not only graph partitioning
 - Reduces number of neighbors and improves communication locality, at the expense of slight increase in message sizes

Graph partitioning with fixed vertices

- Used to model repartitioning / remapping
 Algorithms designed and implemented in Scotch 6.0
 - Parallel version scheduled for Scotch 6.1

PaMPA

- PaMPA: "Parallel Mesh Partitioning and Adaptation"
- Library managing the parallel repartitioning and remeshing of unstructured meshes modeled as interconnected valuated entities
- The user can focus on his/her "core business":
 - Solver
 - Sequential remesher
 - Coupling with MMG3D provided for tetrahedral remeshing

Data structures for representing distributed meshes

- · Based on the notion of "enriched graph"
 - Labeled undirected loopless graph
 - Sub-labeling (for separating e.g. boundary and inner faces)
 - With adequate local and global vertex numbering

Innía

Framework for parallel remeshing

· Iterative process until all tagged elements are remeshed

François Pellegrini – Pole 3: Discrete data structures – January 13, 2015

Extraction of zones to be remeshed

- Two criteria must be considered:
 - Load-balance according to the remesher workload
 - Minimize communication
- · Requires partitioning with fixed vertices

Innía

Results to date

Inría

François Pellegrini - Pole 3: Discrete data structures - January 13, 2015

Features of PaMPA 1.0

- Description of distributed unstructured meshes
 - With values attached to enriched graph vertices
- · Data exchange with overlap of any width
 - Point-to-point or collective communication
- · Iterators to loop over entities and sub-entities
- Parallel partitioning and redistribution
 - Renumbering for cache miss reduction
- Parallel mesh I/O
- · Parallel remeshing based on a sequential remesher

Example: Solve system (Jacobi) (1/2)

```
UaPrec = 0. ! Suppose A = L + D + U, system to solve : A = b
CALL PAMPAF_dmeshltlnit(dm, ENTITY_NODE, ENTITY_NODE, it_ngb, ierr)
DO irelax = 1. Nrelax
           = 0
  res
 CALL PAMPAF_dmeshltInitStart(dm, ENTITY_NODE, PAMPAF_VERT_BOUNDARY, it_vrt, ierr)
 DO WHILE (PAMPAF_itHasMore(it_vrt))
    is = PAMPAF_itCurEnttVertNum(it_vrt)
   CALL PAMPAF_dmeshMatLineData(dm, ENTITY_NODE, is, I1, I1Fin, ierr)
   CALL PAMPAF_itStart( it_ngb, is, ierr)
   res0
           = RHS(is)
                                                l res0 = b
   iv = i1
   DO WHILE (PAMPAF_itHasMore(it_ngb))
     is = PAMPAF_itCurEnttVertNum(it_nab)
     PAMPAF_itNext(it_ngb)
     res0 = res0 - MatCSR%Vals(iv) * UaPrec(is) ! res0 = b - (L + U) x^n
     iv = iv + 1
   END DO
   Ua(is) = res0 / MatCSR%Diag(is) / x^n + 1 = (b - (L + U) x^n)/D
   PAMPAF_itNext(it_vrt)
 END DO
```

CALL PAMPAF_dmeshHaloValueAsync(dm, ENTITY_NODE, PAMPA_TAG_SOL, req, ierr)

Francois Pellegrini – Pole 3: Discrete data structures – January 13, 2015

Innía

Example: Solve system (Jacobi) (2/2)

```
CALL PAMPAF_dmeshltInitStart(dm, ENTITY_NODE, PAMPAF_VERT_INTERNAL, it_vrt, ierr)
DO WHILE (PAMPAF_itHasMore(it_vrt))
  is = PAMPAF_itCurEnttVertNum(it_vrt)
 CALL PAMPAF_dmeshMatLineData(dm, ENTITY_NODE, is, I1, I1Fin, ierr)
 CALL PAMPAF_itStart( it_ngb, is, ierr)
  res0
         = BHS(is)
                                                l res0 = b
  iv = i1
 DO WHILE (PAMPAF_itHasMore(it_ngb))
    is = PAMPAF_itCurEnttVertNum(it_nab)
    PAMPAF_itNext(it_ngb)
    res0 = res0 - MatCSR%Vals(iv) * UaPrec(js) ! res0 = b - (L + U) x^n
    iv = iv + 1
 FND DO
 Ua(is) = res0 / MatCSR%Diag(is)
                                               !x^{n+1} = (b - (L + U)x^{n})/D
 PAMPAF_itNext(it_vrt)
FND DO
CALL PAMPAF_dmeshHaloWait(reg, ierr)
LlaPrec
          = 11a
```

- January 13, 2015

END DO ! end loop on irelax

Parallel remeshing test cases

Anisotropic mesh

Parallel remeshing on an isotropic mesh

Cardon Cardon	PaMPA-MMG3D	
	on 240	on 480
	processors	processors
Initial number of elements	27 044 943	
Used memory (kb)	651 185 792	542 832 960
Elapsed time	00h34m59s	00h29m03s
Elapsed time \times number procs	139h56m	232h24m
Final number of elements	609 671 387	612 426 645
Smallest edge length	0.2911	0.1852
Largest edge length	8.3451	7.3611
Worst element quality	335.7041	190.4122
Element quality between 1 and 2	98.92%	98.97%
Edge length between 0.71 and 1.41	97.20%	97.39%

Ínría

Industrialization of PaMPA

- Several Inria teams and groups already use PaMPA
 - Bacchus & Cagire: AeroSol solver framework for fluid dynamics
 - Castor: Plato prototype solver
 - Num3sis: Prototype interfacing work
- Industrial interest in parallel remeshing
 - CD Adapco, Dassault, Airbus, etc.
- · Project in progress with involvement of DTI
 - Release as GPL'd free software
 - Creation of a community
 - Creation of a start-up?

4

Perspectives

Ínría

François Pellegrini - Pole 3: Discrete data structures - January 13, 2015

Perspectives

- PaMPA is now ready for solver software development
 - Testbed for the tuning of TADaaM works on mapping
- Development of (PT-)Scotch is going on
 - PhD on multi-constraint partitioning started on 08/12/2014 (CEA/DAM funding, as "Projet Phare")
 - Works with HiePACS on specific partitioning and ordering algorithms
- PIA ELCI ("Bull")
 - Scalability studies of PT-Scotch and PaMPA
 - Man-powered by C. Lachat
- H2020 "AltExa" project submitted
 - With Inria teams HiePACS, ROMA and KIT, TU. Vienna, U. Utrecht, ETH Zürich