
Pole 3 Optimization of Performance
Runtime Support

IPL C2S@Exa Mid-Term Evaluation

Olivier Aumage, RUNTIME / STORM Team
INRIA BORDEAUX – SUD-OUEST

Jan. 13, 2015



Pole 3

Optimization of Performance

Numerical data set processing support
– Partitioning, repartitioning, re-meshing
– See F. Pellegrini talk

Runtime support
– Running and scheduling applications on heterogeneous platforms

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 2



Pole 3 / Runtime Support

Context and objectives

Task scheduling on heterogeneous platforms
– Accelerated nodes, clusters

Distributed data management

Scalability

Portability of performance

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 3



Heterogeneous Parallel Platforms

Heterogeneous Association

General purpose processor

Specialized accelerator

Generalization
Combination of various units

– Latency-optimized cores
– Throughput-optimized cores
– Energy-optimized cores

Distributed cores
– Standalone GPUs
– Intel Xeon Phi (MIC)
– Intel Single-Chip Cloud (SCC)

Integrated cores
– Intel Haswell
– AMD Fusion
– nVidia Tegra

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 4



Runtime Support for Heterogeneous Platforms?

Multicores
– pthreads, OpenMP, TBB, ...

Accelerators
– Consensus on OpenCL?
– (Often) Pure offloading model

Hybrid models?
– The StarPU runtime system

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 5

M. 

CPU 

CPU 

CPU 

CPU M. *PU 

M. *PU 

 
 

Multicore 

OpenMP 

TBB 

Accelerators 

MPI 
Cilk ? 

 
 

OpenCL 
CUDA libspe 

ATI Stream 
? 



StarPU Programming Model: Sequential Task Submission

Express parallelism. . .

. . . using the natural program flow

Submit tasks asynchronously, in the sequential order of the program. . .

. . . let the runtime schedule the tasks in parallel on heterogeneous
computing units

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 6



Ex.: Sequential Task-Based Cholesky Decomposition

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 7

for (j = 0; j < N; j++) {
POTRF (RW,A[j][j]);
for (i = j+1; i < N; i++)

TRSM (RW,A[i][j], R,A[j][j]);
for (i = j+1; i < N; i++) {

SYRK (RW,A[i][i], R,A[i][j]);
for (k = j+1; k < i; k++)

GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]);

}
}
__wait__();

Kernel tasks submitted asynchronously

Data dependences determined implicitely

A graph of tasks is built

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK



StarPU Execution Model: Task Scheduling

Mapping the graph of tasks (DAG) on the hardware

Allocating computing resources

Enforcing dependency constraints

Handling data transfers

Adaptiveness

A single DAG enables multiple schedulings

A single DAG can be mapped on multiple platforms

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 8

M. GPU M. GPU 

CPU 

CPU 

CPU 

CPU 
CPU 

CPU 

CPU 

CPU 

Time 



Development and Results

Programming Support
OpenMP 4.0 compiler: Klang-OMP

– Inria RUNTIME and MOAIS
OpenCL back-end

– Planned cooperation Inria RUNTIME and TONUS

Platform Support
Distributed Computing: StarPU-MPI

– Inria RUNTIME and HIEPACS, CEA CESTA

Out-of-core support
Simulation support

– Inria RUNTIME, MESCAL and CEPAGE/REALOPT

Scheduling Support
Composition and scheduling contexts

– Inria RUNTIME and HIEPACS
Component models

– Inria RUNTIME and AVALON, CEA Cadarache, Maison de la Simulation

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 9



Klang-omp OpenMP C/C++ Compiler

Translate directives into runtime system API calls
StarPU Runtime System
XKaapi Runtime System (INRIA Team MOAIS)
See also Thierry Gautier’s talk (MOAIS, Pole 4)

ADT K’Star
Engineer Pierrick Brunet (start 9/2013, 2 year, Montbonnot)
Engineer Philippe Virouleau (end 11/2014, 1 year, Montbonnot)
Engineer Samuel Pitoiset (start 11/2014, 1 year, Bordeaux)

– port of Inria HIEPACS ScalFMM application on top of the compiler
Status

LLVM-based source-to-source compiler
– Builds on open source Intel compiler clang-omp

OpenMP 3.1
– Virtually full support

OpenMP 4.0
– Dependent tasks
– Heterogeneous targets (on-going work)

K’Star project website – http://kstar.gforge.inria.fr/

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 10

http://kstar.gforge.inria.fr/


Klang-omp OpenMP C/C++ Compiler

Translate directives into runtime system API calls
StarPU Runtime System
XKaapi Runtime System (INRIA Team MOAIS)
See also Thierry Gautier’s talk (MOAIS, Pole 4)

ADT K’Star
Engineer Pierrick Brunet (start 9/2013, 2 year, Montbonnot)
Engineer Philippe Virouleau (end 11/2014, 1 year, Montbonnot)
Engineer Samuel Pitoiset (start 11/2014, 1 year, Bordeaux)

– port of Inria HIEPACS ScalFMM application on top of the compiler

Status
LLVM-based source-to-source compiler

– Builds on open source Intel compiler clang-omp
OpenMP 3.1

– Virtually full support
OpenMP 4.0

– Dependent tasks
– Heterogeneous targets (on-going work)

K’Star project website – http://kstar.gforge.inria.fr/

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 10

http://kstar.gforge.inria.fr/


Klang-omp OpenMP C/C++ Compiler

Translate directives into runtime system API calls
StarPU Runtime System
XKaapi Runtime System (INRIA Team MOAIS)
See also Thierry Gautier’s talk (MOAIS, Pole 4)

ADT K’Star
Engineer Pierrick Brunet (start 9/2013, 2 year, Montbonnot)
Engineer Philippe Virouleau (end 11/2014, 1 year, Montbonnot)
Engineer Samuel Pitoiset (start 11/2014, 1 year, Bordeaux)

– port of Inria HIEPACS ScalFMM application on top of the compiler
Status

LLVM-based source-to-source compiler
– Builds on open source Intel compiler clang-omp

OpenMP 3.1
– Virtually full support

OpenMP 4.0
– Dependent tasks
– Heterogeneous targets (on-going work)

K’Star project website – http://kstar.gforge.inria.fr/

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 10

http://kstar.gforge.inria.fr/


SOCL Layer – StarPU as an OpenCL Backend

SOCL Rationale
Run generic OpenCL codes. . .
. . . on top of StarPU

Technical details
StarPU as an OpenCL backend

– ICD: Installable Client Driver

Redirects OpenCL calls. . .
. . . to StarPU routines

Kernels
SOCL can itself use OpenCL Kernels

Partnership
Planned cooperation with Inria Team TONUS (Pole 2) to port the CLAC
code on SOCL

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 11

StarPU 

CPU 
cores 

StarPU OpenCL layer 

GPU OpenCL 
devices 

Drivers OpenCL 

Generic OpenCL Applications 



Distributed Computing: StarPU-MPI

Summary: Interoperability between StarPU and MPI

On-going work

Ph.D thesis Marc Sergent (INRIA RUNTIME + CEA CESTA, Region
Aquitaine Grant)

Related partnerships and works

ADT HPC Collective (engineer Florent Pruvost)
MORSE associated team (Inria HIEPACS, Inria RUNTIME, UTK)

– Chameleon library port on top of StarPU-MPI

ANR SOLHAR

DGA RAPID Hi-BOX with Airbus Group and Imacs

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 12



Distributed Computing: StarPU-MPI

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 13

Extending StarPU’s Paradigm on Clusters

No global scheduler

Task ↔ Node Mapping

Provided by the application

Can be altered dynamically

Communications
Inferred from the task graph

– Dependencies

Automatic Isend and Irecv calls
POTRF

GEMM

TRSM

SYRK

Isend

Irecv

node1

node0



Out-of-Core

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 14

Storing temporarily unused StarPU data
on disk

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies

– Data reloaded automatically

Multiple disk drivers supported

Legacy stdio/unistd methods
Google’s LevelDB

– (key/value database library)

Disk

GPU1CPU

CPU GPU0

MEM



Simulation with SimGrid

Scheduling without executing kernels
Requires the SimGrid simulation environment
Enables simulating large-scale scenarios

– Large data sets
– Large simulated hardware plaform

Relies on real performance models. . .

. . . collected by StarPU on a real machine

Enables fast experiments when designing application algorithms

Enables fast experiments when designing scheduling algorithms

Partnerships
Inria RUNTIME, MESCAL and CEPAGE/REALOPT

ANR SONGS

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 15



Composition: Scheduling contexts

Rationale
Sharing computing resources. . .

. . . among multiple DAGs

. . . simultaneously

Composing codes, kernels

Scheduling contexts
Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context

Partnerships
Inria RUNTIME, HIEPACS

ANR SOLHAR

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 16

Context 1 

Context 2 



Components: new C2S@Exa Ph.D.

Objectives
Software component model with task scheduling

. . . for many-core based parallel architectures

. . . applied to the Gysela5D code

Ph.D. student Jérôme Richard (started 11/2014)

Participants
Inria AVALON and RUNTIME

Maison de la Simulation, CEA Cadarache

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 17



Conclusion: C2S@Exa – Pole 3 / Runtime Support

StarPU Design
Sequential task submission
Inferred dependencies
Heterogeneous, parallel scheduler
Distributed shared memory

Results
Runtime support for high level programming
Runtime support for heterogeneous nodes, clusters and out-of-core
Runtime support for scheduler composition and code coupling
Runtime support for scheduling algorithm design and simulation

On-going work
with Pole 1: scalability, support for numerical algebra, interoperability
with Pole 4: OpenMP compiler, component model, programmability
Planned application ports

– Gysela5D (C2S@Exa driving application)
– ScalFMM
– CLAC

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 18



Conclusion: C2S@Exa – Pole 3 / Runtime Support

StarPU Design
Sequential task submission
Inferred dependencies
Heterogeneous, parallel scheduler
Distributed shared memory

Results
Runtime support for high level programming
Runtime support for heterogeneous nodes, clusters and out-of-core
Runtime support for scheduler composition and code coupling
Runtime support for scheduling algorithm design and simulation

On-going work
with Pole 1: scalability, support for numerical algebra, interoperability
with Pole 4: OpenMP compiler, component model, programmability
Planned application ports

– Gysela5D (C2S@Exa driving application)
– ScalFMM
– CLAC

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 18



Conclusion: C2S@Exa – Pole 3 / Runtime Support

StarPU Design
Sequential task submission
Inferred dependencies
Heterogeneous, parallel scheduler
Distributed shared memory

Results
Runtime support for high level programming
Runtime support for heterogeneous nodes, clusters and out-of-core
Runtime support for scheduler composition and code coupling
Runtime support for scheduling algorithm design and simulation

On-going work
with Pole 1: scalability, support for numerical algebra, interoperability
with Pole 4: OpenMP compiler, component model, programmability
Planned application ports

– Gysela5D (C2S@Exa driving application)
– ScalFMM
– CLAC

Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 18



Olivier Aumage, RUNTIME / STORM Team – C2S@Exa Pole 3 Runtime Support 19

Thanks for your attention.

StarPU

Web Site: http://runtime.bordeaux.inria.fr/starpu/

SVN Repository: http://gforge.inria.fr/projects/starpu/

LGPL License

Open to external contributors

http://runtime.bordeaux.inria.fr/starpu/
http://gforge.inria.fr/projects/starpu/

