DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

High-performance tools to model instabilities in tokamak plasmas

JOREK & GYSELA

JOREK: M. Becoulet, G. Dif-Pradalier, A. Fil, V. Grandgirard, <u>G. Latu</u>, E. Nardon, F. Orain, C. Passeron, A. Ratnani, C. Reux Collaborations with: INRIA, IPP, ITER Org., french Universities

GYSELA: J. Bigot, G. Dif-Pradalier, D. Estève, V. Grandgirard, X. Garbet, Ph. Ghendrih, <u>G. Latu</u>, C. Passeron, Y. Sarazin, F. Rozar Collaborations with: INRIA, IPP, french Universities

- JOREK code (modelling non linear MHD)
 - Context, Results & work in progress
- GYSELA code (modelling transport & ITG turbulence)
 - Context, Results & work in progress
- Perspectives

JOREK: motivation ELMs

Extracted from [Liang Yunfeng, 2010]

- Physics: ELM cycle & control, Disruptions
 - ELMs [G. Dif-Pradalier, M. Bécoulet, S. Pamela]
 - Resonant Magnetic Perturbations (RMPs) [M. Bécoulet, F. Orain]
 - Pellets injection [G. Huijsmans, S. Futatani]
 - VDE, β limit disruptions, density limit [C. Reux, E. Nardon, A. Fil]
- Realistic geometry (X-point)
 - Cubic finite elements, flux aligned poloidal grid
 - Fourier series in toroidal direction
 - Fluid description (3D), 6 to 8 variables per grid point
 - Numerical scheme: solve a large sparse linear system
- Challenges to improve handled Physics
 - exact geometry** & boundary conditions**
 - ▶ non-linear MHD equ. in toroidal geometry over long time scales^{*} ($\mu s \rightarrow s$)
 - realistic physical variables*** [resistivity, parallel conductivity, collisionality]
 - large number of n-modes***, coupling with background turbulence?

- Physics studies: Production code for non-linear MHD use Tier-2, Tier-1, Tier-0 facilities
- Mathematical issues:
 - \rightarrow Mesh, robustness, convergence
 - \rightarrow large costs (memory, computation)
- Parallel computing issues:
 - $\rightarrow\,$ Rely on sparse linear solver depends on performance: Pastix, Mumps
 - \rightarrow Save memory space (larger cases)
- Collaborative issues:
 - \rightarrow Modify a single code, ensure correct results

- Physics: CEA, ITER, IPP (Germany), JET(UK), ... Eurofusion funding (H2020)
- Mathematical bottlenecks: convergence, large cases
 - → IRFM, IPP Garching, INRIA TONUS, INRIA CASTOR: preconditioner, time scheme (convergence) other finite elem. (robustness/accuracy/stability) isogeometric analysis (reduced costs)
- Parallel computing bottlenecks: large cases, new arch.
 - \rightarrow INRIA HIEPACS + IRFM (ANR ANEMOS):
 - improve coupling Jorek/Pastix, save memory space
 - \rightarrow IPP + IRFM
 - porting matrix construction on Xeon Phi
- Parallel code issues: maintain a healthy code
 - $\rightarrow\,$ automatize checks, regression tests on parallel machines

Aim: Reduce memory peak, improve mem. scalability

- Pb: Memory required to centralize/redistribute matrix
- Solution: distributed API Murge (reduce memory peak)
- ► Adapting/Improving Jorek&Murge [~> Hiepacs, X. Lacoste]

Simulation model 302 - (ntor=15,nflux=32,ntheta=48) using MPI_THREAD_MULTIPLE mode:

Nb cores	128	256	512	1024
Nb nodes	8	16	32	64
Steps				
construct_matrix	15.3	7.7	4.1	2.2
factorisation	0.	0.	0.	0.
gmres/solve	3.0	1.7	1.2	0.86
iteration time	18.6	9.7	5.6	3.4
rel. efficiency	100%	96%	83%	68%

Table : one iteration - with no Factorization

- Good result: 68% rel. efficiency (whole code) at 1024 cores
- Pb: MPI_THREAD_MULTIPLE is not available on many machines
 - \rightarrow Exec time **multiplied** by a factor 2 to 4

Turbulence limits the maximal value reachable for n and T

- Generates loss of heat and particles
- \blacksquare \searrow Confinement properties of the magnetic configuration
- To predict and control turbulence for optimizing experiments like ITER and future reactors is a subject of utmost importance.

- Kinetic approach: 6D distribution function of particles $f(r, \theta, \varphi, v_{\parallel}, v_{\perp}, \alpha)$
- Gyrokinetic codes:
 - ► fusion plasma turbulence is low frequency $\omega_{\text{turb}} \sim 10^5 s^{-1} \ll \omega_{ci} \sim 10^8 s^{-1}$
 - \hookrightarrow Reduced to 5D distrib. function $f(r, \theta, \varphi, v_{\parallel}, \mu)$

Reduced memory needs but increased complexity

Main features in GYSELA (Gyrokinetic Semi-Lagragian code):

- Main equations: Vlasov 5D, Poisson 3D (quasineutrality)
- Gyrokinetic setting (5D = 3D space + 2D velocity)
- ITG driven turbulence
- Heat & vorticity sources, flux driven
- Collisional operator
- Modelling fast particles
- Adiabatic electron response

A Gysela Result 3A: Scalability and bottlenecks

Strong scaling: $N_r = 512$, $N_{\theta} = 512$, $N_{\varphi} = 128$, $N_{v||} = 128$

- Time dominated by Vlasov solver
- Bottleneck at large scale: Poisson solver, IO
 ≈ 60% efficiency at 64 k cores on machines: Curie and Turing
 G. Latu CEA-IRFM, C2S@Exa ↔ 13/01/15

Gysela Result 3B: Weak scaling on Juqueen

- Many communication schemes rewritten (hierarchical gather/scatter)
- Tests performed on the whole Jugueen/Blue Gene machine (Juelich)

- Weak scaling: Relative efficiency of 91% on 458752 cores (2013)
 - PRACE preparatory access (April 2012 Nov 2012): 250 000 hours
 - Extra CPU allocation (via P. Gibbon in 2013 / ANR G8-Exascale) G. LATU

Gysela Result 4A: Model memory consumption

- ► GYSELA is global → Huge meshes → Constrained by memory per node
- Development of the **MTM library** (Modelization & Tracing Memory consumption)
 - Identify memory peak, look at memory scalability

Static to dynamic memory alloc. + improvement of algorithms
 Gain of factor 50% on 32k cores

Consumption Gysela Result 4B: Predict memory consumption

Thanks to MTM library (Modelization & Tracing Memory consumption)

- a) Instrument your code with MTM, run a small case
- (b) Run a virtual scaling (predict mem. required before submit)
- (c) Never run out of memory !

- Context
 - Number of cores in supercomputers increases very fast
 - Fault tolerance needed for long-running, large-scale codes
 - Current options: replication, or checkpoint/restart
- ► Cheaper checkpoints, reduced exec. time I actual pb
- FTI: Fault Tolerance Interface (INRIA & Argonne)
 - register data part of the application state
 - notify the library when in a consistent state
- FTI strategy: take advantage of node-local SSDs (curie)
 Level 1 checkpoint to local SSD only (transient errors)
 Level
- Level 4 checkpoint to SSD + Asynchronous copy to PFS

Checkpoint writing is overlaped by computations

Méthode synchrone

- Méthode asynchrone
- FTI uses also asynchronous writing

- ► FTI has been integrated in Gysela ⇒ modularization of existing code
- Weak scaling benchs are currently running (FTI) we pb of reproductibility

- Should we trust our parallel codes ?
 - Many parallel computations, undeterminism of execution
 - Many possible input parameter sets, many parallel systems
 - Bugs introduced by developers
- Solution (using http://ci.inria.fr)
 - At every commit: compilation test
 - Compile every variant of the code
 - On multiple compilers/architectures
 - On multiple supercomputers
 - At every commit: launch cases (work-in-progress)
 - Run multiple test-cases on multiple supercomputers
 - Compare results with stored reference
 - Regularly: large-scale validation tests (TODO)
 - Run large test-cases
 - Analyze parallel performance
 - Validate results with known physical reference

- Improving Jorek parallel performances (INRIA HIEPACS)
- New preconditioners, time integration scheme for Jorek (INRIA TONUS, CASTOR)
- Parallelization of a new gyroaverage operator in Gysela (INRIA TONUS, HIEPACS)
- Software components and StarPU approaches for Gysela (INRIA AVALON, RUNTIME)
- Thread & mem. affinity for deploying complex parallel codes (INRIA HIEPACS, RUNTIME)
- Designing parallel kernels for 6D Vlasov equation (INRIA KALIFFE)
- Porting and developing new Gysela kernels for Xeon Phi (Japan collaboration, INTEL Exascale labs)
- Improved parallel I/O ...