
1

Parallelizing
the Traces software

Rachid El khaoulani El idrissi

December 2013

Inria Project Lab C2S@Exa

2

Context & Motivation

Parallelizing the Traces software

� To make more realistic and reliable studies

� To take advantage from computing capabilities

� Long-term performance and safety assessment

� Large-size domains have to be dealt with

Large-scale problems in both points of view: spatial and temporal

Traces: numerical simulation of radio-active waste storage in profound geological layers

� Hydraulic: single-phase flow in porous media

� Transport: migration of radioactive waste in porous media

Two sorts of problem can be treated: Pre-processing

Hydraulic

Transport

Post-processing

T
im

e loop

3

Outline

1. Hydraulic problem

2. Distributed-memory parallelism

A. MPI-based model

B. Mesh partitioning

C. Parallel assembling and resolving

D. Performance evaluation

3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

4. Conclusion

4

Outline

1. Hydraulic problem

2. Distributed-memory parallelism

A. MPI-based model

B. Mesh partitioning

C. Parallel assembling and resolving

D. Performance evaluation

3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

4. Conclusion

5

Hydraulic: Mathematical Model

()

.

u
s div q s u f

t
q D u

λ∂ = − − +
∂
= ∇

Mass balance equation

Darcy’s law

 hydraulic charge

 filtration velocity

u

q
Unknowns

Parameters
 hydraulic conductivity

 storage coefficient

 source/sink term

 a kinetic term

D

s

f

λ

� Temporal discretization: implicit
� Spatial discretization: Mixed Hybrid Finite Element Method

� Algebraic linear system whose unknowns are associated to the mesh faces

� Parallel assembling and resolving of the resulting linear algebraic
system is the most challenging part of the hydraulic problem

6

Outline

1. Hydraulic problem

2. Distributed-memory parallelism

A. MPI-based model

B. Mesh partitioning

C. Parallel assembling and resolving

D. Performance evaluation

3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

4. Conclusion

7

Distributed-memory parallelism

Distributed-memory architecture

● Private memory

● Data transfer should be programmed explicitly

� Mesh partitioning

� Message passing programming through MPI standard

Parallelization method

8

Outline

1. Hydraulic problem

2. Distributed-memory parallelism

A. MPI-based model

B. Mesh partitioning

C. Parallel assembling and resolving

D. Performance evaluation

3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

4. Conclusion

9

Unstructured mesh partitioning

Partitioning software: Metis, Scotch

� Partitioning of mesh nodes

� Partitioning of mesh faces (edges in 2D)

� Neighboring relations between MPI-processes

Static, non-overlapping and homogeneous partitioning

� New input file

� Distributed data

Mapping of the mesh elements: divide mesh elements into groups of elements

10

Mesh partitioning

Non-overlapping homogeneous mesh partitioning

Partitioning
made by Metis

11

Communication lists

Communication list: list of the local numbers of the common faces in each couple of neighbors

[neighbor1, neighbor2] � [(neighbor1,list1) , (neighbor2,list2)]

Matched lists

0 1

23

Transferring only 4 messages of integers to build matched communication lists

There are as many messages as the number of couples of neighbors

4 couples of neighbors

4 messages transferred

12

Outline

1. Hydraulic problem

2. Distributed-memory parallelism

A. MPI-based model

B. Mesh partitioning

C. Parallel assembling and resolving

D. Performance evaluation

3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

4. Conclusion

13

The Hypre librairy

What is Hypre?

Software library of high performance preconditioners and solvers for the
solution of large, sparse linear systems on massively parallel computers

Krylov space solvers

� Symmetric system: Conjugate Gradient

� Asymmetric system: GMRES, Bi-Conjugate Gradient stabilized …

How to use Hypre

Linear-Algebraic System interface (IJ)

Preconditioners

Algebraic Multigrid, ILU(k), Block Jacobi ILU(k), Diagonal …

14

Hypre-Traces interfacing

Distributed data form

Matrices are assumed to be distributed across the MPI-Processes by contiguous blocks of rows

1

0

1

.

.

p

A

A

A

A −

 
 
 
 =
 
 
  
 

Hypre defines a new numbering of the DOF

0The DOF 1 to reside in M PI-Process 0 n

0 1The DOF +1 to reside in M PI-Process 1n n

1The DOF +1 to reside in M PI-Process k kn n k−

� Hypre defines its own numbering of the DOF

� Hypre requires a mapping of the DOF on the MPI-Processes

� MPI-Processes define actual blocks of the system for Hypre independently

Main points

15

Matrix parallel assembling

Partitioning

Proc 1 Proc 0

Proc 1 Proc 0

Proc 1 Proc 0

For each DOF in common

� From process 1 to process 0: 4 Coefficients + 4 indices

� Two messages are transferred

16

Matrix parallel assembling

Each MPI-Process computes its own FE matrix then transmits it to Hypre

DOF
in common

1 2 3. . . .α α α α

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 3. . . .β β β β

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

1 2 3. . . .β β β β

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

1 2 3 1 2 3.α α α α β β β β

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

+

17

Matrix parallel assembling

Partitioning

Proc 1 Proc 0

Proc 1 Proc 0

Process 0 sends the Hypre numbering of the DOF in common to process 1

� One message of integers from process 0 to process 1

Process 1 needs the column number j
from the process 0 to put correctly the
coefficient aij in the Hypre matrix

i

j

18

Hypre: solving

Choice a solver and its parameters, preconditioner…

Get the solution from Hypre and adapt it to the Traces numbering

Parallel assembling and transmitting the RHS to Hypre

Define an initial guess of the solution …

1

0

1

.

.

p

RHS

RHS

RHS

RHS −

 
 
 
 =
 
 
  
 

19

Outline

1. Hydraulic problem

2. Distributed-memory parallelism

A. MPI-based model

B. Mesh partitioning

C. Parallel assembling and resolving

D. Performance evaluation

3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

4. Conclusion

20

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

1048015,7652516

PCG / DS

1048019.742020

104807,911045.578

104804.012062.64

10480241242

104808272.11

Number of
iterations

Speed-upCPU Time(s)

Solve+Setup
Number of

MPI-Processes

Setup
� Parallel passing of the linear system to Hypre

� Hypre’s setup

Validation of parallel interfacing
of Traces and Hypre software

Performance: PCG/DS

21

215116.0428216

Number of
iterations

Speed-upCPU Time(s)

Solve+Setup

Number of

MPI-Processes

PCG/Block Jacobi-ILU(1)

218419.85227.8720

21188.04162.58

21014.0711114

20962.0322222

208345241

Performance: PCG/ Block Jacobi - ILU(1)

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

22

21226.8816

214.0422.920

26.5649.018

23.5790.054

21.83175.562

2321.521

Number of
iterations

Speed-upCPU Time(s)
Solve+Setup

Number of

MPI-Processes

PCG / AMG

Performance: PCG/AMG

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

23

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

14.0419.8519.720

1216.0415,7616

6.568.047,918

3,574.074.014

1,832.0322

1

Speed-upCPU Time(s)

Solve+Setup

Speed-upCPU Time(s)
Solve+Setup

Speed-upCPU Time(s)

Solve+Setup
Number of

MPI-Processes

PCG / AMG
PCG / Block

Jacobi - ILU(1)PCG / DS

PCG/AMG is less scalable than PCG/DS and PCG/Block Jacobi - ILU(1)

Performance: comparison

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

24

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

26.8828252516

22.9227.8742020

49.01162.51045.578

90.0511112062.64

175.5622224121.62

321.5245248272.11

Speed-upCPU Time(s)

Solve+Setup

Speed-upCPU Time(s)
Solve+Setup

Speed-upCPU Time(s)

Solve+Setup
Number of

MPI-Processes

PCG / AMG
PCG / Block

Jacobi-ILU(1) PCG / DS

Performance: comparison

PCG/AMG is less scalable than PCG/DS and PCG/Block Jacobi-ILU(1)
However
It is more efficient in bringing down the CPU Time Than the others

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

25

Outline

1. Hydraulic problem

2. Distributed-memory parallelism

A. MPI-based model

B. Mesh partitioning

C. Parallel assembling and resolving

D. Performance evaluation

3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

4. Conclusion

26

Multi-threading parallelism

Shared-memory architecture

● Memory may be accessed concurrently

● Threads communicate with each other by
reading and writing in the shared memory

� Industry standard for shared-memory programming

� It’s an API to realize multi-treaded parallelism

OpenMP: Open Multi-Processing

27

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

OpenMP performance

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

PCG / DS

1.445752.198

1.415865.814

1.386003.692

8263.11

Speed-upCPU Time(s)

Solve
Number of
threads

PCG / AMG

1.67186.728

1.63191.584

1.46213.782

312.491

Speed-upCPU Time(s)

Solve
Number of
threads

Multi-threading performances aren’t satisfying in the current version

Significant reduction of the CPU time is obtained

Intel Xeon , 1 NUMA, 8 cores, 2666 Mhz, 16GB of RAM

28

Solver: Preconditioned Conjugate Gradient PCG/DS, Convergence tolerance 1e-10

Combined OpenMP-MPI parallelism

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

Combined OpenMP-MPI model

27.39

22.08

10.86

5.45

2.75

Speed-up

760.9728

374.17216

301.73

1516.84

3005.69

8263.1

CPU Time(s)

Solve

220

24

22

11

Number of
threads

Number of

MPI-Processes

Performance of the combined model unites MPI-based
and OpenMP-based models performances

19.7

15.76

7.91

4.01

2

Speed-up
MPI-model

27.27

21.75

10.91

5.53

2.76

X 1.38 =

The speed-up obtained by OpenMP-model
using 2 threads

29

Outline

1. Hydraulic problem

2. Distributed-memory parallelism

A. MPI-based model

B. Mesh partitioning

C. Parallel assembling and resolving

D. Performance evaluation

3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

4. Conclusion

30

Conclusion

� Hydraulic problem has been parallelized using MPI and Hypre librairies

� Scotch and Metis were used to perform mesh partitioning

� Distributed data form

� Shared-memory and combined parallelims are well in progress

� Other Parallel solvers of linear systems can be easily interfaced with
TRACES software

