

Inria Project Lab C2S@Exa

Parallelizing the Traces software

Rachid El khaoulani El idrissi

December 2013

Context & Motivation

<u>Traces</u>: numerical simulation of radio-active waste storage in profound geological layers

Two sorts of problem can be treated:

- Hydraulic: single-phase flow in porous media
- Transport: migration of radioactive waste in porous media

Large-scale problems in both points of view: spatial and temporal

- Long-term performance and safety assessment
- Large-size domains have to be dealt with

Parallelizing the Traces software

- To make more realistic and reliable studies
- To take advantage from computing capabilities

- 1. Hydraulic problem
- 2. Distributed-memory parallelism
 - A. MPI-based model
 - B. Mesh partitioning
 - C. Parallel assembling and resolving
 - D. Performance evaluation
- 3. Shared-memory and combined parallelisms
 - A. OpenMP-based model
 - B. Numerical results

1. Hydraulic problem

- 2. Distributed-memory parallelism
 - A. MPI-based model
 - B. Mesh partitioning
 - C. Parallel assembling and resolving
 - D. Performance evaluation
- 3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

Hydraulic: Mathematical Model

$\begin{cases} s \frac{\partial u}{\partial t} = -div(q) - s\lambda u + f & \text{Mass balance equation} \\ q = D.\nabla u & \text{Darcy's law} \end{cases}$

Unknowns

Parameters

- *u* hydraulic charge
- q filtration velocity
- D hydraulic conductivity
- *s* storage coefficient
- f source/sink term
- λ a kinetic term
- Temporal discretization: implicit
- Spatial discretization: Mixed Hybrid Finite Element Method
- \rightarrow Algebraic linear system whose unknowns are associated to the mesh faces

 \rightarrow Parallel assembling and resolving of the resulting linear algebraic system is the most challenging part of the hydraulic problem

1. Hydraulic problem

2. Distributed-memory parallelism

A. MPI-based model

- B. Mesh partitioning
- C. Parallel assembling and resolving
- D. Performance evaluation
- 3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

Distributed-memory architecture

- Private memory
- Data transfer should be programmed explicitly

Parallelization method

- Mesh partitioning
- Message passing programming through MPI standard

1. Hydraulic problem

2. Distributed-memory parallelism

A. MPI-based model

B. Mesh partitioning

C. Parallel assembling and resolving

D. Performance evaluation

3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

Unstructured mesh partitioning

Static, non-overlapping and homogeneous partitioning

Partitioning software: Metis, Scotch

Mapping of the mesh elements: divide mesh elements into groups of elements

- Partitioning of mesh nodes
- Partitioning of mesh faces (edges in 2D)
- Neighboring relations between MPI-processes

 \rightarrow New input file

 \rightarrow Distributed data

Mesh partitioning

Non-overlapping homogeneous mesh partitioning

Communication lists

Communication list: list of the local numbers of the common faces in each couple of neighbors

Transferring only 4 messages of integers to build matched communication lists There are as many messages as the number of couples of neighbors ¹¹

1. Hydraulic problem

- 2. Distributed-memory parallelism
 - A. MPI-based model
 - B. Mesh partitioning
 - C. Parallel assembling and resolving
 - D. Performance evaluation
- 3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

The Hypre librairy

What is Hypre?

Software library of high performance preconditioners and solvers for the solution of **large**, **sparse linear systems** on massively parallel computers

Krylov space solvers

- Symmetric system: Conjugate Gradient
- Asymmetric system: GMRES, Bi-Conjugate Gradient stabilized ...

Preconditioners

Algebraic Multigrid, ILU(k), Block Jacobi ILU(k), Diagonal ...

How to use Hypre

Linear-Algebraic System interface (IJ)

Distributed data form

Matrices are assumed to be distributed across the MPI-Processes by contiguous blocks of rows

Hypre defines a <u>new numbering</u> of the DOF The DOF 1 to n_0 reside in MPI-Process 0 The DOF n_0+1 to n_1 reside in MPI-Process 1 The DOF $n_{k-1}+1$ to n_k reside in MPI-Process k

Main points

- Hypre defines its own numbering of the DOF
- Hypre requires a mapping of the DOF on the MPI-Processes
- MPI-Processes define actual blocks of the system for Hypre independently

Matrix parallel assembling

For each DOF in common

From process 1 to process 0: 4 Coefficients + 4 indices

 \rightarrow Two messages are transferred

Matrix parallel assembling

Each MPI-Process computes its own FE matrix then transmits it to Hypre

16

Matrix parallel assembling

Process 1 needs the column number j from the process 0 to put correctly the coefficient a_{ij} in the Hypre matrix

Process 0 sends the Hypre numbering of the DOF in common to process 1

 \rightarrow One message of integers from process 0 to process 1

Parallel assembling and transmitting the RHS to Hypre

Define an initial guess of the solution ...

Choice a solver and its parameters, preconditioner...

Get the solution from Hypre and adapt it to the Traces numbering

1. Hydraulic problem

- 2. Distributed-memory parallelism
 - A. MPI-based model
 - B. Mesh partitioning
 - C. Parallel assembling and resolving

D. Performance evaluation

3. Shared-memory and combined parallelisms

A. OpenMP-based model

B. Numerical results

Performance: PCG/DS

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

PCG / DS						
Number of MPI-Processes	CPU Time(s) Solve+Setup	Speed-up	Number of iterations			
1	8272.1		10480			
2	4124	2	10480			
4	2062.6	4.01	10480			
8	1045.57	7,91	10480			
16	525	15,76	10480			
20	420	19.7	10480			

Validation of parallel interfacing of Traces and Hypre software

Setup

Parallel passing of the linear system to Hypre

Hypre's setup

Performance: PCG/ Block Jacobi - ILU(1)

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

PCG/Block Jacobi-ILU(1)					
Number of MPI-Processes	CPU Time(s) Solve+Setup	Speed-up	Number of iterations		
1	4524		2083		
2	2222	2.03	2096		
4	1111	4.07	2101		
8	162.5	8.04	2118		
16	282	16.04	2151		
20	227.87	19.85	2184		

Performance: PCG/AMG

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

PCG / AMG					
Number of MPI-Processes	CPU Time(s) Solve+Setup	Speed-up	Number of iterations		
1	321.52		2		
2	175.56	1.83	2		
4	90.05	3.57	2		
8	49.01	6.56	2		
16	26.88	12	2		
20	22.9	14.04	2		

Performance: comparison

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

	PCG / Block PCG / DS Jacobi - ILU(Block ILU(1)	PCG / /	AMG	
Number of MPI-Processes	CPU Time(s) Solve+Setup	Speed-up	CPU Time(s) Solve+Setup	Speed-up	CPU Time(s) Solve+Setup	Speed-up
1						
2		2		2.03		1,83
4		4.01		4.07		3,57
8		7,91		8.04		6.56
16		15,76		16.04		12
20		19.7		19.85		14.04

PCG/AMG is less scalable than PCG/DS and PCG/Block Jacobi - ILU(1)

Performance: comparison

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

	PCG /	DS	PCG / Block Jacobi-ILU(1)		PCG / AMG	
Number of MPI-Processes	CPU Time(s) Solve+Setup	Speed-up	CPU Time(s) Solve+Setup	Speed-up	CPU Time(s) Solve+Setup	Speed-up
1	8272.1		4524		321.52	
2	4121.6		2222		175.56	
4	2062.6		1111		90.05	
8	1045.57		162.5		49.01	
16	525		282		26.88	
20	420		227.87		22.9	

PCG/AMG is less scalable than PCG/DS and PCG/Block Jacobi-ILU(1) However It is more efficient in bringing down the CPU Time Than the others

- 1. Hydraulic problem
- 2. Distributed-memory parallelism
 - A. MPI-based model
 - B. Mesh partitioning
 - C. Parallel assembling and resolving
 - D. Performance evaluation
- 3. Shared-memory and combined parallelisms
 - A. OpenMP-based model
 - B. Numerical results

Multi-threading parallelism

Shared-memory architecture

- Memory may be accessed concurrently
- Threads communicate with each other by reading and writing in the shared memory

OpenMP: Open Multi-Processing

- Industry standard for shared-memory programming
- It's an API to realize multi-treaded parallelism

OpenMP performance

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

Solver: Preconditioned Conjugate Gradient PCG, Convergence tolerance 1e-10

Intel Xeon , 1 NUMA, 8 cores, 2666 Mhz, 16GB of RAM

PCG / DS					
Number of threads	CPU Time(s) Solve	Speed-up			
1	8263.1				
2	6003.69	1.38			
4	5865.81	1.41			
8	5752.19	1.44			

PCG / AMG					
Number of threads	CPU Time(s) Solve	Speed-up			
1	312.49				
2	213.78	1.46			
4	191.58	1.63			
8	186.72	1.67			

Multi-threading performances aren't satisfying in the current version

Significant reduction of the CPU time is obtained

Combined OpenMP-MPI parallelism

Mesh: hexahedral, 2 506 140 elements, 7 591 723 faces

Solver: Preconditioned Conjugate Gradient PCG/DS, Convergence tolerance 1e-10

Combined OpenMP-MPI model			The speed-up of using 2 threads	obtained by Op s	enMP-mode	
Number of	Number of	CPU Time(s)	Speed-up	g	Â:	
MPI-Processes	threads	Solve		Speed-up		
1	1	8263.1		MPI-model		
2	2	3005.69	2.75	2		2.76
4	2	1516.84	5.45	4.01		5.53
8	2	760.97	10.86	7.91	X 1.38 =	10.91
16	2	374.17	22.08	15.76		21.75
20	2	301.73	27.39	19.7		27.27

Performance of the combined model unites MPI-based and OpenMP-based models performances

- 1. Hydraulic problem
- 2. Distributed-memory parallelism
 - A. MPI-based model
 - B. Mesh partitioning
 - C. Parallel assembling and resolving
 - D. Performance evaluation
- 3. Shared-memory and combined parallelisms
 - A. OpenMP-based model
 - B. Numerical results

- Hydraulic problem has been parallelized using MPI and Hypre librairies
- Scotch and Metis were used to perform mesh partitioning
- Distributed data form
- Shared-memory and combined parallelims are well in progress

 Other Parallel solvers of linear systems can be easily interfaced with TRACES software