EADS INNOVATION WORKS

HPC & Numerical Simulation

Sophia Antipolis, december 2013.

Guillaume SYLVAND

Outlines

- Presentation of EADS Innovation Works (IW)
- Activities in Numerical Simulation & HPC at IW
- Current projects & perspectives

What is EADS?

European Aeronautics Defense and Space Company

#1 in Europe, #2 in the World (behind Boeing)

EADS Business Units:

- Airbus / Airbus Military
- Astrium
- Cassadian (Defence & Se
- Eurocopter

Shareholder in MBDA

140.000 employees

56,5 Md€ revenue

EADS at a glance

Presentation

Innovation Works

Former CCR (in France)

Located in Suresnes (F), Ottobrun (G), Filton (UK), Getafe (S) + offices in Singapore, Moscow, Beijing, Bangalore,...

Research for all EADS

>800 employees

Our team : Applied mathematics

Activity in BEM since mid-80's for all physics

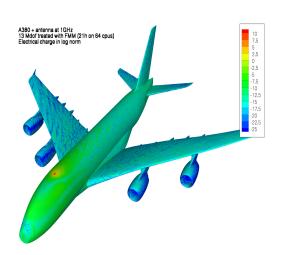
Outlines

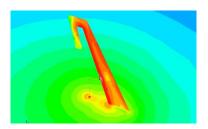
- Presentation of EADS Innovation Works (IW)
- Activities in Numerical Simulation & HPC at IW
- Current projects & perspectives

Outline

Existing methods & Applications

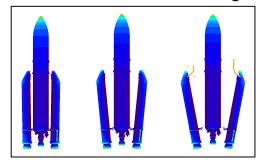
- Multipole solver
- H Matrix
- Delayed Potentials
- FDTD
- HF

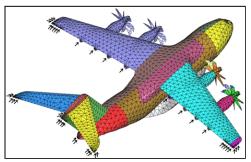

Current & Futur Researchs


- Multipole method in TD
- Low frequency computation in TD
- Variable time steps in TD BEM
- Low frequency FMM
- HPC & GPU Computing

Content of the HPC domain

- Many common research domain between EADS IW and Inria:
 - Direct solver
 - Iterative solver
 - Multipole algorithm
 - Coupling of schemes (BEM/FEM)
 - All this on HPC machines
- Used in EADS solvers for numerical simulation :
 - Electromagnetism with ASERIS
 - Acoustics with ACTIPOLE
 - Electrostatic

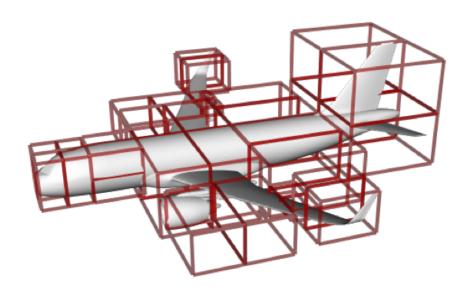


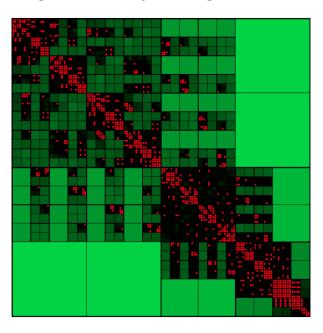


Context of BEM

- BEM: Boundary Element Method
 - Numerical Method developed since 80's at IW
 - Interest : accuracy, surfacic mesh
 - Mainly used in frequency domain : highly optimised
- Several state-of-the-art fast solvers :
- SPIDO (1995) : direct // ooc
- FMM (2002): // ooc
- H-matrix (2013): relies on runtime
- Applications : CEM, Antenna design, Installation effects, electrostatics, ...

Charge/discharge analysis of A5 *Objective*: ESD protection sizing




Charge/discharge analysis of an A/C Objective: Static dischargers scaling

H-matrix solver (1)

- PhD of Benoît Lizé (cifre)
- H-matrix : Hierarchical & compressed way of storing and manipulating matrices

- Collaboration with Inria teams Runtime & HiePACS
 - Runtime provided the middleware StarPU (well adapted to H-matrix)
 - HiePACS provided know-how on using starPU within solvers (associate team MORSE with Inria, Kaust, UTK, UC Denver)

Outlines

- Presentation of EADS Innovation Works (IW)
- Activities in Numerical Simulation & HPC at IW
- Current projects & perspectives

Other collaboration (1)

- EZperf (ADT): measure of performance in HPC

Objectives : measure efficiency of « real » industrial computations

IJD Matias Hastaran, starting end of october

Applications: Aseris/Actipole in a first time + extension toward runtime analysis

- SOLHAR (ANR): sparse solver on runtime engine

EADS provides applications & test cases, Inria brings solvers & runtime

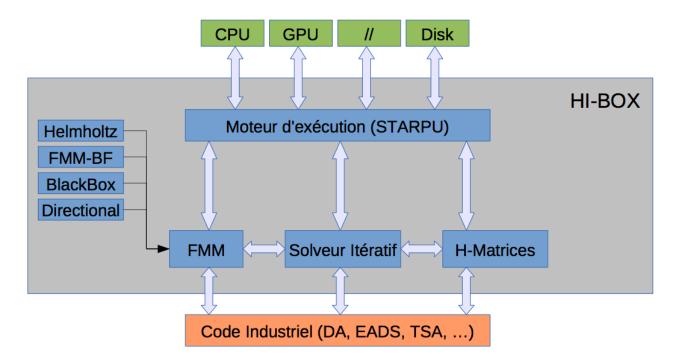
Applications: Aeroacoustics in Actipole (Airbus), Anisotropy in Aseris (Astrium ST)

Other collaboration (2)

- TECSER (ASTRID): coupling of numerical methods BEM-DGM

EADS IW brings BEM method + test cases

EADS Nuclétudes & Inria Nachos bring DGM method


Inria Hiepacs & Corida bring coupling schemes

Applications: Aeroacoustics in Actipole (Airbus), Anisotropy in Aseris (Astrium ST)

Hi-BOX project

- IMACS, EADS IW, Inria Project funded by DGA (« rapid » project)
- Objectives :
 - Integrate EADS & Inria knowledge in solvers (iterative, direct, FMM, H-mat)
 - Exploit all existing hardwares
 - Industrialize & distribute

Other topic of interest

- Ability to solve complex block systems :
 - Dense : full, h-mat, fmm, iterative (+precond)
 - Sparse : mumps, pastix, h-mat, iterative
- Find the optimal way to solve a given system

