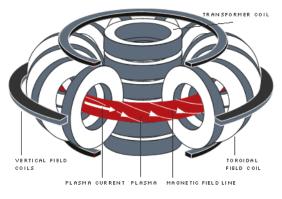
DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

JOREK, modelling non linear MHD GYSELA, modelling transport, ITG turbulence

JOREK: M. Becoulet, G. Dif-Pradalier, A. Fil, V. Grandgirard, <u>G. Latu</u>, E. Nardon, F. Orain, C. Passeron, A. Ratnani, C. Reux Collaborations with: INRIA, IPP, ITER Org., french Universities GYSELA: J. Bigot, G. Dif-Pradalier, D. Estève, V. Grandgirard, X.

Garbet, Ph. Ghendrih, <u>G. Latu</u>, C. Passeron, Y. Sarazin, F. Rozar Collaborations with: INRIA, IPP, french Universities


09/12/13

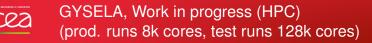
CEA-IRFM, C2S@Exa •• 09/12/13

- JOREK code (non-linear MHD)
 - Work in progress, HPC bottlenecks
- GYSELA code (gyrokinetic, ITG turbulence)
 - Work in progress, HPC bottlenecks

[ANR ANEMOS]

Aim: Reduce memory peak, Improve mem. scalability

- Using Pastix distributed API (achieve memory scalability)
- ► Adapting/Improving Murge interface [~> Hiepacs, X. Lacoste]
- Reduce Jorek mem. consumption (compressed data struct.)
- [Collaboration with IPP (Garching, Germany)]


Aim: Porting Jorek on MIC architecture

- Helios machine Rokkasho/Japan (24th in top500), dedicated to Fusion community, upgraded with hundreds of MIC nodes (december 2013)
- First port to MIC: not targetting perf., only correct behaviour

- Pb1: Solving a large sparse system: quality of the preconditioner (convergence pb), time to solution, memory scalability
- Pb2: How to schedule threads, to manage core/memory affinity (performance issues on INTEL Sandy Bridge) ?
 - Pastix uses POSIX threads, specific thread scheduling
 - Jorek uses OpenMP, thread affinity is managed with OMP_AFFINITY or KMP_AFFINITY
 - Underlying MPI implementation possibly uses threads ...
- Possible goals through C2S@Exa:
 - Find tools to visualize+understand dynamically the history of threads, get a trace for post-mortem analysis
 - Control threads affinity in Pastix/Jorek/MPI all together
 - Tools to show/control memory locality of data structures ...

[G8-Exascale NUFUSE]

Aim: Enhance performance/scalability

- Designing a library for tracing/modelling memory consumption. Memory scalability improved. (PhD work of F. Rozar, Mds-CEA)
 [~ Hiepacs, J. Roman]
- FTI (Fault Tolerance Interface) middleware is investigated in Gysela.
 Four levels of check-pointing offering increasing levels of resilience at the cost of higher execution time each.
 - (Postdoc J. Bigot, MdS-CEA)
- ► GYSELA scalability improved. Weak scaling 91% of relative efficiency on 460k cores of Juqueen (8th in top500).
- Data compression on large scale communication schemes
- [Collaboration with IPP + INTEL Exascale Lab]

Aim: Optimizing a kernel of Gysela on MIC architecture

Work on a new/light version of Gysela (based on 4D advections)

Possible goals through C2S@Exa:

- [Proposal ANR ADAM (F. Filbet)]
 - Designing a 6D parallel code and compare it to gyrokinetic model in 5D (Gysela)
- ► [Considering the new/light version of Gysela] one computation kernel → a 4D advection
 - Evaluating OpenMP nested parallel for loops ?
 - Use StarPU to distribute tasks to MIC and CPU ?
- [Resilience & IO & network]
 - Improve checkpointing (bottleneck to read/write large files)
 - Find portable methods to get high IO throughput
 - data compression for large scale comm.
- [Memory trace]
 - Help for designing an efficient memory tracing library