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Simulation of the transport of radionuclides around a repository
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I Different materials→ strong

heterogeneity, different time scales.
I Large differences in spatial scales.
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→How to simulate efficiently & accurately?
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Multi-domain mixed formulation for transport equation

ω∂tc + div (uc − r) = f , in Ω× (0,T ),

D−1r +∇c = 0, in Ω× (0,T ) + BCs, IC,

Decomposition into
non-overlapping sub-
domains.
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5. Nonconforming time discretizations and projections in time. We con-
sider semi-discrete problems in time with nonconforming time grids. Let T1 and T2
be two different partitions of the time interval (0, T ) into sub-intervals (see Figure
5.1). We denote by J i

m the time interval (tim−1, t
i
m] and by ∆tim := (tim − tim−1) for

m = 1, . . . ,Mi and i = 1, 2. We use the lowest order discontinuous Galerkin method
[3, 18, 35], which is a modified backward Euler method. The same idea can be gener-
alized to the higher order in time case. We denote by P0(Ti,W ) the space of piecewise
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Figure 5.1: Nonconforming time grids in the subdomains.

constant functions in time on grid Ti with values in W , where W = H
1
2 (Γ) for Method

1 and W = L2(Γ) for Method 2:
P0(Ti,W ) =

{
φ : (0, T ) → W,φ|Ji

m
∈ W, for m = 1, . . . ,Mi

}
.

In order to exchange data on the space-time interface between different time grids, we
define the following L2 projection Πji from P0(Ti,W ) onto P0(Tj ,W ) (see [13, 18]) :
for φ ∈ P0(Ti,W ), Πjiφ|Jj

m
is the average value of φ on Jj

m, for m = 1, . . . ,Mj :

Πji (φ) |Jj
m
=

1

| Jj
m |

Mi∑

l=1

∫

Jj
m∩Ji

l

φ, for m = 1, · · · ,Mj .

We use the algorithm described in [14] for effectively performing this projection. With
these tools, we are now able to weakly enforce the transmission conditions over the
time intervals.
We still denote by (ci, ri), for i = 1, 2, the solution of the corresponding semi-discrete
(in time) problem of (4.1).

5.1. For Method 1. As there is only one unknown λ on the interface, we need
to choose λ piecewise constant in time on one grid, either T1 or T2. For instance, let
λ ∈ P0(T2, H

1
2 (Γ)) and take c2 = Π22(λ) = Id(λ). The equality of the concentration

in time across the interface is fulfilled by letting

c1 = Π12(λ) ∈ P0(T1, H
1
2 (Γ)).

The semi-discrete (nonconforming in time) counterpart of the flux continuity in equa-
tion (??) is weakly enforced by integrating it over each time interval J2

m of grid T2 :
∀m = 1, ...,M2,∫

Γ

∫

J2
m

(Π21 (r1(Π12(λ), f, c0) · n1) + Π22 (r2(Π22(λ), f, c0) · n2)) dt = 0. (5.1)

Remark. λ can be chosen to be constant in time on another grid (neither T1 nor T2)
in some applications (e.g. flow in porous media with fractures).

L2 projections from piecewise constant
functions on Ti onto piecewise
constant functions on Tj
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The Steklov-Poincaré interface equation
Natrual transmission conditions

c1 = c2
(u1 · n1c1 + r1 · n1) + (u2 · n2c2 + r2 · n2) = 0 on γ × (0,T ).

I Use Dirichlet data on the interface

ci = λ on γ × (0,T ), for i = 1,2,

and solve subdomain problem:

(λ, f , c0) 7→ (ci (λ, f , c0) , ri (λ, f , c0)).

I Transmission conditions reduced to flux equality:

Sλ ≡ r1 (λ, f , c0) · n1 + r2 (λ, f , c0) · n2 = 0, on γ × (0,T ) ,

I Interface problem Sλ = χ on γ × (0,T ) .

I Solved iteratively (e.g., with GMRES).

I Apply Neumann-Neumann preconditioner with weights
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Optimized Schwarz Waveform Relaxation (OSWR) method

I Equivalent Robin transmission conditions on γ × (0,T ):

−(u1 · n1c1 + r1 · n1) + α1,2c1 = −(u2 · n1c2 + r2 · n1) + α1,2c2

−(u2 · n2c2 + r2 · n2) + α2,1c2 = −(u1 · n2c1 + r1 · n2) + α2,1c1

I UseRobin data on the interface

−(ui · nici + ri · ni ) + αi,jci = ξi on γ × (0,T ) ,

and solve subdomain problem with

Ri : (ξi , f , c0) 7→ (ci (ξi , f , c0) , ri (ξi , f , c0)).

I Interface problem: global in space and time with 2 interface
concentrations

SR

(
ξ1
ξ2

)
= χR on γ × (0,T ) .

I Solve iteratively (Jacobi = OSWR, GMRES, etc.).
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Test case 1: diffusion, 2 subdomains, varying contrast
I Matching meshes in space

∆x = 1/200.

I Non-conforming time grids

Contrast d1 1/∆t1 1/∆t2
10 0.02 150 200

100 0.002 50 200
1000 0.0002 20 200
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Test case 2 (ANDRA) - Data

10 m

2950 m

3950 m

140 m

I Porosity ω = 0.05 in clay layer and ω = 0.2 in repository.
I Diffusion d = 5 10−12 m2/s in clay, d = 2 10−9 m2/s in repository.

I Source term f = 0 in clay, and f =

{
10−5 if t ≤ 105

0 if t > 105 in repository.

I 9 rectangular subdomains. Non-uniform spatial mesh ∆x = 1/300.
I Non-conforming time grids: ∆t = 2000 (years) in the repository and

∆t = 10000 (years) in the clay layer.
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Snapshots of multi-domain solution at 1 million years
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Convergence History for Short/Long Time Interval - Error in concentration

2 optimization techniques for computing parameters αi,j :
I Opt. 1: 2 half-space Fourier analysis.

I Opt. 2: taking into account the length of the domains

T = 2 105 years
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Near-field simulation with advection (CEA)

Material Dims. (m) Perm. (m.s−1) Porosity Diff. (m2. s−1)
Host rock 10× 100 10−13 0.06 6 10−13

Repository 1× 1 10−8 0.1 10−11

0 10

10

20

30

40

50

60

70

80

90
100

10 20 30 40 50 60 70
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Subdomain Solves

R
el

at
iv

e 
re

si
du

al

Precond. Schur

0 10 20 30 40 50 60 70
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Subdomain Solves

R
el

at
iv

e 
re

si
du

al
OSWR

9 / 10



Conclusion

Summary
I Diffusion problems

I Two global-in-time methods: time-dependent Schur and OSWR.
I Well-posedness of local problems in mixed form.
I Performance of two methods for non-conforming time grids.

I Advection-Diffusion problems:
I Formulation of interface problems with operator splitting.
I Preliminary numerical results

Work in progress
I Fractures.
I Order 2 (Ventcel) transmission conditions.
I Non-matching grids in space.

T.T.P. Hoang, J. Jaffré, C. Japhet, MK and J.E. Roberts, Space-Time
Domain Decomposition Methods for Diffusion Problems in Mixed
Formulations, submitted to SINUM, hal-00803796
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