Space-Time Domain Decomposition Methods for Transport Problems in Porous Media

Thi-Thao-Phuong Hoang Jérôme Jaffré, Caroline Japhet, **Michel Kern**, Jean Roberts

INRIA Paris-Rocquencourt Maison de la Simulation

Computer and Computational Sciences at Exascale Andra, April 24, 2013

< ロ > < 同 > < 回 > < 回 >

Simulation of the transport of radionuclides around a repository

Challenges

- ► Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.
- \rightarrow How to simulate efficiently & accurately?

Simulation of the transport of radionuclides around a repository

Challenges

- ► Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.
- \rightarrow How to simulate efficiently & accurately?
- ⇒ Domain Decomposition methods Global in Time

2/10

Multi-domain mixed formulation for transport equation

Different time steps for different subdomains

 L^2 projections from piecewise constant functions on T_i onto piecewise constant functions on T_j

The Steklov-Poincaré interface equation

Natrual transmission conditions

 $c_1 = c_2$ ($\mathbf{u}_1 \cdot \mathbf{n}_1 c_1 + \mathbf{r}_1 \cdot \mathbf{n}_1$) + ($\mathbf{u}_2 \cdot \mathbf{n}_2 c_2 + \mathbf{r}_2 \cdot \mathbf{n}_2$) = 0 on $\gamma \times (0, T)$.

Use Dirichlet data on the interface

 $c_i = \lambda$ on $\gamma \times (0, T)$, for i = 1, 2,

and solve subdomain problem:

 $(\lambda, f, c_0) \mapsto (c_i(\lambda, f, c_0), \mathbf{r}_i(\lambda, f, c_0)).$

Transmission conditions reduced to flux equality:

 $S\lambda \equiv \mathbf{r}_{1}(\lambda, f, c_{0}) \cdot \mathbf{n}_{1} + \mathbf{r}_{2}(\lambda, f, c_{0}) \cdot \mathbf{n}_{2} = \mathbf{0}, \quad \text{on } \gamma \times (\mathbf{0}, T),$

- Interface problem $S\lambda = \chi$ on $\gamma \times (0, T)$.
- Solved iteratively (e.g., with GMRES).
- Apply Neumann-Neumann preconditioner with weights

Optimized Schwarz Waveform Relaxation (OSWR) method

• Equivalent Robin transmission conditions on $\gamma \times (0, T)$:

 $-(\mathbf{u}_1 \cdot \mathbf{n}_1 \mathbf{c}_1 + \mathbf{r}_1 \cdot \mathbf{n}_1) + \alpha_{1,2} \mathbf{c}_1 = -(\mathbf{u}_2 \cdot \mathbf{n}_1 \mathbf{c}_2 + \mathbf{r}_2 \cdot \mathbf{n}_1) + \alpha_{1,2} \mathbf{c}_2$ $-(\mathbf{u}_2 \cdot \mathbf{n}_2 \mathbf{c}_2 + \mathbf{r}_2 \cdot \mathbf{n}_2) + \alpha_{2,1} \mathbf{c}_2 = -(\mathbf{u}_1 \cdot \mathbf{n}_2 \mathbf{c}_1 + \mathbf{r}_1 \cdot \mathbf{n}_2) + \alpha_{2,1} \mathbf{c}_1$

UseRobin data on the interface

 $-(\mathbf{u}_i \cdot \mathbf{n}_i \mathbf{c}_i + \mathbf{r}_i \cdot \mathbf{n}_i) + \alpha_{i,j} \mathbf{c}_i = \xi_i \text{ on } \gamma \times (\mathbf{0}, \mathbf{T}),$

and solve subdomain problem with

 $\mathcal{R}_i: (\xi_i, f, c_0) \mapsto (c_i(\xi_i, f, c_0), \mathbf{r}_i(\xi_i, f, c_0)).$

Interface problem: global in space and time with 2 interface concentrations

$$\mathcal{S}_R\left(egin{array}{c} \xi_1 \ \xi_2 \end{array}
ight) = \chi_R \quad ext{ on } \gamma imes (\mathbf{0}, T) \,.$$

Solve iteratively (Jacobi = OSWR, GMRES, etc.).

Test case 1: diffusion, 2 subdomains, varying contrast

- Matching meshes in space $\Delta x = 1/200$.
- Non-conforming time grids

Contrast	<i>d</i> ₁	$1/\Delta t_1$	$1/\Delta t_2$
10	0.02	150	200
100	0.002	50	200
1000	0.0002	20	200

Test case 2 (ANDRA) - Data

- Porosity $\omega = 0.05$ in clay layer and $\omega = 0.2$ in repository.
- Diffusion $d = 5 \, 10^{-12} \text{ m}^2/\text{s}$ in clay, $d = 2 \, 10^{-9} \text{ m}^2/\text{s}$ in repository.
- Source term f = 0 in clay, and $f = \begin{cases} 10^{-5} & \text{if } t \le 10^5 \\ 0 & \text{if } t > 10^5 \end{cases}$ in repository.
- ▶ 9 rectangular subdomains. Non-uniform spatial mesh $\Delta x = 1/300$.
- Non-conforming time grids: $\Delta t = 2000$ (years) in the repository and $\Delta t = 10000$ (years) in the clay layer.

Snapshots of multi-domain solution at 1 million years

・ロン ・回 と ・ ヨン ・ ヨン … ヨ

Convergence History for Short/Long Time Interval - Error in concentration

2 optimization techniques for computing parameters $\alpha_{i,j}$:

- Opt. 1: 2 half-space Fourier analysis.
- Opt. 2: taking into account the length of the domains

8/10

Material	Dims. (m)	Perm. (m.s ⁻¹)	Porosity	Diff. (m ² . s ⁻¹)
Host rock	10 × 100	10 ⁻¹³	0.06	6 10 ⁻¹³
Repository	1 × 1	10 ⁻⁸	0.1	10 ⁻¹¹

Conclusion

Summary

- Diffusion problems
 - Two global-in-time methods: time-dependent Schur and OSWR.
 - Well-posedness of local problems in mixed form.
 - Performance of two methods for non-conforming time grids.
- Advection-Diffusion problems:
 - Formulation of interface problems with operator splitting.
 - Preliminary numerical results

Work in progress

- Fractures.
- Order 2 (Ventcel) transmission conditions.
- Non-matching grids in space.

T.T.P. Hoang, J. Jaffré, C. Japhet, MK and J.E. Roberts, **Space-Time Domain Decomposition Methods for Diffusion Problems in Mixed Formulations**, submitted to SINUM, hal-00803796