
Parallel solvers for linear equations

HiePACS project

INRIA Bordeaux Sud-Ouest
joint INRIA-CERFACS lab. on High Performance Computing

Journe ANDRA C2S@Exa

Châtenay Malabry, April 2014

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Outline

1 Introduction

2 Sparse direct

3 Hybrid iterative/direct

4 Implemenation on top of runtime systems

Motivations

Ax = b

The “spectrum” of linear algebra solvers
Direct

Robust/accurate for general
problems

BLAS-3 based implementations

Memory/CPU prohibitive for large 3D
problems

Limited parallel scalability

Iterative

Problem dependent efficiency/controlled
accuracy

Only mat-vect required, fine grain computation

Less memory computation, possible trade-off
with CPU

Attractive “build-in” parallel features

Sparse linear algebra @ Inria

Main Projects involved and related packages

ALPINES
CA-algorithms (LU, QR, ILU0), adaptive two level DDM for highly
heterogeneous problems, parallel direction preserving
preconditioners
HiePACS
dense linear algebra MORSE/MAGMA, sparse direct PaStiX,
Hybrid (HIPS, MaPHyS)
ROMA
sparse direct MUMPS (in collaboration with INPT, CERFACS,
Univ. de Bordeaux, CNRS, ENS Lyon)
SAGE
Krylov solvers (DGMRES, AGMRES in PETSC); Algebraic BNN
(SIDNUR)

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Outline

1 Introduction

2 Sparse direct

3 Hybrid iterative/direct

4 Implemenation on top of runtime systems

Parallel sparse direct solver - PaStiX Features

LLT , LDLT , LU factorization with supernodal implementation
Static pivoting + Refinement: CG/GMRES
1D/2D block distribution + Full BLAS3
Simple/Double precision + Float/Complex operations

MPI/Threads implementation (SMP/Cluster/Multicore/NUMA)
Dynamic scheduling inside SMP nodes (static mapping)
Support external ordering library (PT-Scotch/METIS)

Multiple RHS (direct factorization)
Incomplete factorization with ILU(k) preconditionner
Schur complement computation
Out-of Core implementation (in SMP mode only)

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Direct Method

Hybrid Linear Solvers

Develop robust scalable parallel hybrid direct/iterative linear solvers

Exploit the efficiency and robustness of the sparse direct solvers

Develop robust parallel preconditioners for iterative solvers

Take advantage of the natural scalable parallel implementation of
iterative solvers

Domain Decomposition (DD)

Natural approach for PDE’s

Extend to general sparse matrices

Partition the problem into subdomains,
subgraphs

Use a direct solver on the subdomains

Robust preconditioned iterative solver

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Outline

1 Introduction

2 Sparse direct

3 Hybrid iterative/direct

4 Implemenation on top of runtime systems

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

HIPS : hybrid direct-iterative solver

Based on a domain decomposition : interface one node-wide (no
overlap in DD lingo)

(
AB F
E AC

)

B : Interior nodes of subdomains (direct factorization).
C : Interface nodes.

Special decomposition and ordering of the subset C :
Goal : Building a global Schur complement preconditioner (ILU) from
the local domain matrices only.

HIPS: domain interface based fill-in policy
[P.Hénon, Y. Saad - SIAM SISC 06] [J.Gaidamour, P.Hénon -IEEE CSE 08]

Special decomposition and ordering of the subset C :

Hierachical interface decomposition into connectors :

1
2 3

4 5
6

56

3625124514

2312

45

2356

Rules :

No creation of edge (fill-in) outside the local domain matrices.

Allow edges between connectors adjacent to the same subdomain.

⇒ keep the parallelism (communication only between adjacent
subdomains).

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

HID Elimination

Robust block incomplete factorization of the Schur complement

Hierachy of separators (wirebasket like - faces , edges, vertices)
Block incomplete factorization with “geometrical” fill-in policy to
express parallelism
(Global factorization using only local sub-domain matrices)
MIS ordering to express parallelism within incomplete
factorisation steps

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Fill-in management policy

Matrix reordered according to
the HID :

Symbolic factorization of the
matrix BCSSTK14 :

⇒ the most part of the fill-in appear on EU−1
B , L−1

B F and S (3D)

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Reducing the memory footprint

Objective : reduce the storage cost of EU−1
B , L−1

B F and S ?

2 important remarks :

The iterative resolution only needs the computation of S.x (the Schur
product). The iterative resolution only needs the computation of S.x (the
Schur product). It can be computed using (AC − EU−1

B .L−1
B F).x .

EU−1
B , L−1

B F and S are only temporary matrices to compute L̃S .ŨS .

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

HIPS variant I

LS,US factorization is based on an exact computation of S :

Main steps :
1 Exact factorization of AB = LB.UB (supernodal algorithm).
2 Computation of W = EU−1

B , G = L−1
B F and the exact Schur S

(supernodal right-looking algorithm).
3 ILU(τS) of S (scalar algorithm, τS is a numerical threshold).

How to avoid simultaneous storage of (W, G) and S ?

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

HIPS variant II

LS,US factorization is based on an approximate computation of S :

S ' S̃ ' L̃S.ŨS.

⇒We accept to reduce the quality of the preconditioner to consume
less memory.

Main steps :
1 Exact factorization of AB = LB.UB (supernodal algorithm).
2 Approximate computation of W = EU−1

B , G = L−1
B F .

3 Left-Looking incomplete ILU(τS) factorization of S̃.

HIPS: preconditioners
[P.Hénon, Y. Saad - SIAM SISC 06] [J.Gaidamour, P.Hénon -CSE IEEE 08]

Main features
Iterative or “hybrid” direct/iterative method are implemented.
Mix direct supernodal (BLAS-3) and sparse ILUT factorization in
a seamless manner.
Memory/Load balancing : distribute the domains on the
processors (domains > processors).

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Overlapping Domain Decomposition

Classical Additive Schwarz preconditioners

Ω1

Ω2
δ

Goal: solve linear system Ax = b

Use iterative method

Apply the preconditioner at each step

The convergence rate deteriorates as the
number of subdomains increases

A =

 A1,1 A1,δ
Aδ,1 Aδ,δ Aδ,2

Aδ,2 A2,2

 =⇒Mδ
AS =

 A1,1 A1,δ
−1

Aδ,1 Aδ,δ Aδ,2 −1

Aδ,2 A2,2

Classical Additive Schwarz preconditioners N subdomains case

Mδ
AS =

N∑
i=1

(
Rδi
)T (
Aδi
)−1
Rδi

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Nonoverlapping Domain Decomposition

Schur complement reduced system
k l m n

Ωι

Ωι+1

Ωι+2
Γ = k ∪ ` ∪m ∪ n

Distributed Schur complement
Ωι︷ ︸︸ ︷(

S(ι)
kk Sk`

S`k S(ι)
``

) Ωι+1︷ ︸︸ ︷(
S(ι+1)
`` S`m

Sm` S(ι+1)
mm

) Ωι+2︷ ︸︸ ︷(
S(ι+2)

mm Smn

Snm S(ι+2)
nn

)

In an assembled form: S`` = S(ι)
`` + S(ι+1)

`` =⇒ S`` =
∑
ι∈adj

S(ι)
``

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Non-overlapping Domain Decomposition

Algebraic Additive Schwarz preconditioner [L.Carvalho, L.G., G.Meurant - 01]

S =
N∑

i=1

RT
Γi
S(i)RΓi

S =

. . .

Skk Sk`
S`k S`` S`m

Sm` Smm Smn
Snm Snn

 =⇒M =

. . .

Skk Sk`
−1

S`k S`` S`m
−1

Sm` Smm Smn
Snm Snn

Similarity with Neumann-Neumann
preconditioner [J.F Bourgat, R.
Glowinski, P. Le Tallec and M.
Vidrascu - 89] [Y.H. de
Roek, P. Le Tallec and M. Vidrascu -
91]

M =
N∑

i=1

RT
Γi

(S̄(i))−1RΓi

where S̄(i) is obtained from S(i)

S(i) =

(
S(ι)

kk Sk`

S`k S(ι)
``

)
︸ ︷︷ ︸ =⇒ S̄(i) =

(
Skk Sk`
S`k S``

)
︸ ︷︷ ︸

local Schur local assembled Schur
↘ ↗∑

ι∈adj

S(ι)
``

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Parallel preconditioning features

S(i) = A(i)
Γi Γi
− AΓi Ii A

−1
Ii Ii

AIi Γi

MAS =

#domains∑
i=1

RT
i (S̄(i))−1Ri

Ωi

Ωj

Ek

EgEm

E`

S̄(i) =

Smm Smg Smk Sm`

Sgm Sgg Sgk Sg`

Skm Skg Skk Sk`

S`m S`g S`k S``

Assembled local Schur complement

S(i) =

S(i)

mm Smg Smk Sm`

Sgm S(i)
gg Sgk Sg`

Skm Skg S(i)
kk Sk`

S`m S`g S`k S(i)
``

local Schur complement

Smm =
∑

j∈adj(m)

S(j)
mm

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Parallel implementation

Each subdomain A(i) is handled by one processor

A(i) ≡
(
AIiIi AIi Γi

AIi Γi A(i)
ΓΓ

)

Concurrent partial factorizations are performed on each processor to
form the so called “local Schur complement”

S(i) = A(i)
ΓΓ −AΓiIiA

−1
IiIi
AIi Γi

The reduced system SxΓ = f is solved using a distributed Krylov solver
- One matrix vector product per iteration each processor computes S(i)(x (i)

Γ)k = (y (i))k

- One local preconditioner apply (M(i))(z(i))k = (r (i))k

- Local neighbor-neighbor communication per iteration
- Global reduction (dot products)

Compute simultaneously the solution for the interior unknowns

AIiIi xIi = bIi −AIi Γi xΓi

What tricks exist to construct cheaper preconditioners

Sparsification strategy through dropping

ŝk` =
{

s̄k` if s̄k` ≥ ξ(|s̄kk | + |s̄``|)
0 else

Approximation through ILU - [INRIA PhyLeas - A. Haidar, L.G., Y.Saad - 10]

pILU (A(i)) ≡ pILU

(
Aii AiΓi
AΓi i

A(i)
Γi Γi

)
≡
(

L̃i 0
AΓi Ũ

−1
i I

)(
Ũi L̃−1

i AiΓ

0 S̃(i)

)

Mixed arithmetic strategy
Compute and store the preconditioner in 32-bit precision arithmetic Is accurate enough?

Limitation when the conditioning exceeds the accuracy of the 32-bit computations Fix it!

Idea: Exploit 32-bit operation whenever possible and ressort to 64-bit at critical stages

Remarks: the backward stability result of GMRES indicates that it is hopeless to expect
convergence at a backward error level smaller than the 32-bit accuracy [C.Paige,
M.Rozložnı́k, Z.Strakoš - 06]

Idea: To overcome this limitation we use FGMRES [Y.Saad - 93]

Numerical behaviour of sparse preconditioners

Convergence history

0 40 80 120 160 200
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iter

||r
k||/

||b
||

Fuselage 6.5Mdof

Direct calculation
Dense calculation
Sparse with ξ=5.10−7

Sparse with ξ=10−6

Sparse with ξ=5.10−6

Time history

0 40 80 120 160 200 240 280 320 360 400 440 480
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time(sec)

||r
k||/

||b
||

Fuselage 6.5Mdof

Direct calculation

Dense calculation

Sparse with ξ=5.10−7

Sparse with ξ=10−6

Sparse with ξ=5.10−6Init

6.5 Mdof on 16 cores

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Outline

1 Introduction

2 Sparse direct

3 Hybrid iterative/direct

4 Implemenation on top of runtime systems

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

Software approach : multiple layer approach

ALGORITHM

RUNTIME

KERNELS

GPU CPU

Governing ideas: Enable advanced
numerical algorithms to be executed on a
scalable unified runtime system for exploiting
the full potential of future exascale machines.
Basics:

Graph of tasks
Out-of-order scheduling
Fine granularity

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

PaStiX : multicore results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 4 6 12

F
a

c
to

ri
z
a

ti
o

n
 t

im
e

 (
in

 s
)

Number of threads

Static
StarPU
DAGuE

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 4 6 12

F
a

c
to

ri
z
a

ti
o

n
 t

im
e

 (
in

 s
)

Number of threads

Static
StarPU
DAGuE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 6 12

G
e

n
e

ri
c
 R

u
n

ti
m

e
 /

 S
ta

ti
c
 s

c
h

e
d

u
le

r

Number of threads

Audi / StarPU

Audi / DAGuE

MHD / StarPU

MHD / DAGuE

Introduction Sparse direct Hybrid iterative/direct Implemenation on top of runtime systems

PaStiX : results with GPUs over StarPU

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 4 6 12

G
e

n
e

ri
c
 R

u
n

ti
m

e
 /

 S
ta

ti
c
 s

c
h

e
d

u
le

r

Number of threads

CPU Only
With 1 GPU

With 2 GPUs

Figure: Audi

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 6 12

G
e

n
e

ri
c
 R

u
n

ti
m

e
 /

 S
ta

ti
c
 s

c
h

e
d

u
le

r
Number of threads

CPU Only
With 1 GPU

With 2 GPUs

Figure: MHD

	Introduction
	Sparse direct
	Hybrid iterative/direct
	Implemenation on top of runtime systems

