Parallel solvers for linear equations

v d

: informatics g mathematics

HiePACS project

INRIA Bordeaux Sud-Ouest
joint INRIA-CERFACS lab. on High Performance Computing

Journe ANDRA C2S@Exa
Chétenay Malabry, April 2014



Introduction

Outline

o Introduction



Ax =
& §
> o g &
& & S ¢ ¢
N K T @ W@ 2 &
F I ¢ F & ¢
o g 8 &:f ) S
& § §8& §F & &
s f§° ) O N3 &
$ ;¢ & & &
. F & £ #& & F Fulliterative
Full direct & & &5 £E & &

The “spectrum” of linear algebra solvers

Direct lterative
@ Robust/accurate for general @ Problem dependent efficiency/controlled
problems accuracy
@ BLAS-3 based implementations @ Only mat-vect required, fine grain computation

@ Memory/CPU prohibitive for large 3D @ Less memory computation, possible trade-off
problems with CPU

@ Limited parallel scalability @ Attractive “build-in” parallel features




Sparse linear algebra @ Inria

Main Projects involved and related packages

@ ALPINES
CA-algorithms (LU, QR, ILUQ), adaptive two level DDM for highly
heterogeneous problems, parallel direction preserving
preconditioners

@ HiePACS
dense linear algebra MORSE/MAGMA, sparse direct PaStiX,
Hybrid (HIPS, MaPHyS)

@ ROMA
sparse direct MUMPS (in collaboration with INPT, CERFACS,
Univ. de Bordeaux, CNRS, ENS Lyon)

@ SAGE
Krylov solvers (DGMRES, AGMRES in PETSC); Algebraic BNN
(SIDNUR)




Outline

e Sparse direct



Parallel sparse direct solver - PaStiX Features

@ LL™, LDLT, LU factorization with supernodal implementation
@ Static pivoting + Refinement: CG/GMRES

1D/2D block distribution + Full BLAS3

Simple/Double precision + Float/Complex operations

MPI/Threads implementation (SMP/Cluster/Multicore/NUMA)
Dynamic scheduling inside SMP nodes (static mapping)
Support external ordering library (PT-Scotch/METIS)

Multiple RHS (direct factorization)

@ Incomplete factorization with ILU(k) preconditionner
@ Schur complement computation

@ Out-of Core implementation (in SMP mode only)




Sparse direct

Direct Method

Factorised Symbol
Matrix

G*/ P Elimination Tree



Hybrid Linear Solvers

Develop robust scalable parallel hybrid direct/iterative linear solvers

@ Exploit the efficiency and robustness of the sparse direct solvers
@ Develop robust parallel preconditioners for iterative solvers

@ Take advantage of the natural scalable parallel implementation of
iterative solvers

Domain Decomposition (DD)

@ Natural approach for PDE’s
@ Extend to general sparse matrices

@ Partition the problem into subdomains,
subgraphs

@ Use a direct solver on the subdomains

@ Robust preconditioned iterative solver

V. 311 cut edges




Hybrid iterative/direct

Outline

e Hybrid iterative/direct



Hybrid iterative/direct

HIPS : hybrid direct-iterative solver

Based on a domain decomposition : interface one node-wide (no
overlap in DD lingo)

As F |
E AC ‘1;, —

B : Interior nodes of subdomains (direct factorization).
C : Interface nodes.

Special decomposition and ordering of the subset C :
Goal : Building a global Schur complement preconditioner (ILU) from
the local domain matrices only.



HIPS: domain interface based fill-in policy

Special decomposition and ordering of the subset C :

Hierachical interface decomposition into connectors :

O

Rules :

@ No creation of edge (fill-in) outside the local domain matrices.
@ Allow edges between connectors adjacent to the same subdomain.

= keep the parallelism (communication only between adjacent
subdomains).



Hybrid iterative/direct

HID Elimination

mmmm 000 ol

Robust block incomplete factorization of the Schur complement
@ Hierachy of separators (wirebasket like - faces , edges, vertices)

@ Block incomplete factorization with “geometrical” fill-in policy to
express parallelism
(Global factorization using only local sub-domain matrices)

@ MIS ordering to express parallelism within incomplete
factorisation steps




Hybrid iterative/direct

Fill-in management policy

Symbolic factorization of the

Matrix reordered according to matrix BCSSTK14 :
the HID :
1
1 2
2 == L,
1-3 2-4 5
3 < 4 s =
o) 4 : I

= the most part of the fill-in appear on EU;", L' F and S (3D)



Hybrid iterative/direct

Reducing the memory footprint

Objective : reduce the storage cost of EUg ", L' F and S ?

2 important remarks :

@ The iterative resolution only needs the computation of S.x (the Schur
product). The iterative resolution only needs the computation of S.x (the
Schur product). It can be computed using (Ac — EUZ'.L5'F).x.

) EUg‘, L;'F and S are only temporary matrices to compute Ls.Us.



HIPS variant |

Hybrid iterative/direct

Ls, Us factorization is based on an exact computation of S:

AB F LBUB F LBUBL—lF LBUB
E|Ac| 1| E|4c 2 BUZ) 5 |3 L~SUS
Main steps :

@ Exact factorization of Ag = Lg.Ugp (supernodal algorithm).

@ Computation of W = EU;", G = L' F and the exact Schur S
(supernodal right-looking algorithm).

@ ILU(7s) of S (scalar algorithm, 75 is a numerical threshold).

How to avoid simultaneous storage of (W, G) and S ?




Hybrid iterative/direct

HIPS variant I

Ls, Us factorization is based on an approximate computation of S :

S~ S >~ [s.Us.
= We accept to reduce the quality of the preconditioner to consume
less memory.
Main steps :

@ Exact factorization of Ag = Lg.Ugp (supernodal algorithm).
@ Approximate computation of W = EUZ ', G= L5'F.
@ Left-Looking incomplete ILU(rs) factorization of S.



HIPS: preconditioners

droptol E

droptol 1

Main features
@ lterative or “hybrid” direct/iterative method are implemented.
@ Mix direct supernodal (BLAS-3) and sparse ILUT factorization in
a seamless manner.
@ Memory/Load balancing : distribute the domains on the
processors (domains > processors).




Hybrid iterative/direct

Overlapping Domain Decomposition

Classical Additive Schwarz preconditioners

Goal: solve linear system Ax = b
Use iterative method
Apply the preconditioner at each step

The convergence rate deteriorates as the
number of subdomains increases

As2 A,

A A s Arg Ass | T
A=| As1 Ass ﬁs,z = MYs = Asq [ Ass | Asz | 7!

Classical Additive Schwarz preconditioners N subdomains case

5 S (R (a5) " R
MAS_Z(RI) (A/) RI

i=1




Hybrid iterative/direct

Nonoverlapping Domain Decomposition

Schur complement reduced system

Fr=kufumun

,,,,,,,,,,, QL 2
Distributed Schur complement
QL QL+1 QL+2

~

—_——— —_—
s s S0 S
S S Sme SV

In an assembled form: Sp, = S + ST = Sy = S S
L€adj

—_—
Sfr;nt = Smn
Som SI(;,JrZ)




Hybrid iterative/direct

Non-overlapping Domain Decomposition

Algebraic Additive Schwarz preconditioner

N
- T 50
§=3"R{ SRy,
i=1

S — Skk  Ske
Sek See  Sem
Smé Smm
Snm

Similarity with Neumann-Neumann
preconditioner [J.F Bourgat, R.

Glowinski, P. Le Tallec and M.
Vidrascu - 89] [Y.H. de
Roek, P. Le Tallec and M. Vidrascu -
91]

Smn
Snn

Sk Ske
— M =
Sek [ See | Sem | 7!
Sme | Smm | Smn
Snm Snn
TN R,
M= RS
where S ’) is obtained from S
S — S S — 50 = (skk ske>
Sek 82‘2 Sek Sy
local Schur local assembled Schur
™ A

> S

L€adj




Hybrid iterative/direct

Parallel preconditioning features

S = AI('i,)F; = AriIfAITI: Aliri

#domains

MAS = Z R/T(\_S(i))71R,'
p

Simm Smg Smk Sme Sﬁ,l,a—,, Sm_g Smk Sme

S0 — Sgm  Sgg Sgk  Sge s — Sgm Sgg Sgk Sge

Skm Skg Skk Ske Skm  Skg S;EQ Ske

Sem Seg Sk Sw Sim Sig  Su 322)
Assembled local Schur complement local Schur complement

Smm = Z SS){l)m

jeadj(m)




Hybrid iterative/direct

Parallel implementation

@ Each subdomain A" is handled by one processor

j Azz,  Azr,
() — i+i il
AT = ('AIiri AI('Ilz )

@ Concurrent partial factorizations are performed on each processor to
form the so called “local Schur complement”

SV =AY — Arz AZE Az,

@ The reduced system Sxr = f is solved using a distributed Krylov solver

- One matrix vector product per iteration each processor computes S(f)(xlﬁ"))k = (y(k
- One local preconditioner apply (M) (z(0)k = (r(D)k

- Local neighbor-neighbor communication per iteration

- Global reduction (dot products)

@ Compute simultaneously the solution for the interior unknowns

AI:'T-:‘XI/ = in - AIirini



What tricks exist to construct cheaper preconditioners

Sparsification strategy through dropping

s J s it Ske > E(ISkk| + [Seel)
Ske = { 0 else

v

Approximation through ILU -

: A Ar, L o\ (U LA
ILU (AD) = piL ! y ) = ( 4 ) < 5 ’r>
pILU (A™”) = plLU (Ar,.i Al(—li)ri ao-t 1) \o 30

y

Mixed arithmetic strategy

@ Compute and store the preconditioner in 32-bit precision arithmetic Is accurate enough?
@ Limitation when the conditioning exceeds the accuracy of the 32-bit computations Fix it!
@ |dea: Exploit 32-bit operation whenever possible and ressort to 64-bit at critical stages
(*]

Remarks: the backward stability result of GMRES indicates that it is hopeless to expect
convergence at a backward error level smaller than the 32-bit accuracy [C.Paige,
M.Rozloznik, Z.Strakos - 06]

Idea: To overcome this limitation we use FGMRES [Y.Saad - 93]

N




Numerical behaviour of sparse preconditioners

Convergence history

Fuselage 6.5Mdof

—— Direct calculation

—— Dense calculation

- - - Sparse with £5.10”
o

0

EJ 12
#iter

200 10

Fuselage 6.5Mdof

Time history

- - Sparse witt

- - Sparse witt

- - Sparse witt

—— Direct calculation
—— Dense calculation

h &=5.107|
i &=10
h =510

0 40 80 120 160 200 240 280 320 360 400 440 480
Time(sec)

6.5 Mdof on 16 cores




Implemenation on top of runtime systems

Outline

0 Implemenation on top of runtime systems



Software approach : multiple layer approach

Governing ideas: Enable advanced
ALGORITHM numerical algorithms to be executed on a
scalable unified runtime system for exploiting
the full potential of future exascale machines.

RUNTIME Basics:
@ Graph of tasks
KERNELS @ Out-of-order scheduling

| ecru | | cru | @ Fine granularity




Factorization time (in s)

900

X : multicore resulis

Stafic ——

Implemenation on top of runtime systems

1600

1400

1200

1000

800

600

Factorization time (in s)

400

200

Number of threads

14 Audi / StarPU s

: Audi / DAGUE E==m
5 MHD / StarPU
3 42 [L_MHD/DAGUE
=R F
8
2
[
2
s
D 08t
o
£
£ 06
S
['s
2 04rp
5
2
5
O o2t

0

1 2

4 6 12
Number of threads



Implemenation on top of runtime systems

PaStiX : results with GPUs over StarPU

Generic Runtime / Static scheduler

Number of threads

Figure: Audi

Generic Runtime / Static scheduler

1600

1400

1200

1000

800

600

400

200

Number of threads

Figure: MHD



	Introduction
	Sparse direct
	Hybrid iterative/direct
	Implemenation on top of runtime systems

