SeLaLib (Semi-Lagragian Library) TONUS Project Team

Pierre Navaro (IRMA Strasbourg)

C2S@Exa Inria Project Lab (IPL) Technical meeting Sparse linear system solvers

23 septembre 2013

Outline

- History
- Ontext :
 - plasma physics and the mathematical model
 - the model and its requirements
 - research topics
- Library modules overview
- Abstraction examples
 - deformed meshes
 - remap parallel module
- Ongoing work
- Software development remarks
- Perspective and needs.

History

- 2001 Eric Sonnendrucker at IRMA
- 2004 CALVI project begins
- 2007 ANR EGYPT (Etude GYrocinétique des Plasmas Turbulents)
- 2009 AE FUSION
- 2010 ANR GYPSI (GYrokinetic high Performance Simulation for ITER)
- 2010 Vlasy (python platform)
- 2010 ADT SeLaLib
- 2013 TONUS (Tokamaks and Numerical Simulations) lead by Philippe Helluy

Collaborative projects with Institut de Recherche sur la Fusion Magnétique (CEA, Cadarache)

The Physics Model and its Requirements

• The fundamental equation of plasma physics is the Vlasov equation :

$$\frac{\partial f_s(\vec{x},\vec{v},t)}{\partial t} + \vec{v} \cdot \nabla_{\vec{x}} f_s + \frac{q_s}{m_s} (\vec{E} + \vec{v} \times \vec{B}) \cdot \nabla_{\vec{v}} f_s = 0.$$

- Its solution is sought in a variety of conditions :
 - from 2D to 6D problems,
 - electrostatic or electromagnetic approximations, gyrokinetic approximations... (i.e : more coupled equations),
 - flexibility of the choice of solution methods,
 - arbitrary shapes of the solution domains...
- Selalib is meant to provide a collection of software modules to aid in the development of simulations configurable in any combination of the above...

Context : Research Topics

 The main types of equation that result from splitting the Vlasov equation are a) constant coefficients, b) non-conservative and, c) conservative form :

$$\partial_t f(x,v,t) + a \partial_x f(x,v,t) = 0$$

$$\partial_t f(x,v,t) + a(x,t)\partial_x f(x,v,t) = 0$$

$$\partial_t f(x,v,t) + \partial_x (a(x,t)f(x,v,t)) = 0$$

 Ongoing work is carried out to develop such methods and interface them to the library.

Library Modules Overview (not comprehensive)

Low-Level Modules

- At the lowest level we have services which are general, fully reusable and do not depend on any other module :
 - memory manager : basic allocators/deallocators,
 - assertions : simple, defensive programming
 - working precision : basic numeric types, C bindings.
 - constants : physical and math,
 - timer : timing utility
 - I/O routines (HDF5 or binary format)
 - utilities : for miscellaneous low-level functions (is_power_of_two(), int2string(), etc.)

Mid-Level : mathematical and parallel services

- tridiagonal system solver,
- numerical integration,
- splines : cubic 1D, 2D, nonuniform, in progress : quintic splines,
- FFT (generic interface with multiple implementations),
- nonlinear solvers (Newton-Raphson),
- ODE solvers : RK for specific ODEs,
- collective module : the entry point for MPI,
- remap module : for global redistribution of data,
- comm module : for nearest neighbor parallelization schemes,
- field solvers (for array data)

Top-Level Modules

- Physics-related capabilities :
 - interpolators : generic wrapper for cubic splines, etc.,
 - coordinate transformations,
 - fields (scalar and vector) : logical mesh + transformation + data,
 - integrated simulations
 - specialized solvers (quasi-neutrality equation)
- We have been using the features of the Fortran 2003 standard to aid in this development, hence paid a portability price.
- Eventually, some modules will be downgraded or will have multiple implementations in specific cases, for example having both F95 and F2003 implementations.

Abstraction Example (I)

- Arbitrary physical domains are modeled by structured meshes acted upon by a coordinate transformation.
- Reasonably complex configurations can be modeled by patching multiple structured meshes.

Abstraction Example (II)

sll_logical_mesh_2D	sll_coordinate_transformation_2D
num_cells_eta1	x1(η_1, η_2)
num_cells_eta2	$x2(\eta_1,\eta_2)$
eta1_min	jacobian(η_1 , η_2)
eta1_max	jacobian_matrix(η_1 , η_2)
delta_eta1	inverse_jacobian_matrix(η_1 , η_2)
eta2_min	x1_at_node(i,j)
eta2_max	x2_at_node(i,j)
delta_eta2	jacobian_at_node(i,j)
	x1_at_cell(i,j)
	x2_at_cell(i,j)
	jacobian_at_cell(i,j)
	write_to_file()
	delete()

• The coordinate transformation initialization depends on its being of the analytical or discrete type.

Abstraction Example : Remap Parallel Module

type(layout_3d) :: lx,ly; type(remap_3d) :: r1
call initialize_layout(np1, np2, np3, 1, 4, 8, lx)
call initialize_layout(np1, np2, np3, 4, 1, 8, ly)
r1 => new_remap_plan(lx, ly, array_x)
call apply_remap_plan(r1, array_x, array_y)

Ongoing Work

- In development : multiple instances of our simulation class :
 - 4D parallel, (x, y, v_x, v_y) : tested
 - 4D drift-kinetic (x, y, z, v_{\parallel}) : polar coordinates
 - 4D drift-kinetic (x, y, z, v_{\parallel}) , with finite-volume advection scheme
 - 4D euler scheme with finite elements.
- alternative parallel module, for nearest-neighbor communications
- ongoing research in the development of advection schemes, and test cases for simulations.

Software Development Remarks

• IS : Edwin Chacon-Golcher (Software designer)

- Postdoc : Aurore Back, Adnane Hamiaz
- IJD : Raphael Blanchard, Samuel Desantis, Aliou Diouf
- IR : Pierre Navaro
- Mathematicians : Philippe Helluy, Michel Mehrenberger, Eric Sonnendrucker.
- Others mathematicians developing algorithms both inside and outside the library as users.

Software engineering

- git + CMake + CTest + CDash
- Fortran 2003 + MPI + HDF5 + FFTW
- INRIA provides GForge + Continuous Integration portal + CMake quality dashboard

													0.01
		Selalib											
Pashboard	Calendar	Previous	Gurrent	Next	Pro	gect .							
				This i	s the new	CDash v	ersion						
to file changed as of Mo	nday, June 1	10 2013 - 21:00 CE	ST							Show	Filters (Novanced	View Auto-refresh Help
Nightly													
Ste		Build Name		Update Configure		Build		Test			Build Time		
				Files	Error	Warn	Error	Warn	Not Run	Fại	Pass		
ma-suse.u-strasbg.fr		∆ glortran-4.7.3-L	.inux-x88_64 🍳		0	0	0	0	0	0		54	Jun 11, 2013 - 00:00 CES
ma-hpc		∆ ifort-13.1.2-Linux-x86_64 ⊕			0	0	0	0	0	0	3	58	Jun 11, 2013 - 00:00 CES
PPOL		∆ gfortran-4.6.3-amd64-linux-ubuntu-precise			0	0	0	0	0	0	2	59	Jun 11, 2013 - 08:54 GES
PIPOL.		∆ gtortran-4.7.2-c	imd64-linux-ubun	tu-quantal	0	0	0	0	0	0	z	59	Jun 11, 2013 - 09:02 GES
PPOL		∆ gfortran-4.7.2-amd64_2010-linux-fedora- core17 ♀			0	0	0	0	0	0	2	59	Jun 11, 2013 - 08:54 CES
PIPOL		$ \underset{\bigcirc}{\overset{\Delta}{\hookrightarrow}} \text{glortran-4.7.3-amd64-linux-debian-testing} $			0	0	0	0	0	0	2	59	Jun 11, 2013 - 08:53 CES
POL		∆ gfortran-4.7.3-amd64_2010-linux-debian- testing @			0	0	0	0	0	0	2	59	Jun 11, 2013 - 08:41 CES
rma-hpc2		∆ gtortran-4.7.3-L	inux-x86_64 🥯		0	0	0	0	0	0	2	59	Jun 11, 2013 - 00:00 CES
Experimental													
Site		Build Name	Update	Configure		Build		Test			Build Time		
		Card Hall		Files	Error	Warn	Error	Warn	Not Run	Fail	Pass		
rma-suse.u-strasbg.fr		∆ gtortran-4.7.3-L	.inux-x86_64 🔍			0	0	0	0	0.0	2"	59***	Jun 11, 2013 - 14:25 GES
rma-suse.u-strasbg.fr		∆ gtortran-4.7.3-6	.inux-x86_64 🍳			0	0	0	0	19		41	Jun 11, 2013 - 14:13 GES
np-navaro.local		dortran-4.8.1-0	@ assiumed			0	0	0	0	0		53	Jun 10, 2013 - 21:25 CES

- First release planned in January 2014.
- Future planned additions include :
 - domain-decomposition,
 - add support modules : logger, checkpointer, etc.
 - introduce hardware acceleration techniques.
- Ideally, Selalib would become a trusted collection of reusable tools for building plasma physics simulations.
- Selalib should provide a common framework where geographically distributed researchers would be able to find :
 - tools for their work,
 - opportunities to contribute/collaborate with others while using defined software processes instead of *ad hoc* developments.

- Fast band matrix solver for interpolation routines (Lapack).
- FFT Poisson solvers (home made or Fishpack)
- General solver for curvilinear meshes (Multigrid or conjuguate gradient method)
- Variational Integrators method needs non linear solvers (Newton + preconditioned conjugate gradient method)
- Exponential integrators for spectral element, discontinuous Galerkin method. (Suitesparse library)

Prerequisites

- Preconditioning tool
- Parallel solvers
- Fortran interface
- Non commercial
- No exotic dependencies (ideally)
- We consider
 - Pastix + Scotch + Murge
 - PETSc ?