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Research group 
•  Lab. J.-L. Lions, UPMC 

•  Mesh generation techniques, FEM 
               F. Hecht (Professor) 

•  Domain decomposition, PDEs 
       F. Nataf (Director of Research CNRS) 
•  Boundary element methods, modelling of electromagnetic wave propopagation  

               X. Claeys (MdC) 

•  INRIA  
•  Linear algebra and high performance algorithms  

               L. Grigori (Director of Research) 

•  University Paris 11 (associate members) 
•  Fault tolerance 

               J. Burman (MdC), J Beauquier (Professor) 

•  Currently 9 Phd students, 2 postdoctoral researchers, 1 software engineer 
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Methodology 

•  Mesh generation for parallel computation 
•  Exploit the formalism of FreeFEM, a language dedicated to finite elements 
•  F. Hecht, F. Nataf 

•  Solvers for numerical linear algebra  
•  Design of domain decomposition and multilevel direction preserving preconditioners 
•  High performance computing for boundary element methods 
•  X. Claeys, L. Grigori, F. Hecht, F. Nataf 

•  Computational kernels for numerical linear algebra 
•  Design of novel numerical algorithms that minimize communication 
•  J. Beauquier, J. Burman, L. Grigori, F. Hecht 

•  Integration and validation in numerical simulations 

•  All members 



CA-ILU0 
Block Filtering Decomposition (BFD), 
 Nested Filtering Factorization (NFF) 

                      R. Fezzani, P. Kumar, L. Grigori,  
              R. Lacroix, S. Moufawad, F. Nataf, L. Qu, K. Wang  
                       INRIA, LJLL, UPMC 

ANR Petal and Petalh projects 
http://petal.saclay.inria.fr/ 
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Compute xi = (LU)-1 A xi-1 using 3 steps: 
1.  Compute f = A xi-1  

2.  Forward substitution: solve Lz = f 
3.  Backward substitution: solve Uxi = z 

ILU0 with nested dissection and ghosting 

Let α0 be the set of equations to be solved by one processor 
For j = 1 to s do 

    Find δj = Adj (G(A), γj)  
    Set αj = δj 
end  

Ghost data required:  
  x(δ), A(γ,δ),  
  L(γ,γ), U(β, β) Find βj = ReachableVertices (G(U), αj-1) 

Find γj = ReachableVertices (G(L), βj) 

5 point stencil on a 2D grid 

⇒  Half of the work  
performed on one processor  
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CA-ILU0 with AMML reordering and ghosting 
•  Reduce volume of ghost data by reordering the vertices using 

Alternating Min-Max Layers (AMML) reordering:  
•  First number the vertices at odd distance from the separators 
•  Then number the vertices at even distance from the separators 

•  CA-ILU0 computes a standard ILU0 factorization  

5 point stencil on a 2D grid 
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Comparison with Block Jacobi 
•  Block Jacobi is another preconditioner which does not require communication 
•  Tests for a boundary value problem (Achdou, Nataf), 40x40x40 grid 

Methods tested: 
•  Natural ordering NO+ILU0 
•  CA-ILU0 - kway+AMML(1)+ILU0 
•  Block Jacobi using LU - BJ+ILU0 
•  Block Jacobi using ILU0 - BJ-ILU0 

€ 

−div(κ(x)∇u) = f inΩ
u = 0 on∂ΩD

∂u
∂n

= 0 on∂ΩN

€ 

Ω = 0,1[ ]3,∂ΩN = ∂Ω \∂ΩD

€ 

κ jumps from 1 to 103
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Solve 
       M-1 A x = M-1 b 

Incomplete LU has plateaus  
    in the convergence 
Often due to the presence of few  
    low eigenvalues 

Filtering factorization 
•  Preconditioner M satisfies a filtering property for input A and set of vectors T 

MT = AT or TTM = TTA  
•  Filtering vectors T are chosen to improve the convergence 
•  Complementary with incomplete LU factorization 

Motivation 

Source: Y. Achdou, F. Nataf 
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•  Pointwise approximate factorization satisfying a row-sum criteria, Dupont, Kendall, 
and Rachford (1968), Gustafsson (1978) 
•  Improves the condition number of the preconditioned matrix for matrices arising 

from finite difference approximation of second order elliptic equations 
•  Nested factorization, Appleyard, Cheshire (1983) 

•  If tTr0 = 0, then at any iteration tTrk = 0, this ensures a mass conservation property 
•  Filtering factorization, Wagner, Wittum (1997), Achdou, Nataf (2001) 

•  Direction preserving semiseparable approximation of SPD matrices, Gu, Li, 
Vassilevski (2010) 
•  If the near null-space of the original fine grid matrix is preserved, then view the 

preconditioner as a coarse discretization matrix 
•  Conditioning analysis performed by Napov, components dropped are orthogonal to 

components preserved 
•  Multigrid methods  

•  Bootstrup AMG (Karsten Kahl  ) 

Preserving directions of interest 
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Arbitrary matrices 

•  Let A be partitioned into a block matrix of size N x N 
•  The square diagonal blocks are not necessarily of a same size 

•  The generalization of filtering preconditioner to arbitrary matrices is a 
step forward towards parallel computation  

  

€ 

A =

A11 K A1N
M O M
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Exact factorization of arbitrary matrices 
•  An exact block LDU factorization of A is: 

` 
•   Let C=L+D+U.  Each block of L, D, U is computed as: 

  

€ 

A = (L +D)D−1(D+U)

=

D11
L21 D22

M O O

LN1 L LN ,N −1 DNN

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

⋅

D11
−1

D22
−1

O

DNN
−1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

⋅

D11 U12 L U1N

D22 O M

O UN −1,N

DNN

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

€ 

Cij =
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Block Filtering Decomposition (BFD) 
•  Let t be a filtering vector. A BFD preconditioner M is written as: 

•  Let C = L+D+U.  The blocks of M are computed with the following 
formula, where i,j = 1…N      

    where Fkj is a sparse approximation such that 

€ 

M = (L + D )D −1(D +U )

€ 

L ikFkjU kj t j = L ikD kk
−1U kj t j

€ 

C ij =
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•  Partition the matrix using nested dissection, thus enabling parallelism 

 Suitability for parallel computation 

€ 
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Results for a boundary value problem  
•  SKY (provided by Achdou, Nataf), discretized on a 400x400x400 grid (64 millions 

unknowns, 447 millions nonzeros) 

•  Tests use GMRES (PETSc), tolerance = 10-8 
€ 

−div(κ(x)∇u) = f inΩ
u = 0 on∂ΩD

∂u
∂n

= 0 on∂ΩN

€ 

Ω = 0,1[ ]3,∂ΩN = ∂Ω \∂ΩD

NFF, SKY 400x400x400 SKY 15x15x15 
NFF, SKY 225x225x225 

€ 

κ jumps from 1 to 103
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Comparison with Restricted Additive Schwarz (RAS)  

Settings:  
•  Curie supercomputer based on Bullx 

system, nodes composed of two 
eight-core Intel Sandy Bridge. 

•  Subdomains solved using Pardiso, 
separators solved using MUMPS. 

•  GMRES and RAS from PETSc. 

NFF vs RAS, SKY 400x400x400 NFF performance, SKY 400x400x400 NFF vs RAS, SKY 225x225x225 

Best student paper finalist, Qu, LG, Nataf, SC’13 

Subdom Iteration Error Iteration Error 

256 5489 5.9e-7 268 2.2e-6 

512 6126 2.7e-6 273 3.2e-6 

1024 7163 1.8e-6 289 2.6e-6 

2048 10000 3.7e-6 317 3.8e-6 

NFF vs RAS, SKY 400x400x400 


