Le solveur MUMPS

et les travaux récents

MUMPS group, CERFACS, CNRS, ENS Lyon, INPT, Inria, Univ. Bordeaux 1 September 23, 2013

Sparse Direct Methods

Discretization of a Solution of sparse physical problem \Rightarrow systems (eg, finite elements) $A_X = b$

Often the most expensive part of a simulation process

Sparse direct methods:

• Solve Ax = b by decomposing A under the form LU, LDL^t or LL^t then solve triangular systems (Ly = b, then Ux = y)

Black box?

- Default (automatic/adaptive) setting of options is often available
- A better knowledge and setting of the preprocessing and algorithmic options can help the user improving:
 - o size of factors and memory needed
 - operation count and computational time
 - reliability of the flops/memory estimates
 - o numerical accuracy

Preprocessing - illustration

Three-phase scheme to solve Ax = b

1. Analysis

- Preprocessing of A (permutations, scalings)
- Build dependency graph (tree)
- Prepare factorization (mapping, memory estimates)
- 2. Factorization: A = LU (or LDL^t , or LL^t , or QR) dynamic pivoting for numerical stability

3. Solve:

- the solution x is computed by means of forward and backward substitutions
- o improvement of solution (iterative refinement), error analysis

Some (shared memory) sparse direct codes

Code	Technique	Scope	Availability (www.)
BCSLIB	Multifrontal	SYM/UNS	$Boeing \to Access \; Analytics$
HSL MA87	Supernodal	SPD	cse.clrc.ac.uk/Activity/HSL
MA41	Multifrontal	UNS	cse.clrc.ac.uk/Activity/HSL
MA49	Multifr. QR	RECT	cse.clrc.ac.uk/Activity/HSL
PanelLLT	Left-looking	SPD	Ng
PARDISO	Left-right	SYM/UNS	Schenk
PSL [†]	Left-looking	SPD/UNS	SGI product
SuperLU_MT	Left-looking	UNS	nersc.gov/~xiaoye/SuperLU
SuiteSparseQR	Multifr. QR	RECT	cise.ufl.edu/research/sparse/SPQR
TAUCS	Left/Multifr.	SYM/UNS	tau.ac.il/~stoledo/taucs
WSMP [†]	${\sf Multifrontal}$	SYM/UNS	IBM product

[†] Only object code available.

Some distributed-memory sparse direct codes

Code	Technique	Scope	Availability (www.)
DSCPACK	Multifr./Fan-in	SPD	cse.psu.edu/ \sim raghavan/Dscpack
MUMPS	Multifrontal	SYM/UNS	<pre>graal.ens-lyon.fr/MUMPS</pre>
			and mumps.enseeiht.fr
PaStiX	Fan-in	SYM/UNS	labri.fr/perso/ramet/pastix
PSPASES	Multifrontal	SPD	cs.umn.edu/ \sim mjoshi/pspases
SPOOLES	Fan-in	SYM/UNS	netlib.org/linalg/spooles
SuperLU	Fan-out	UNS	$nersc.gov/{\sim}xiaoye/SuperLU$
S+	Fan-out	UNS	cs.ucsb.edu/research/S +
WSMP †	Multifrontal	SYM	IBM product

[†] Only object code available.

Main features

How does MUMPS compare with the others?

- Address wide classes of problems and architectures
- Good numerical stability (dynamic pivoting, preprocessing, postprocessing, error analysis)
- Wide range of numerical and algorithmic features

Management of parallelism

- Mainly MPI-based
- Dynamic and asynchronous approach

MUMPS

SuperLU_DIST

Main features (I)

Interfaces

Fortran, C, Matlab/Octave and Scilab interfaces

Input/Output formats

- Assembled format
- Distributed assembled format
- Sum of elemental matrices
- Sparse, multiple right-hand sides, centralized/distributed solution

Types of matrices

- Symmetric (positive definite, indefinite), Unsymmetric
- Single/Double precision with Real/Complex arithmetic
- Singular matrices

Main features (II)

Preprocessing and Postprocessing

- Reduce fill-in: symmetric orderings interfaced: AMD, QAMD, AMF, PORD, (par)METIS, (pt)SCOTCH
- Numerical preprocessing: unsymmetric orderings and scalings
- Iterative refinement and backward error analysis

Numerical pivoting

- Partial pivoting and two-by-two pivots (symmetric)
- Static pivoting and "Null" pivot detection, null-space basis

Main features (III)

Solving larger problems

- Hybrid scheduling: performance under memory constraints
- Out-of-core
- Parallel analysis

Miscellaneous

- Partial factorization and Schur complement
- Forward elimination during factorization
- Exploit user-provided memory
- Inertia, determinant, entries of A^{-1} , discard factors ...

MUMPS (MUltifrontal Massively Parallel Solver)

Initially funded by European project PARASOL (1996-1999) http://graal.ens-lyon.fr/MUMPS and http://mumps.enseeiht.fr Platform for research

- Research projects, PhD thesis
- Hybrid direct-iterative methods: block Cimmino, Schur-based

Competitive software package used worldwide

- Co-developed by CERFACS, CNRS, ENS Lyon, INPT, Inria, Univ. Bordeaux 1
- Latest release: MUMPS 4.10.0, May 2011, \approx 250 000 lines of C and Fortran code
- Integrated within commercial and open-source packages (e.g., Samcef from Samtech, Actran from Free Field Technologies, Code_Aster or Telemac from EDF, PAM-Crash from ESI Group, debian packages, IPOPT, Petsc, Trilinos, . . .).
- 1000+ downloads per year from our website, academia and industry

1000+ downloads per year from the MUMPS website

- \approx 400 subscribers to the mumps-users mailing list: 2753 mail exchanges in 6 years
- exchanges developers \leftrightarrow users: \approx 870 mail exchanges per year

Recent/ongoing work since last release (4.10.0)

- Low-rank multifrontal Solver (PhD of C. Weisbecker (INPT-IRIT, 2010→ Oct. 28, 2013) on Block-Low-Rank method)
 Collaboration with EDF (O. Boiteau) and C. Ashcraft (Livermore, USA)
- Memory scalability and quality of memory estimates: Robust memory-aware mappings (PhD of Agullo (ENS Lyon, 2005-2008) and Rouet (INPT-IRIT, 2009-2012))
- **Solution phase** performance (time and memory) (PhD of Rouet (INPT-IRIT, 2009-2012)): dense and sparse, IC and OOC environments (increased block size for multiple RHS)
- Hybrid parallelism on clusters of multicore architectures (PhD of W. Sid-Lakdhar, ENS Lyon, 2011-) and on heterogeneous architectures (PhD F. of Lopez, UPS-IRIT, 2012-)

Objective: integrate results of these major research tracks in future MUMPS releases (medium-term engineering work)

Related project: the qr_mumps code (i)

- multifrontal sparse QR solver
- designed for multicore systems (single-node).
- mainly developed by A. Buttari
- qr_mumps v1.0 available at http://buttari.perso.enseeiht.fr/qr_mumps

Main characteristics

- 40 000 lines of Fortran2003 code (full C interface)
- OpenMP multithreading (can now use StarPU)
- S, D, C, Z arithmetics
- COLAMD, METIS and SCOTCH orderings
- multithreaded solve $(R^{-1}x, R^{-T}x, Qx, Q^{T}x)$
- singletons detection

Related project: the qr_mumps code (ii)

If a task is defined as the execution of one elementary operation on a block-column or a front, then the entire multifrontal factorization can be represented as a Directed Acyclic Graph (DAG)

where nodes represent tasks and edges the dependencies among them: "DAG-based approach"

Multifrontal solvers on top of runtime systems

- Subject of the PhD thesis of F. Lopez (UPS-IRIT, 2012-)
- Current focus: qr_mumps (rather than MUMPS) + StarPU (RUNTIME team, Bordeaux) to address both multicores and GPUs
- Work continues in the context of the ANR project SOLHAR (coordinator: A. Guermouche)

References:

- E. Agullo, A. Buttari, A. Guermouche, F. Lopez, Multifrontal QR Factorization for Multicore Architectures over Runtime Systems, Europar 2013, LNCS 8097, pp. 521–532 (2013).
- A. Buttari. Fine-grained multithreading for the multifrontal QR factorization of sparse matrices, SISC 35(3): pp. C323-C345 (2013).

Thanks for your attention!