

From hybrid architectures to hybrid solvers

C2S@Exa Kickoff meeting - Nuclear Fusion X. Lacoste, M. Faverge, P. Ramet

Pierre RAMET HiePACS team Inria Bordeaux Sud-Ouest Guideline

Context and goals

Dynamic Scheduling

Generic Runtimes

Results on Manycore Architectures

Conclusion and extra tools

nnia

Pierre RAMET - C2S@Exa - Sophia-Antipolis

1 Context and goals

Ínría

The "spectrum" of linear algebra solvers

- Robust/accurate for general problems
- BLAS-3 based implementation
- Memory/CPU prohibitive for large 3D problems
- Limited parallel scalability

- Problem dependent efficiency/controlled accuracy
- Only mat-vec required, fine grain computation
- Less memory consumption, possible trade-off with CPU
- Attractive "build-in" parallel features

Major steps for solving sparse linear systems

- 1. Analysis: matrix is preprocessed to improve its structural properties $(A'x' = b' \text{ with } A' = P_n P D_r A D_c Q P^T)$
- 2. Factorization: matrix is factorized as A = LU, LL^T or LDL^T
- 3. Solve: the solution x is computed by means of forward and backward substitutions

Symmetric matrices and graphs

- > Assumptions: A symmetric, pivots are chosen on the diagonal
- Structure of A symmetric represented by the graph

G = (V, E)

Innia-

- Vertices are associated to columns: $V = \{1, ..., n\}$
- Edges *E* are defined by: $(i, j) \in E \leftrightarrow a_{ij} \neq 0$
- G undirected (symmetry of A)
- Number of nonzeros in column $j = |Adj_G(j)|$

Symmetric permutation \equiv renumbering the graph

Fill-in theorem and Elimination tree

Theorem

Any $\mathbf{A}_{ij} = 0$ will become a non-null entry \mathbf{L}_{ij} or $\mathbf{U}_{ij} \neq 0$ in $\mathbf{A} = \mathbf{LU}$ if and only if it exists a path in $G_A(V, E)$ from vertex *i* to vertex *j* that only goes through vertices with a lower number than *i* and *j*.

Definition

Let **A** be a symmetric positive-definite matrix, $G^+(\mathbf{A})$ is the **filled** graph (graph of $\mathbf{L} + \mathbf{L}^T$) where $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ (Cholesky factorization)

Definition

The elimination tree of **A** is a spanning tree of $G^+(\mathbf{A})$ satisfying the relation $PARENT[j] = min\{i > j | I_{ij} \neq 0\}$.

Innia-

Context and goals

Direct Method

Inría

PaStiX Features

(nría_

- LLt, LDLt, LU : supernodal implementation (BLAS3)
- Static pivoting + Refinement: CG/GMRES
- Simple/Double precision + Float/Complex operations
- Require only C + MPI + Posix Thread (PETSc driver)
- MPI/Threads (Cluster/Multicore/SMP/NUMA)
- Dynamic scheduling NUMA (static mapping)
- Support external ordering library (PT-Scotch/METIS)
- Multiple RHS (direct factorization)
- Incomplete factorization with ILU(k) preconditionner
- Schur computation (hybrid method MaPHYS or HIPS)
- Out-of Core implementation (shared memory only)

Direct Solver Highlights (MPI)

Main users

- Electomagnetism and structural mechanics at CEA-DAM
- MHD Plasma instabilities for ITER at CEA-Cadarache
- Fluid mechanics at Bordeaux

TERA CEA supercomputer

The direct solver PaStiX has been successfully used to solve a huge symmetric complex sparse linear system arising from a 3D electromagnetism code

- ► **45 millions unknowns**: required 1.4 Petaflops and was completed in half an hour on 2048 processors.
- ▶ 83 millions unknowns: required 5 Petaflops and was completed in 5 hours on 768 processors.

Ínría

Dynamic Scheduling for NUMA and multicore architectures

Needs

- Adapt to NUMA architectures
- Improve memory affinity (take care of memory hierarchy)
- Reduce idle-times due to I/O (communications and disk access in future works)

Proposed solution

- Based on a classical work stealing algorithm
- Stealing is limited to preserve memory affinity
- Use dedicated threads for I/O and communication in order to give them an higher priority

Innia

NUMA-Aware Allocation (up to 20% efficiency)

(a) Localization of new NUMA-aware allocation in the matrix

Inría

Communication schemes (upto 10% efficiency) Processeur 1 Processeur 1 Multiple

Ínría

Thread support inside MPI librairies

- MPI_THREAD_SINGLE
 - Only one thread will execute.
- MPI_THREAD_FUNNELED
 - The process may be multi-threaded, but only the main thread will make MPI calls (all MPI calls are funneled to the main thread).
- MPI_THREAD_SERIALIZED
 - The process may be multi-threaded, and multiple threads may make MPI calls, but only one at a time: MPI calls are not made concurrently from two distinct threads (all MPI calls are serialized).
- MPI_THREAD_MULTIPLE
 - Multiple threads may call MPI, with no restrictions.

Dynamic Scheduling : New Mapping

- Need to map data on MPI process
- Two steps :

Coria

- A first proportional mapping step to map data
- A second step to build a file structure for the work stealing algorithm

Dynamic Scheduling : New Mapping

- Need to map data on MPI process
- Two steps :

Innia

- A first proportional mapping step to map data
- A second step to build a file structure for the work stealing algorithm

Study on a large test case: 10M

Properties

Ν	10 423 737
NNZA	89 072 871
NNZ_L	6 724 303 039
OPC	4 41834⊨⊥13

	4x32	8x32
Static Scheduler	289	195
Dynamic Scheduler	240	184

Table : Factorization time in seconds

Electromagnetism problem in double complex from CEA

Cluster Vargas from IDRIS with 32 power6 per node

Static Scheduling Gantt Diagram

 10Million test case on IDRIS IBM Power6 with 4 MPI process of 32 threads (color is level in the tree)

(nría

Dynamic Scheduling Gantt Diagram

Reduces time by 10-15%

lnría

Direct Solver Highlights (multicore) SGI 160-cores

Name	N	NNZA	Fill ratio	Fact
Audi	9.44×10 ⁵	3.93×10 ⁷	31.28	float LL^T
10M	1.04×10^{7}	8.91×10 ⁷	75.66	complex LDL^T

Audi	8	64	128	2×64	4x32	8×16	160
Facto (s)	103	21.1	17.8	18.6	13.8	13.4	17.2
Mem (Gb)	11.3	12.7	13.4	2x7.68	4x4.54	8x2.69	14.5
Solve (s)	1.16	0.31	0.40	0.32	0.21	0.14	0.49

10M	10	20	40	80	160
Facto (s)	3020	1750	654	356	260
Mem (Gb)	122	124	127	133	146
Solve (s)	24.6	13.5	3.87	2.90	2.89

Ínría

Panel factorization

- Factorization of the diagonal block (XXTRF);
- ► TRSM on the extra-diagonal blocks (ie. solves X × b_d = b_{i,i>d} - where b_d is the diagonal block).

Figure : Panel update

Trailing supernodes update

- One global GEMM in a temporary buffer;
- Scatter addition (many AXPY).

Figure : Panel update

GPU kernel performance

Figure : Sparse kernel timing with 100 columns.

- Task-based programming model;
- ► Tasks scheduled on computing units (CPUs, GPUs, ...);
- Data transfers management;
- Dynamicaly build models for kernels;
- Add new scheduling strategies with plugins;
- Get informations on idle times and load balances.

Innia

StarPU Tasks submission

Algorithm 1: STARPU tasks submission

forall the Supernode S_1 do submit_panel (S_1); /* update of the panel */ forall the extra diagonal block B_i of S_1 do $S_2 \leftarrow \text{supernode_in_front_of } (B_i)$; submit_gemm (S_1, S_2); /* sparse GEMM $B_{k,k \ge i} \times B_i^T$ substracted from S_2 */ end

$\mathrm{DAGuE}\xspace$'s parametrized taskgraph

```
panel(j) [high_priority = on]
/* execution space */
i = 0 \dots cblknbr-1
/* Extra parameters */
firstblock = diagonal_block_of(j)
lastblock = last_block_of(j)
lastbrow = last_brow_of(j) /* Last block generating an update on j */
/* Locality */
:A(i)
RW A \leftarrow leaf ? A(j) : C gemm(lastbrow)
        \rightarrow A gemm(firstblock+1..lastblock)
        \rightarrow A(i)
```

Figure : Panel factorization description in DAGuE

Innia

Matrices and Machines

Matrices

Name	N	NNZA	Fill ratio	OPC	Fact
MHD	4.86×10 ⁵	1.24×10 ⁷	61.20	9.84×10^{12}	Float <i>LU</i>
Audi	9.44×10 ⁵	3.93×10 ⁷	31.28	5.23×10 ¹²	Float LL^T
10M	1.04×10^{7}	8.91×10 ⁷	75.66	1.72×10^{14}	Complex LDL^{T}

Machines

Processors	Frequency	GPU s	RAM
AMD Opteron 6180 SE (4 \times 12)	2.50 GHz	Tesla T20 (\times 2)	256

laría

 CPU only results on Audi

Figure : LL^{T} decomposition on Audi (double precision)

 CPU only results on MHD

Figure : *LU* decomposition on MHD (double precision)

Inría

 CPU only results on 10 Millions

Figure : LDL^{T} decomposition on 10M (double complex)

Audi: GPU results on Romulus (STARPU)

Figure : Audi LL^t decomposition with GPU (double precision)

Innia

MHD: GPU results on Romulus (STARPU)

Figure : MHD LU decomposition with GPU (double precision)

Innia

(nria_

Conclusion

- Timing equivalent to PASTIX with medium size test cases;
- Quite good scaling;
- Speedup obtained with one GPU and little number of cores;
- released in PASTIX 5.2 (http://pastix.gforge.inria.fr).

Futur works

- Study the effect of the block size for GPUs;
- Write solve step with runtime;
- Distributed implementation (MPI);
- Panel factorization on GPU;
- Add context to reduce the number of candidates for each task;

Block ILU(k): supernode amalgamation algorithm

Derive a block incomplete LU factorization from the supernodal parallel direct solver

- Based on existing package PaStiX
- Level-3 BLAS incomplete factorization implementation
- Fill-in strategy based on level-fill among block structures identified thanks to the quotient graph
- Amalgamation strategy to enlarge block size

Highlights

- Handles efficiently high level-of-fill
- Solving time can be 2-4 faster than with scalar ILU(k)
- Scalable parallel implementation

Block ILU(k): some results on AUDI matrix (N = 943, 695, NNZ = 39, 297, 771)

Numerical behaviour

(nría_

Pierre RAMET - C2S@Exa - Sophia-Antipolis

Block ILU(k): some results on AUDI matrix (N = 943, 695, NNZ = 39, 297, 771)

Preconditioner setup time

Pierre RAMET - C2S@Exa - Sophia-Antipolis

Innía

May 17, 2013- 45

HIPS : hybrid direct-iterative solver

Based on a **domain decomposition** : interface one node-wide (no overlap in DD lingo)

$$\begin{pmatrix} A_B & F \\ E & A_C \end{pmatrix}$$

- B : Interior nodes of subdomains (direct factorization).
- C : Interface nodes.

Special decomposition and ordering of the subset C : Goal : Building a global Schur complement preconditioner (ILU) from the local domain matrices only.

HIPS: preconditioners

Main features

- Iterative or "hybrid" direct/iterative method are implemented.
- Mix direct supernodal (BLAS-3) and sparse ILUT factorization in a seamless manner.
- Memory/load balancing : distribute the domains on the processors (domains > processors).

HIPS vs Additive Schwarz (from PETSc)

Experimental conditions

These curves compare HIPS (Hybrid) with Additive Schwarz from PETSc.

Parameters were tuned to compare the result with a very similar fill-in

$\ensuremath{\mathrm{MURGE}}\xspace$: a common API to the sparse linear solvers of BACCHUS

alinia

http://murge.gforge.inria.fr

Features

- Through one interface, access to many solver strategies
- Enter a graph/matrix in a centralized or distributed way
- Simple formats : coordinate, CSR or CSC
- Very easy to implement an assembly step

General structure of the code

```
MURGE_Initialize(idnbr, ierror)
MURGE_SetDefaultOptions(id, MURGE_ITERATIVE) /* Choose general strategy */
MURGE_SetOptionInt(id, MURGE_DOF, 3) /* Set degrees of freedom */
. .
MURGE_Graph_XX(id..) /* Enter the graph : several possibilities */
DO
MURGE_SetOptionReal(id, MURGE_DROPTOL1, 0.001) /* Threshold for ILUT */
MURGE_SetOptionReal(id, MURGE_PREC, 1e-7) /* Precision of solution */
 . . .
 /** Enter new coefficient for the matrix **/
 MURGE_AssemblyXX(id..) /* Enter the matrix coefficients */
DO
   MURGE SetRHS(id, rhs) /* Set the RHS */
   MURGE_GetSol(id, x) /* Get the solution */
END
 MURGE MatrixReset(id) /* Reset matrix coefficients */
END
MURGE_Clean(id) /* Clean-up for system "id" */
MURGE_Finalize() /* Clean-up all remaining structure */
```

nnia

BACCHUS/HiePACS softwares

Graph/Mesh partitioner and ordering :

http://scotch.gforge.inria.fr

Sparse linear system solvers :

http://pastix.gforge.inria.fr

http://hips.gforge.inria.fr

Thanks !

Pierre RAMET INRIA HiePACS team C2S@Exa, Nuclear Fusion, Sophia-Antipoli