Remarques sur les grands maillages, comment

les construire et/ou comment les éviter

Inria, EPI Gamma3, A. Loseille, L. Maréchal and P.L. G.

AE CS@EXA

@ Constructing large meshes

@ Anisotropy

@ Adaptive loop, error estimates and goal oriented
@ Multi-threading and GPU

v d

Constructing large size meshes (1/2) Orsis

@ basic (presumably reliable) algorithms and scaling issues:

temporary need of an arbitrarily large "array”

cache misses

number representation (for floating values but even for integers)
robustness (even for integers)

funny complexity suddenly revealed :

@ ex1:c=10"80(n?) + O(n) may have two different behaviors!
@ ex2: ¢ = kO(n) may be O(n?)!
@ new patterns suddenly appear, never met before or being marginal

@ remedies are twofold:

@ interms of algorithms :
@ re-design
@ massive use of (Peano)-Hilbert renumbering
@ in terms of computer science: number representation, multi-threading and GPU uses

@ new algorithms in GHS3D and HEXOTIC, LP-Lib and
GM-Lib libraries

@ tet and hex meshes of about 2 billions of elements
successfully generated (on a serial machine)

Constructing large size meshes (2/2)

@ pre-partitioning of the domain + local meshes (what about
interfaces?)

@ refinement of a coarse mesh (does a coarse mesh exist?)

on the other side

@ partitioning of a large mesh into parts to be distributed
(what about interfaces?)

v d

Anisotropy (1/ Lo

Aircraft = 36m, Mesh 1mm to 30cm
Domain 2km
=~ 22.3 millions of tets i.e. 0.1 billion of DoF

1m precision leads to = 200 billions of DoF

Anisotropy (2/3)

A full scale supersonic simulation

10km,

15km

@ initial mesh: frontal mesh generation, # vert. 415535, # tets 2397 666
@ volume [5.4e~ "1, 4.7¢'9]
@ hpmin/hmax =1.e7°

Anisotropy (3/3)

Limit "standard"

>

local remeshing

10 km

Zoom x 100

Qlcm

300 >
= /{0 cm

@ Error estimate: L2 estimates = no A, and small scales

@ Solver : Implicit time-stepping
@ Adaptation: anisotropy and quality = accuracy and stability

INRIA, Gamma3, journée maillages

Goal-oriented, adaptive loop (1/3)

@ Choice of a functional j and, an area of interest v and an
adjoint state
e Example of functional :

j(W):A(p;:w>2d7

=

v d

Goal-oriented, adaptive loop (2/3) e

INRIA, Gammag3, journée maillages

Goal-oriented, adaptive loop (1/3)

0.283

0.282

0.281

0.28

0.279

0.278

0.277

0.276

0.275

0.274

T
ADIJOINT
MACH L2

v d

: Informtics #Fmathematics

Hilbert Impact I. (1/2)

Hilbert curves:

Map a 3D domain onto a 1D domain

Application to mesh re-ordering:
@ Re-order vertices in order to be compact
[[dx(v1) — ldx(v2)|| small if ||vq — V2| small
e Sort entities: Tetrahedra, edges, etc.. Tet = [vq, V2, V3, V4]

Hilbert = rrTI;p (idx(Tet[i]) — idx(Tet[j]))

Sort Entities by minimal index : Min;ldx(Tet{i])

Hilbert Impact I. (2/2)

Serial scaling with re-ordering

@ Flow solver

3Dcity JJ J '
SSBJE0 %
BJ12 g/g
BJ2400M

5

13 to 15

Entities sort
to 3

+ Hilbert sort || 2.5

4
3
2
1
0
M

falcon2

v y Vertices ‘ l

Lt L
N—— N——

Disjoint set of vertices

= The two blocks of edges can be run in parallel

Split entities and manage collisions for parallel runs l

Hilbert Impact Il. Parallelization (2/6)

The pros:

L d

s informatics g mathematics

@ Small impact on the serial code

BeginDependency(Tetrahedra,Vertices);
for (iTet=1; iTet<=NbrTet; ++iTet) {
for (j=0; j<4; ++j) {
AddDependency(iTet, Tet[iTet].Ver([j]);
¥
}
EndDependency (Tetrahedra,Vertices) ;

Solve(Tetrahedra,iBeg,iEnd) {
for (iTet=iBeg; iTet<=iEnd; ++iTet) {
// same as serial
}
}

@ Load-balancing on-the-fly

@ Asynchronous parallelization

@ No overhead memory

20 to 30% faster than Scatter/Gather for all test cases on 8 cpus.

Threadl

Thread2

L[[[

Gather

Problematic: Synchronization costs

200 15000

150 11250
100 7500

50 3750

cach miss
sqrt sy 0 0

div mutex

mult
cache miss condwai

Adaptive strategy according to the amount of work

@ Light amount of work: linear loop, without dependencies
— Threads are run with interlacing, no overhead time for
load-balancing

@ Huge amount of work: main solver loops
= Threads manage load-balancing and dependencies,
but negligible overhead time.

@ SSBJ scaling, Core 2 Duo @ 2,5Ghz
2,360,877 Vertices, 13,933, 849 Tetrahedra

SSBJ2400M

@ Falcon scaling, Core 2 Duo @ 2,5Ghz
2,025,231 Vertices, 11,860,697 Tetrahedra

10

Falcon2000M

Hilbert Impact Il. Parallelization (5/6)

Ongoing work
@ Modify memory management,
@ Test ordering strategy: static versus dynamic
@ Cache line management: Modify and fit package size,
@ SGlI's monitoring tools.

Partial current results: Acceleration factor w.r.t serial runs

| Test cases | 2 | 4] 8 | 16 [32 |
Onera m6Wing | 1.7 3 77 | 11 | 146
NASA Spike 1.6 2.7 42 | 6.58 | 10.3

Onera mé6Wing | 1.96 | 3.91 | 7.69 | 15 29
NASA Spike 2 39 | 78 | 156 | 28

Hilbert Impact Il. Parallelization (6/6)

@ Current run at 64 threads
@ Current run on larger anisotropic meshes: Quiet-boom F15

e Vertices 60,000,000
e Tetrahedra 400,000,000

Hilbert Impact Ill. Mesh partitioning (1/5)

Goal: parallel anisotropic adaptive mesh adaptation
Use Hilbert curves compactness property to create partitions

Algorithm
@ Create the list of gravity centers of tetrahedra
© Re-order by Hilbert this list

© Split this list in equal parts according to the number of
required parts

Hilbert Impact Ill. Mesh partitioning (2/5)

Problematic: Creation of unconected sub-domains on
anisotropic unstructured meshes

Correction algorithm

@ Compute sub-domains from initial partitions
© Merge neighboring sub-domains until equality

Hilbert Impact Ill. Mesh partitioning (3/5)

Gathering parts

@ Find geometrically one point on each
interface

@ Use topology to recover mappings

Cpu time in sec to create 2" partitions

200

% o——o/o\°/° @ Anisotropic SSBJ test case

100

@ 22.3 millions of tetrahedra

o—o——o0—0—20 @ Cpu time for split/gather in serial

8 16 32 64 128

50

0

Hilbert Impact Ill. Mesh partitioning (4/5)

Parallel anisotropic mesh adaptation

@ Split the initial mesh: each part is ordered using Hilbert
based strategy

© Do only point insertion, collapses, swaps

© Merge new adapted parts, and split the new mesh with
random interfaces: each part is ordered using Hilbert
based strategy

© Do mesh optimization: swaps and smoothing

Q returnto @

Hilbert Impact Ill. Mesh partitioning (5/5) s

Scaling on SSBJ test case: > 600, 000 inserted points

8 cpus speed-up: 7.8 with Hilbert 45.5 with initial (7min)

Features
@ Mesh generation of the order of several minutes, up to 1
million inserted points

—> Meshing time (re)-becomes negligible with respect to solver time

@ Possibility of predicting each part mesh adaptation time by
using metric density
@ No change of the executable, another adaptive mesh
generator may be used
@ Improves the serial mesh adaptation algorithm: divide and
conquer strategy
e Reduce scale factors
e Reduce randomized algorithms effects
e Provide optimal ordered meshes for each stage: insertion
and optimization

One (our) view of HPC

Initial problem of size N (DoF)
@ Anisotropic mesh adaptation:
— reduction of N from = Reduction of DoF to Nz to N5

Ex: 1,000,000 DoF leads to 1,000 DoF
© Cache miss reduction and re-ordering

— reduction of N from ~ 310 10
© Multi-threaded parallelization

— reduction of N from =~ 4 to 32

@ View as the new serial programming

@ Try optimal use of computing resources: seek for
near-optimal speed-up

@ Approach compatible with distributed parallelization

@ GHS3D: Hilberted (Up to 2 billion elements)

@ HEXOTIC: Hilberted + Multi-threaded (10 million to 1
billion)

@ SHRIMP: Adaptive parallel mesh generation (through
FEFLO.A) and mesh partitioning

@ FEFLO.A: Hilberted + Multi-threaded, Anisotropic mesh
generation (10 to 100 million tets)

@ Multi-threaded codes use LP-Lib

	Hilbert Impact II. Parallelization (1/6)
	Hilbert Impact III. Mesh partitioning (1/5)

