MMG3D : remailleur iso/aniso de maillage en tétraèdres.

Cécile Dobrzynski^{*}, Pascal Frey[†], Charles Dapogny[†], Algiane Froehly^{*}

* IMB - Institut Polytechnique de Bordeaux Equipe Bacchus - INRIA Bordeaux Sud-Ouest

† LJLL - UPMC

うして ふゆう ふほう ふほう ふしつ

MMG3D : vue d'ensemble

- Logiciel basé sur:
 - des tenseurs de métriques pour prescrire les tailles/directions des arêtes du maillage,
 - des opérateurs modifications locales,
 - un inserteur de Delaunay anisotrope
 - un modèle géométrique basé sur des triangles de Bézier de degré 3.
- Actuellement 2 versions :
 - MMG3D4.0 : adaptation volumique iso/anisotrope
 - MMG3D5.0 : adaptation surfacique et volumique isotrope
- $\bullet \ http://www.math.u-bordeaux1.fr/~dobj/logiciels/mmg3d.php$

MMG3D5.0 : le modèle de surface

- Identification des éléments géométriques (points singuliers, arêtes ...)
- 2 Calcul des normales en chaque point P à la surface discrète

$$n(P) = \frac{\sum_{T \supset P} \alpha_T \times n_T}{||\sum_{T \supset P} \alpha_T \times n_T||} \text{ avec } \sum_{T \supset P} \alpha_T = 1$$

8 Reconstruction locale de la géométrie :

- surface de Bézier de degré 3
- $\forall (u,v) \in \hat{T},$

$$\sigma(u,v) = \sum_{i,j \in 0..3} \frac{3!}{i!j!k!} (1-u-v)^i u^j v^{1-i-j} b_{i,j,k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

MMG3D5.0 : le modèle de surface

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

Opérateurs de modifications locales

Insertion de points par une procédure de Delaunay anisotrope et par découpage de tétraèdre.

Opérateurs de modifications locales

・ロト ・御ト ・ヨト ・ヨト 三臣

Procédure de retournement d'arêtes

Opérateurs de modifications locales

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Bougé de points sur la surface

Algorithme

Analyse du maillage de surface (MMG3D5.0)
Contrôle l'écart à la surface (MMG3D5.0)

- 3 Analyse de toutes les arêtes surfaciques et volumiques
- Optimisation du maillage (retournements d'arêtes, bougé de points)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Quelques éléments d'appréciation du maillage

- Si \mathcal{M} est une métrique qui définie la taille et la direction des arêtes.
- Longueur d'une arête $\overrightarrow{P_1P_2}$:

$$\ell_{\mathcal{M}}(P_1 P_2) = \|\overline{P_1 P_2}\|_{\mathcal{M}} = \sqrt{\langle \overline{P_1 P_2}, \mathcal{M} \overline{P_1 P_2} \rangle}.$$

• Qualité d'un tétraèdre $P_1P_2P_3P_4$:

$$Q_K = \beta \frac{\sqrt{Det(\mathcal{M})} V_K}{\left(\sum_{1 \le i < j \le 6} {}^t \overrightarrow{P_i P_j} \mathcal{M} \overrightarrow{P_i P_j}\right)^{\frac{3}{2}}}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Remaillage isotrope avec respect d'une fonction de taille

Définition de la taille des arêtes :

$$h = \min(h_{max}|\rho - 0.1 \times \theta_1| + h_{min})$$

 $, h_{max}|\rho - 0.1 \times \theta_2| + h_{min}, h_{max}|\rho - 0.1 \times \theta_3| + h_{min})$

 $\text{avec }\rho=\sqrt{x^2+y^2}, \ \theta_1=\theta+\rho/\pi, \ \theta_2=\theta-\rho/\pi \ \text{et } \theta_3=\theta-\rho\pi/20 \ \text{où } \theta=atan(y/x)+\pi.$

$$h_{max} = 0.4, h_{min} = 0.0003$$

Remaillage isotrope avec respect d'une fonction de taille

 $\begin{array}{c} 384 \ 182 \ \text{tetras}, \\ 97 \ 656 \ \text{triangles} \\ \text{boîte englobante}: \ [-0,6;0,6]^3 \end{array}$

 $\begin{array}{l} 36 \ 064 \ 851 \ {\rm tetras}, \\ 166 \ 550 \ {\rm triangles} \\ 99,97\% \ Q<3 \end{array}$

Remaillage isotrope avec respect d'une fonction de taille

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Capture d'interface: formulation level-set¹

• Contexte : domaine avec 2 sous-domaines (plusieurs composantes connexes)

 \Rightarrow existence d'une interface.

- But : Capture précise de l'interface.
- Formulation : définition implicite de l'interface comme l'isovaleur d'une fonction Φ avec Φ est la fonction distance signée à l'interface ($\|\nabla \Phi\| = 1$).
- La métrique suivante permet le contrôle de l'erreur pour une isovaleur :

$$M = \frac{D\Phi D\Phi^t}{h_{min}^2} + \frac{(D^2\Phi)}{\varepsilon}$$

¹V. Ducrot, P. Frey, C. R. Acad. Sci. Paris, Ser. I. 345 (2007)

Capture d'interface: définition de la métrique²

• h_{min} (resp. h_{max}) la longueur minimale (resp.

- Pour contrôler l'isovaleur 0 :
 - prescrire M pour les points appartenant à l'isovaleur 0,
 - pour tous les autres points, incrémenter linéairement h_{min} et ε jusqu'à h_{max} en fonction de la distance à l'isovaleur 0.

²V. Ducrot, P. Frey, C. R. Acad. Sci. Paris, Ser. I 345 (2007) - 32

Capture d'interface: exemple de surface

ション ふゆ マ キャット キャット しょう

$Capture \ d'interface: \ \ coupes \ dans \ le \ maillage$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Adaptation à une solution physique

Refroidissement de déchets nucléaires.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

MMG3D : mailleur iso/aniso tétraédrique

- Actuellement 2 versions :
 - MMG3D4.0 : adaptation volumique iso/anisotrope
 - MMG3D5.0 : adaptation surfacique et volumique isotrope

イロト 不得 トイヨト イヨト 三日

 $\bullet \ http://www.math.u-bordeaux1.fr/~dobj/logiciels/mmg3d.php$