

Parallel Meshing by Enumerating the Vertices of the Voronoi cells

Bruno Lévy ALICE Géométrie & Lumière CENTRE INRIA Nancy Grand-Est

OVERVIEW

Part 1. Introduction - Motivations

Part 2. Blowing Bubbles: CVT

Part 3. Anisotropy

Part 4. Journey in the 6th dimension

Part 5. The algorithm

Part 6. Results and conclusions

Introduction - Motivations

Inría

Input geometry, with "bad" triangles

(Re) meshing [Du et.al], [Alliez et.al], [Yan, L et.al]

Why "bad" ? Because extreme angles (near 0° or 180°) can cause numerical instabilities.

(Re)-meshing [Du et.al], [Alliez et.al], [Yan, L et.al]

(Re)-meshing [Du et.al], [Alliez et.al], [Yan, L et.al]

It has skinny triangles where we want them and oriented as we like (following the variation of the physics)

Solution-adapted mesh [Miron et.al, Journal of Computational Physics, 2010]

Innía

It has skinny triangles where we want them and oriented as we like (following the variation of the physics)

Benefit: higher accuracy with **smaller** number of elements.

Solution-adapted mesh [Miron et.al, Journal of Computational Physics, 2010]

Innía

It has skinny triangles where we want them and oriented as we like (following the variation of the physics)

Benefit: higher accuracy with **smaller** number of elements.

<u>Skinny triangles:</u> not always "bad", even sometimes **desired** but with **controlled** shape, size and orientation.

Solution-adapted mesh [Miron et.al, Journal of Computational Physics, 2010]

naío

Supersonic flight [Alauzet et.al]

Supersonic flight [Alauzet et.al]

Aspect ratio: 1:10,000 (typically)

Solution-adapted **anisotropic** mesh [Miron et.al, Journal of Computational Physics, 2010]

Part 1. Introduction : mesh classes

Isotropic mesh: All the triangles have
* the same shape (equilateral)
* the same size

Isotropic graded mesh:

- * the same shape (equilateral)
- * size can vary

Part 1. Introduction : mesh classes

Anisotropic mesh:

- * shape can vary
- * size can vary

Part 1. Introduction : mesh classes

Anisotropic mesh:

* shape can vary * size can vary Q: How to generate an anisotropic surface mesh ?

Blowing Bubbles Centroidal Voronoi Tesselations

Inría

Anisotropy

Ínría

<u>The input:</u> anisotropy field Specifies shape and orientation

<u>The input:</u> anisotropy field Specifies shape and orientation

<u>Anisotropy:</u> An "alteration" of of distances and angles.

<u>The input:</u> anisotropy field Specifies shape and orientation

<u>Anisotropy:</u> An "alteration" of of distances and angles.

A point **p**

Innía

<u>The input:</u> anisotropy field Specifies shape and orientation

<u>Anisotropy:</u> An "alteration" of of distances and angles.

{ q | dist(**p**,**q**) = 1 **}**

<u>The input:</u> anisotropy field Specifies shape and orientation

<u>Anisotropy:</u> An "alteration" of of distances and angles.

{ **q** | dist(**p**,**q**) = 1 } anisotropic distance

Innía

<u>The input:</u> anisotropy field Specifies shape and orientation

Anisotropy: An "alteration" of of distances and angles.

Innía

The dot product: a geometric tool

Georg Friedrich Bernhard Riemann 1826 - 1866

$V \cdot W = \langle V, W \rangle = V^{t} W$

Innia

The dot product: a geometric tool

Measuring angles

Georg Friedrich Bernhard Riemann 1826 - 1866

 $\cos(\alpha) = \langle v.w \rangle / \sqrt{\langle v.v \rangle \langle w.w \rangle}$

The dot product: a geometric tool

Measuring length

 $||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$

Georg Friedrich Bernhard Riemann 1826 - 1866

The dot product: a geometric tool

Measuring the length of a curve

$$|(C) = \int_{t=0}^{1} ||v(t)|| dt$$

Georg Friedrich Bernhard Riemann 1826 - 1866

$$= \int_{t=0}^{1} \sqrt{\langle v(t), v(t) \rangle} dt$$

Inría

The dot product: a geometric tool

Changing the dot product

Georg Friedrich Bernhard Riemann 1826 - 1866

v . w = $\langle v, w \rangle$ = $v^t Id w$

The dot product: a geometric tool

Changing the dot product

Georg Friedrich Bernhard Riemann 1826 - 1866

v. w = <v,w> = v^t Id w <v,w>_G = v^t G(p) w

The dot product: a geometric tool

Changing the dot product

Georg Friedrich Bernhard Riemann 1826 - 1866

v. w = $\langle v, w \rangle$ = v^t Id w $\langle v, w \rangle_{G}$ = v^t G(p) w

A 2x2 symmetric matrix that depends on p

The dot product: a geometric tool

Measuring the anisotropic length of a curve

Georg Friedrich Bernhard Riemann 1826 - 1866

$$I_{G}(C) = \int_{t=0}^{1} v(t)^{t} G(t) v(t) dt$$

nnía

The dot product: a geometric tool

Anisotropic distance between **p** and **q** w.r.t. G

d_G(**p**,**q**) = (anisotropic) length of shortest curve that connects p with q

 $I_{G}(C) = \int_{t=0}^{1} v(t)^{t} G(t) v(t) dt$

The input: anisotropy field $G(x,y) = \begin{bmatrix} a(x,y) \ b(x,y) \\ b(x,y) \ c(x,y) \end{bmatrix}$

Ínnía

Innía

Ínría

The result: triangles are "deformed" by the anisotropy.

The result: triangles are "deformed" by the anisotropy.

Q: How to compute an **Anisotropic** Centroidal Voronoi Tessellation ?

Journey in the 6th dimension ... and beyond

Ínría

Ínría

This example:

Anisotropic mesh in 2d

This example:

Anisotropic mesh in 2d (

Replace anisotropy with additional dimensions

Replace anisotropy with additional dimensions

Note: more dimensions may be needed

Replace anisotropy with additional dimensions

Note: more dimensions may be needed **How many ?**

Innia

Replace anisotropy with additional dimensions

Note: more dimensions may be needed **How many ?** John Nash's isometric embedding theorem:

Maximum: depending on desired smoothness C¹: 2n [Nash-Kuiper] C^k: bounded by n(3n+11)/2 [Nash, Nash-Moser]

nnía

Two words about John Nash

Isometric embedding theorem
Nash Equilibrium > Nobel prize of economy

Inría

Two words about John Nash

Isometric embedding theorem
Nash Equilibrium > Nobel prize of economy

The **existence** is proved, but it does not tell me **how to compute** the embedding given a specified surface and anisotropy field.

Innia

Convex integration – Flat Torus

[Borelli, Jabrane, Lazarus, Thibert]

Ínría

Ínría

Ínría

Ínnía

Ínría

Ínría

Ínría

A 6d embedding for curvature-adapted meshing

The Gauss-map is **non-bijective** in general (bijective only if convex object)

A 6d embedding for curvature-adapted meshing

The Gauss-map is **non-bijective** in general (bijective only if convex object)

Part. 4 Journey in the 6th dimension A 6d embedding for curvature-adapted meshing

s: desired amount of anisotropy

Innía

5 The algorithm

(nría_

Lloyd relaxation in IR⁶ (Naïve version)

(1) Embed the surface **S** into IR⁶

Innía

Lloyd relaxation in IR⁶ (Naïve version)

(1) Embed the surface **S** into IR⁶
(2) Compute initial point distrib. **X**

Innia

Lloyd relaxation in IR⁶ (Naïve version)

(1) Embed the surface S into IR⁶
(2) Compute initial point distrib. X
While convergence is not reached

Innia

Lloyd relaxation in IR⁶ (Naïve version)

(1) Embed the surface S into IR⁶
(2) Compute initial point distrib. X
While convergence is not reached
(3) Compute Vor(X)

Innia

Lloyd relaxation in IR⁶ (Naïve version)

(1) Embed the surface S into IR⁶
(2) Compute initial point distrib. X
While convergence is not reached
(3) Compute Vor(X)
(4) Compute Vor(X) ∩ S

Lloyd relaxation in IR⁶ (Naïve version)

(1) Embed the surface S into IR⁶
(2) Compute initial point distrib. X
While convergence is not reached
(3) Compute Vor(X)
(4) Compute Vor(X) ∩ S
(5) Move each x_i to the centroid of Vor(x_i) ∩ S

Lloyd relaxation in IR⁶ (Naïve version)

(1) Embed the surface S into IR⁶
(2) Compute initial point distrib. X
While convergence is not reached

(3) Compute Vor(X)
(4) Compute Vor(X) ∩ S
(5) Move each x_i to the centroid of Vor(x_i) ∩ S

Lloyd relaxation in IR⁶ (Naïve version)

(1) Embed the surface **S** into IR⁶ (2) Compute initial point distrib. **X** While convergence is not reached (3) Compute Vor(**X**) \leftarrow Costs d! for dimension d d = 6; d! = 720 (4) Compute Vor(**X**) \cap S (5) Move each **x**_i to the centroid of Vor(**x**_i) \cap S

Lloyd relaxation in IR⁶ (Naïve version)

(1) Embed the surface **S** into IR⁶ (2) Compute initial point distrib. **X** While convergence is not reached (3) Compute Vor(**X**) \leftarrow Costs d! for dimension d d = 6; d! = 720 (4) Compute Vor(**X**) \cap S (5) Move each **x**_i to the centroid of Vor(**x**_i) \cap S

Curse of dimensionality

Some theoretical results existence of bounds – Tangent Delaunay Complex [Boissonnat et.al.]

Voronoi cells as iterative convex clipping

Inría

Voronoi cells as iterative convex clipping Neighbors in increasing (6d) distance from **x**_i

Voronoi cells as iterative convex clipping Bisector of \mathbf{x}_i , \mathbf{x}_1

Voronoi cells as iterative convex clipping Half-space clipping

Voronoi cells as iterative convex clipping Half-space clipping

Voronoi cells as iterative convex clipping Half-space clipping

Ínría

. . .

Innía

Voronoi cells as iterative convex clipping Half-space clipping

Voronoi cells as iterative convex clipping Half-space clipping

Innía

Voronoi cells as iterative convex clipping Half-space clipping

Ínría

Voronoi cells as iterative convex clipping When should I stop ?

Ínría

Voronoi cells as iterative convex clipping When should I stop ?

Voronoi cells as iterative convex clipping

Theorem: $d(\mathbf{x}_i, \mathbf{x}_{k+1}) > 2R_k \rightarrow \bigcap \mathbf{T}^+(i,k) = Vor(\mathbf{x}_i)$

[L and Bonneel, IMR 2012]

Innia

Voronoi cells as iterative convex clipping When should I stop ? $d(\mathbf{x}_i, \mathbf{x}_k) > 2 \text{ Rk}$

"Radius of security" is reached

Innia

Voronoi cells as iterative convex clipping When should I stop ? $d(\mathbf{x}_i, \mathbf{x}_k) > 2 \text{ Rk}$

"Radius of security" is reached Note: R_k decreases and $d(\mathbf{x}_i, \mathbf{x}_k)$ increases

Innia

Voronoi cells as iterative convex clipping When should I stop ? $d(\mathbf{x}_i, \mathbf{x}_k) > 2 \text{ Rk}$

"Radius of security" is reached Note: R_k decreases and $d(\mathbf{x}_i, \mathbf{x}_k)$ increases

Advantages:

Innia

Voronoi cells as iterative convex clipping When should I stop ? $d(\mathbf{x}_i, \mathbf{x}_k) > 2 \text{ Rk}$

"Radius of security" is reached Note: R_k decreases and $d(\mathbf{x}_i, \mathbf{x}_k)$ increases

Advantages: (1) Compute $Vor(X) \cap S$ directly (start with f and clip)

Innia

Voronoi cells as iterative convex clipping When should I stop ? $d(\mathbf{x}_i, \mathbf{x}_k) > 2 \text{ Rk}$

"Radius of security" is reached Note: R_k decreases and $d(\mathbf{x}_i, \mathbf{x}_k)$ increases

Advantages:
(1) Compute Vor(X) ∩ S directly (start with f and clip)
(2) Replace Delaunay with ANN ! (no d! factor)

Innia

Voronoi cells as iterative convex clipping When should I stop ? $d(\mathbf{x}_i, \mathbf{x}_k) > 2 \text{ Rk}$

"Radius of security" is reached Note: R_k decreases and $d(\mathbf{x}_i, \mathbf{x}_k)$ increases

Advantages:

(1) Compute $Vor(X) \cap S$ directly (start with f and clip)

- (2) Replace Delaunay with ANN ! (no d! factor)
- (3) Parallelization is trivial (partition S and // in parts)

nnín

Some results

Ínría

Part. 6 Some results – Filigree (Aim@Shape)

Inría

Part. 6 Some results – AntEater (Konstanz U.)

Inría

Part. 6 Some results Lucy (Stanford): 28 million triangles

Part. 6 Some results Lucy (Stanford): 28 million triangles

Parallel implementation, 8 threads, core i7 : 5min

Vorpaline mesh, 100K vertices

Inría

Part. 6 Some results – Porshe (Distene)

Inría

Part. 6 Some results – Plane (Distene)

Inría

Inría

Ínría

Ínría_

Part. 6 What about arbitrary anisotropy ?

Particle-based Anisotropic Surface Meshing [Zhong, Guo, Wang, L, Sun, Liu and Mao, ACM SIGGRAPH 2013]

Ínría

Part. 6 Reconstruction – Co3Ne (Concurrent Co Cone)

Thank you for your attention

Acknowledgements

Wenping Wang (Hong-Kong U.) Nicolas Bonneel (Harvard U.)

Funding

GOODSHAPE ERC StG 205693 VORPALINE ERC-PoC 334829 pre-industrialization ANR MORPHO, ANR BECASIM

