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Part 1. Introduction: meshing (and re-meshing)

(Re) meshing [Du et.al], [Alliez et.al], [Yan, L et.al ]



(Re)-meshing [Du et.al], [Alliez et.al], [Yan, L et.al ]

Because extreme angles (near 0o or 180o)

can cause numerical instabilities.
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Solution-adapted mesh [Miron et.al, Journal of Computational Physics, 2010]

It has skinny triangles where we want

them and oriented as we like (following 

the variation of the physics)

Benefit: higher accuracy with

smaller number of elements.

Part 1. Introduction: meshing (and re-meshing)

Skinny triangles:

even sometimes desired but with

controlled shape, size and orientation.



Supersonic flight

[Alauzet et.al]

Part 1. Introduction: meshing (and re-meshing)



Supersonic flight

[Alauzet et.al]

1

10,000

Aspect ratio:

1:10,000 (typically)

Part 1. Introduction: meshing (and re-meshing)



Solution-adapted anisotropic mesh
[Miron et.al, Journal of Computational Physics, 2010]
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Part 1. Introduction : mesh classes

Isotropic mesh: All the triangles have 

* the same shape (equilateral)

* the same size



Isotropic graded mesh:  

* the same shape (equilateral) 

* size can vary
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Anisotropic mesh:  

* shape can vary

* size can vary
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Anisotropic mesh:  

* shape can vary

* size can vary

Part 1. Introduction : mesh classes

Q: How to 

generate an 

anisotropic 

surface mesh ? 



Blowing Bubbles

Centroidal Voronoi Tesselations
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Part. 2. Centroidal Voronoi Tesselation
Optimize a Voronoi diagram from the point of view of sampling regularity

(quantization noise power)
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Optimize a Voronoi diagram from the point of view of sampling regularity

(quantization noise power)

F=

Vor(i) 

2

dxxi - x
i

Minimize

Theorem: F is of class C2 [Liu, Wang, L, Yan, Lu, ACM TOG 2008]
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Part. 3. Anisotropy

The input: anisotropy field

Specifies shape and orientation
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The input: anisotropy field

Specifies shape and orientation

Anisotropy:

of distances and angles.

A point p
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Specifies shape and orientation

Anisotropy:

of distances and angles.
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distance
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The input: anisotropy field

Specifies shape and orientation

Anisotropy:

of distances and angles.

anisotropic 

distance

{ q | dist(p,q) = 1 }
This is a circle !
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Part. 3. Anisotropy

The dot product: a geometric tool

Measuring the length

of a curve

l(C)=    ||v(t)|| dt

=      <v(t),v(t)> dt t=0

t=1

t=0

t=0

1

1
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Part. 3. Anisotropy

The dot product: a geometric tool

p

v w

v . w = <v,w>   = vt Id w

<v,w>G = vt G(p) w
A 2x2 symmetric matrix that depends on p

Changing the dot product



Part. 3. Anisotropy

The dot product: a geometric tool

Measuring the anisotropic

length of a curve

lG(C) =       v(t)t G(t) v(t) dt t=0

t=1

t=0

1

V(t)



Part. 3. Anisotropy

The dot product: a geometric tool

Anisotropic distance

between p and q w.r.t. G

lG(C) =       v(t)t G(t) v(t) dt p

q

t=0

1

dG(p,q) = (anisotropic) length of 

shortest curve

that connects p with q  



Part. 3. Anisotropy
The input: anisotropy field

G(x,y) =    a(x,y) b(x,y)

b(x,y) c(x,y)



Part. 3. Anisotropy

{ q | dG(p,q) = 1 }

p

The input: anisotropy field

G(x,y) =    a(x,y) b(x,y)

b(x,y) c(x,y)



The result: triangles are 
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The result: triangles are 

Q: How to compute 

an Anisotropic 

Centroidal Voronoi

Tessellation ?

Part. 3. Anisotropy



Journey in the 6th dimension

beyond

4





Part. 4 Journey in the 6th dimension

The key idea  
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Part. 4 Journey in the 6th dimension

The key idea  

Replace anisotropy with additional dimensions

Note: more dimensions may be needed

How many ?   

Maximum: depending on desired smoothness 

C1 : 2n                                    [Nash-Kuiper]

Ck : bounded by n(3n+11)/2   [Nash, Nash-Moser]
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Part. 4 Journey in the 6th dimension

Two words about John Nash  

Isometric embedding theorem

Nash Equilibrium      Nobel prize of economy

The existence is proved, but it does not tell me how to compute the embedding

given a specified surface and anisotropy field.



Part. 4 Journey in the 6th dimension

Convex integration Flat Torus

[Borelli, Jabrane, Lazarus, Thibert]



Part. 4 Journey in the 6th dimension

A 6d embedding for curvature-adapted meshing

What we want:

Equilateral triangles 

in spherical zones



Part. 4 Journey in the 6th dimension

A 6d embedding for curvature-adapted meshing

What we want:

Elongated triangles 

in cylindrical zones
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A 6d embedding for curvature-adapted meshing

The Gauss map:

x

y

z

Nx

Ny

Nz
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Part. 4 Journey in the 6th dimension

A 6d embedding for curvature-adapted meshing

Our embedding:

x

y

z

x

y

z

sNx

sNy

sNzs: desired amount of anisotropy



Part. 4 Journey in the 6th dimension

A 6d embedding for curvature-adapted meshing

s: desired amount of anisotropy

Small s Large s
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(1) Embed the surface S into IR6

Lloyd relaxation in IR6 (Naïve version)
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Part. 5 The algorithm

(1) Embed the surface S into IR6

(2) Compute initial point distrib. X

While convergence is not reached

(3) Compute Vor(X)

(4) Compute Vor(X

(5) Move each xi to the centroid of Vor(xi

Lloyd relaxation in IR6 (Naïve version)

Curse of dimensionality

Some theoretical results 

existence of bounds Tangent Delaunay Complex [Boissonnat et.al.]

Costs d! for dimension d

d = 6 ; d! = 720 
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Part. 5 The algorithm

Voronoi cells as iterative convex clipping

Neighbors in increasing (6d) distance from xi

xi

x1

x2

x3

x4

x5

x6

x7
x8

x9

x10

x11



Part. 5 The algorithm

Voronoi cells as iterative convex clipping

Bisector of xi, x1

xi

x1

x2
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Voronoi cells as iterative convex clipping

Half-space clipping
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Half-space clipping

xi
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Voronoi cells as iterative convex clipping

Half-space clipping

xi
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Voronoi cells as iterative convex clipping

Half-space clipping

xi

x1

x2

x3
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Part. 5 The algorithm

Voronoi cells as iterative convex clipping

Half-space clipping

xi

x1

x2

x3

x4

x5

x6

x7
x8

x9

x10

x11-(i,5)
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Voronoi cells as iterative convex clipping

When should I stop ?
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Voronoi cells as iterative convex clipping
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Part. 5 The algorithm

Voronoi cells as iterative convex clipping

Theorem: d(xi, xk+1) > 2Rk
+(i,k) = Vor(xi) 

[L and Bonneel, IMR 2012]
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Part. 5 The algorithm

Voronoi cells as iterative convex clipping

When should I stop ?     d(xi, xk) > 2 Rk

Note: Rk decreases and d(xi, xk) increases

Advantages: 
(1) Compute Vor(X (start with f and clip)

(2) Replace Delaunay with ANN ! (no d! factor)

(3) Parallelization is trivial (partition S and // in parts)
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Part. 6 Some results Filigree (Aim@Shape)



Part. 6 Some results AntEater (Konstanz U.)



Part. 6 Some results Lucy (Stanford): 28 million triangles

Parallel implementation, 8 threads, core i7 : 5min



Part. 6 Some results Lucy (Stanford): 28 million triangles

Parallel implementation, 8 threads, core i7 : 5min

One iteration

ANN construction

(sequential)
Voronoi Parallel Linear Enumeration
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Part. 6 Some results Plane (Distene)
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Part. 6 What about arbitrary anisotropy ?

Particle-based Anisotropic Surface Meshing
[Zhong, Guo, Wang, L, Sun, Liu and Mao, ACM SIGGRAPH 2013] 



Part. 6 Reconstruction Co3Ne (Concurrent Co Cone)
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