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Part 1. Introduction: meshing (and re-meshing)

Input geometry, with “bad” triangles

(Re) meshing [Du et.al], [Alliez et.al], [Yan, L et.al ]
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Part 1. Introduction: meshing (and re-meshing)

_. It has skinny triangles where we want

—————— them and oriented as we like (following

the variation of the physics)
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(a) L™ - 2868 Nodes WR

Solution-adapted mesh [Miron et.al, Journal of Computational Physics, 2010]

I&zu’a,-




Part 1. Introduction: meshing (and re-meshing)

_. It has skinny triangles where we want

—————— them and oriented as we like (following

the variation of the physics)
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Benefit: higher accuracy with
smaller number of elements.

Solution-adapted mesh [Miron et.al, Journal of Computational Physics, 2010]
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Part 1. Introduction: meshing (and re-meshing)

_. It has skinny triangles where we want

—————— them and oriented as we like (following

the variation of the physics)

(a) L” - 2868 Nodes Sy o _
e D i v | N Benefit: higher accuracy with
smaller number of elements.

Skinny triangles: not always “bad”,
even sometimes desired but with
controlled shape, size and orientation.

Solution-adapted mesh [Miron et.al, Journal of Computational Physics, 2010]
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Supersonic flight
[Alauzet et.al]
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Supersonic flight
[Alauzet et.al]

< 10,000
1$ P —

Aspect ratio:
1:10,000 (typically)
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Part 1. Introduction: meshing (and re-meshing)

Solution-adapted anisotropic mesh
[Miron et.al, Journal of Computational Physics, 2010]




mesh classes
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Part 1. Introduct

All the triangles have

* the same shape (equilateral)

* the same size

Isotropic mesh
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Part 1. Introduction

: mesh classes
LAAA

Isotropic graded mesh:

* the same shape (equilateral)
* size can vary
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Blowing Bubbles

Centroidal Voronol Tesselations
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Part. 2. Centroidal Voronoi Tesselation

Optimize a Voronoi diagram from the point of view of sampling regularity
(quantization noise power)
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Optimize a Voronoi diagram from the point of view of sampling regularity
(quantization noise power)
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Part. 2. Centroidal Voronoi Tesselation

Optimize a Voronoi diagram from the point of view of sampling regularity
(quantization noise power)

PEERS

Q“k"/" Minimize
LU
AN, \\ 4 2

a

Theorem: F is of class C? [Liu, Wang, L, Yan, Lu, ACM TOG 2008]
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Part. 2. Centroidal Voronoi Tesselation
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Anisotropy
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The input: anisotropy field
Specifies shape and orientation

Anisotropy: An “alteration” of
of distances and angles.
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The input: anisotropy field
Specifies shape and orientation

Anisotropy: An “alteration” of
of distances and angles.
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The input: anisotropy field
Specifies shape and orientation

Anisotropy: An “alteration” of
of distances and angles.
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The input: anisotropy field
Specifies shape and orientation

Anisotropy: An “alteration” of
of distances and angles.

This is a circle !
{qldist(p,q)=1}
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Part. 3. Anisotropy

The dot product: a geometric tool

V.W=<vw>=vlw

I‘w"'f—



Part. 3. Anisotropy

The dot product: a geometric tool

Measuring angles
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Part. 3. Anisotropy

The dot product: a geometric tool

Measuring length




Part. 3. Anisotropy

The dot product: a geometric tool

Measuring the length
of a curve

I(C)= J.[IV(t)II at




Part. 3. Anisotropy

The dot product: a geometric tool

Changing the dot product

V W

P

V. W=<vw>=Vvtidw
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Part. 3. Anisotropy

The dot product: a geometric tool

Changing the dot product
v\ W
P

V. W=<vw> =viidw

<V\W>; =Vt G(p) w

I‘Waf—



Part. 3. Anisotropy

The dot product: a geometric tool

Changing the dot product

V W

P

V. W=<vw> =viidw
<V,W>. =Vt G(p) w

A 2x2 symmetric matrix that depends on p
l&zu’a,-




Part. 3. Anisotropy

The dot product: a geometric tool

Measuring the anisotropic
length of a curve

t=1

1
1(C) :J.\({ v(t) G(t) v(t) dt  t=0
t=

I‘ZW—



Part. 3. Anisotropy

The dot product: a geometric tool

Anisotropic distance g
between p and g w.r.t. G ﬁ{ .

ds(p,g) = (anisotropic) length of
shortest curve
that connects p with g g

1(C) :_’.V VG v dt P

t=0 '
Ié'm’af—



The input: anisotropy field

Gixy) = | a(xy) b(x.y)
_b(x,y) C(x,y)_




The input: anisotropy field

Gixy) = | a(xy) b(x.y)
_b(x,y) C(x,y)_

{q|dg(p,q)=1}




Part. 3. Anisotropy

The result: triangles are

“deformed” by the anisotropy.




Part. 3. Anisotropy

The result: triangles are
“deformed” by the anisotropy.

Q: How to compute
an Anisotropic
Centroidal Voronoi
Tessellation ?




Journey in the 61" dimension
... and beyond

N






Part. 4 Journey in the 6™ dimension
The key idea

This example:

Anisotropic mesh in 2d 4= |sotropic mesh in 3d
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The key idea

This example:

Anisotropic mesh in 2d 4= |sotropic mesh in 3d

Replace anisotropy with additional dimensions
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The key idea

Replace anisotropy with additional dimensions

Note: more dimensions may be needed
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Part. 4 Journey in the 6™ dimension
The key idea

Replace anisotropy with additional dimensions

Note: more dimensions may be needed
How many ?
John Nash’'s isometric embedding theorem:

Maximum: depending on desired smoothness
Cl:2n [Nash-Kuiper]
Ck: bounded by n(3n+11)/2 [Nash, Nash-Moser]

Y e ol



Part. 4 Journey in the 6™ dimension
Two words about John Nash

NOW PLAYING A I
THEATERS EVE [~’.‘x'\%¢ /

ED HARRIS

*Isometric embedding theorem
*Nash Equilibrium=2 Nobel prize of economy




Part. 4 Journey in the 6™ dimension
Two words about John Nash

HE SAW THE
WORLD IN A WAY

NOW PLAYIN
THEATERS E\ l[\\t\)o\,,

ED HARRIS

*Isometric embedding theorem
*Nash Equilibrium=2 Nobel prize of economy

The existence is proved, but it does not tell me how to compute the embedding

given a specified surface and anisotropy field.
I &Izu’a,-



Part. 4 Journey in the 6™ dimension
Convex integration — Flat Torus

[Borelli, Jabrane, Lazarus, Thibert]
.&zu’a,-



Part. 4 Journey in the 6™ dimension

adapted meshing

A 6d embedding for curvature

What we want:

Equilateral triangles
In spherical zones
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Part. 4 Journey in the 6™ dimension

adapted meshing

A 6d embedding for curvature

What we want:

Elongated triangles
in cylindrical zones
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Part. 4 Journey in the 6™ dimension
A 6d embedding for curvature-adapted meshing

X N,
The Gauss map: | Y ‘ N,
y4 N
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A 6d embedding for curvature-adapted meshing

X N,
The Gauss map: | Y ‘ N,
y4 N
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Part. 4 Journey in the 6™ dimension

A 6d embedding for curvature-adapted meshing

X

X

y

The Gauss map:

N
N
N




Part. 4 Journey in the 6™ dimension

A 6d embedding for curvature-adapted meshing

X
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The Gauss map:
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Part. 4 Journey in the 6™ dimension
A 6d embedding for curvature-adapted meshing

The Gauss map:
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Part. 4 Journey in the 6™ dimension
A 6d embedding for curvature-adapted meshing

X N,
The Gauss map: | Y ‘ N,
y4 N

The Gauss-map is non-bijective in general (bijective only if convex object)




Part. 4 Journey in the 6™ dimension
A 6d embedding for curvature-adapted meshing
M N
The Gauss map: | Y ‘ N,
y4 N

The Gauss-map is non-bijective in general (bijective only if convex object)
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Part. 4 Journey in the 6™ dimension
A 6d embedding for curvature-adapted meshing

R -
X
Our embedding: |y - y
y
y
- T SN,
SN,
s: desired amount of anisotropy _SNi
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Part. 5 The algorithm

Lloyd relaxation in IR® (Naive version)

(1) Embed the surface S into IR®
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(3) Compute Vor(X)
(4) Compute Vor(X) N S
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Lloyd relaxation in IR® (Naive version)

(1) Embed the surface S into IR®
(2) Compute initial point distrib. X
While convergence is not reached
(3) Compute Vor(X)
(4) Compute Vor(X) N S
(5) Move each x; to the centroid of Vor(x;,) N S
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Lloyd relaxation in IR® (Naive version)

(1) Embed the surface S into IR®
(2) Compute initial point distrib. X

While convergence is not reached | |
— Costs d! for dimension d

(3) Compute Vor(X) <
(4) Compute Vor(X) N S
(5) Move each x; to the centroid of Vor(x;,) N S




Part. 5 The algorithm

Lloyd relaxation in IR® (Naive version)

(1) Embed the surface S into IR®
(2) Compute initial point distrib. X

While convergence is not reached | |
Costs d! for dimension d

(3) Compute Vor(X) < T goe 4l = 720
(4) Compute Vor(X) N S
(5) Move each x; to the centroid of Vor(x;,) N S




Part. 5 The algorithm

Lloyd relaxation in IR® (Naive version)

(1) Embed the surface S into IR®

(2) Compute initial point distrib. X

While convergence is not reached | |
(3) Compute Vor(X) < — gisgs;d(j!fgrgg"ens'on d
(4) Compute Vor(X) N S
(5) Move each x; to the centroid of Vor(x;,) N S

Curse of dimensionality
Some theoretical results
existence of bounds — Tangent Delaunay Complex [Boissonnat et.al.]
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Part. 5 The algorithm

Voronoi cells as iterative convex clipping
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Voronoi cells as iterative convex clipping
Neighbors in increasing (6d) distance from x;




Part. 5 The algorithm

Voronoi cells as iterative convex clipping
Bisector of x;, X4




Part. 5 The algorithm

Voronoi cells as iterative convex clipping
Half-space clipping
This side: Xg

TT-(i,1)

The other side:

T*(i,1)
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Voronoi cells as iterative convex clipping
Half-space clipping
This side: Xg

TT-(i,1)

The other side:

T*(i,1)




Part. 5 The algorithm

Voronoi cells as iterative convex clipping
Half-space clipping

Then remove TT(i,2) X11

I&zub,—




Part. 5 The algorithm

Voronoi cells as iterative convex clipping
Half-space clipping

... then remove TT-(i,3) X11

I&zub,—




Part. 5 The algorithm

Voronoi cells as iterative convex clipping
Half-space clipping

... then remove TT-(i,4) X11

.hub/—




Part. 5 The algorithm

Voronoi cells as iterative convex clipping
Half-space clipping

... then remove TT+(i,5) A1
I"’“’“’—




Part. 5 The algorithm

Voronoi cells as iterative convex clipping
When should | stop ?
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Voronoi cells as iterative convex clipping
When should | stop ?  d(x;, X,) > 2 R,




Part. 5 The algorithm

Voronoi cells as iterative convex clipping

Theorem: d(X;, X.;) > 2R, — [ 1 TT*(i,k) = Vor(x))
[L and Bonneel, IMR 2012]
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Voronoi cells as iterative convex clipping
When should | stop ?  d(x;, X,) > 2 RK

“Radius of security” is reached
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Voronoi cells as iterative convex clipping
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Voronoi cells as iterative convex clipping
When should | stop ?  d(x;, X,) > 2 RK

“Radius of security” is reached
Note: R, decreases and d(x;, x,) increases

Advantages:
(1) Compute Vor(X) N S directly (start with f and clip)
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Voronoi cells as iterative convex clipping
When should | stop ?  d(x;, X,) > 2 RK

“Radius of security” is reached
Note: R, decreases and d(x;, x,) increases

Advantages:
(1) Compute Vor(X) N S directly (start with f and clip)
(2) Replace Delaunay with ANN ! (no d! factor)
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Part. 5 The algorithm

Voronoi cells as iterative convex clipping
When should | stop ?  d(x;, X,) > 2 RK

“Radius of security” is reached
Note: R, decreases and d(x;, x,) increases

Advantages:
(1) Compute Vor(X) N S directly (start with f and clip)
(2) Replace Delaunay with ANN ! (no d! factor)
(3) Parallelization is trivial (partition S and // in parts)

I"'m’“f—
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Part. 6 some results — Filigree (AIm@Shape)




Part. 6 some results — AntEater (Konstanz U.)




Part. 6 some results Lucy (Stanford): 28 million triangles

Parallel implementation, 8 threads, core i7 : 5min

&z'ua,-



Part. 6 some results Lucy (Stanford): 28 million triangles

One iteration

CPU History

B crui 100.0% B cruz 1po.0x B cPua 99.1%

B crus 100.0% B cruc Poo.ox B crus 100.0%
ANN construction Voronoi Parallel Linear Enumeration
(sequential)

- Parallel implementation, 8 threads, core i7 : 5min
I&zu’a,-



Part. 6 some results Vorpaline mesh, 100K vertices




Part. 6 some results — Porshe (Distene)




Part. 6 some results — Plane (Distene)
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Part. 6 some results
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Part. 6 some results




Part. 6 wnat about arbitrary anisotropy ?

Particle-based Anisotropic Surface Meshing
[Zhong, Guo, Wang, L, Sun, Liu and Mao, ACM SIGGRAPH 2013]
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Part. 6 rReconstruction — Co3Ne (Concurrent Co Cone)
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