C2S@EXA Meeting
July 10, 2014

Towards a Reconfigurable
HPC Component Model

Vincent Lanore', Christian Pérez?

"ENS de Lyon, LIP
%Inria, LIP
Avalon team

-
V4 -

I a— p 2
— : : — 'P ,ﬂ/w- UNIVERSIT? D= LYON

ENS DE LYON <
S l

Context 1/4

Adaptive Mesh Refinement

2D Recursive AMR

precision

too low /\
refine

C, 9

compute compute
precision :
. refine
L o~ too high
unrefine
compute compute

C o2

Classical AMR Algorithms

Distributed quadtree/octree structures
O(log n) costs

A More Scalable AMR Algorithm

01
encode into EI

e coordinates + runtime
e efficient O(1) communications and lookup
 easy distribution and load balancing

Langer et al, Scalable Algorithms for Distributed-Memory Adaptive Mesh Refinement, Computer
Architecture and High Performance Computing (SBAC-PAD), 2012 IEEE 24th International Symposium

Challenges

A programming challenge

* lots of distributed computing units

» asynchronous refining and unrefining
* neighbors with unknown state

Performance constraint

* eg, benchmark at 5 ms/iteration with 2k ranks
on Cray XK6 ‘Titan"

' Langer et al, Scalable Algorithms for Distributed-Memory Adaptive Mesh Refinement, Computer
Architecture and High Performance Computing (SBAC-PAD), 2012 IEEE 24th International Symposium

Component Models

Reuse
* no reinventing the wheel
e mixing components from different sources

Separation of concerns
 low-level programming on one-side
 high-level application structure on the other side

High-level abstractions
 hierarchy

e connectors

 genericity

Component Models: Principle

C t Component assembler
omponen high-level view
model reuse of 3rd-party components
r . .
Component writers | Application
low-level concerns :
well-defined interfaces ‘B :
1
S s
(I master () N i
1
C |
1
1
N\ ® !
slave i
:
1
1
:

component Ny component
instance type

Example: L3C

Low-level component
model

e on top of C++/Fortran

e components =
objects +
simple interfaces

e connectors

— C++/Fortran ref
- MPI
- Corba

Developed by
J. Bigot, C. Pérez

Characteristics
No overhead at runtime
Static assembly

Also
Charm++ version (gluon++)

9

Component Models and AMR

encode into
A

compute

Component Models and AMR

computeb Sl compute

refine

assembly reconfiguration
guiescent state

. |compute |

‘ay)
||||||||||||||||||||||

compute jg™>

refine

Nl compute

11

Component AMR Implementation

Implemented: L?C + pthread AMR benchmark
« as little synchronization as possible
* no actual computing

* first multicore performance tests

- on Grid'5000 stremi node with 2x12 1.7GHz cores
- 2-3 ms per iteration per thread up to 16k threads
— synchronization-bound

e ~1k C++ lines

- lots of bug-prone low-level synchronization
- verbose component reconfiguration (eg, instantiation)

- complex 1-to-n connexion logic \

Problem

Component Models and AMR

node O node 1
TRIT
recoi?izzcl)';tion \“‘“ “"'4 control
\
S thread
<~
exchange
control nta =
thread - ask for

reconfiguration

cgntrol

: ?
reconfigure connector- thread

L4
=> deadlocks? ‘,, o
. . 4
=> simultaneous refinements? ‘®rn®
=> how.to stop.connector?

13

HPC Reconfigurable CMs

Existing Component Goal:
Models Component Model

 either low-performance o distributed

implementation * reconfigurable

* Or no support for

. officient
reconfiguration (eg, L*C) STieien

14

Minimalistic Low-overhead Model

Our approach

 Take a simple &
efficient component
model (a la L*C)

 Add a few concepts to
ease reconfiguration

Lockables

Some elements can be
locked

Domains

Whole subsets of the
assembly can be locked
under certain conditions

Controllers

Components responsible for
domain locking and more

15

Lockables, Controllers, Domains

Controller API
reconfiguration r\controller * create
interface A . destroy

IR domain e connect

* « lock/unlock
1 domain

R4 e view domain
contents

e add/remove
element

lockable

component + user-defined

reconfiguration s
methods

AMR Assembly

controller arbitrates conflicts
and locks domain [\
no need for user-defined
reconfiguration synchronization
-!

computer not in domain
reconfiguration does not
stop computation

connector
Vrdh)
controller

async
exchange

can replace connector
implementation

without changing computer
eg, MPI, Corba

only actual neighbors

in connexion

low-level connexion wrmi=® no unnecessary synchronization
efficient, very low overhead e~ With non-neighbors

eg, C++ pointer + mutex

17

Example + Problems

AMR Assembly

locking algorithm oA
efficient but =31 oS

user-defined priorities

method calls
now blocking
could create deadlocks ‘“

what about n-to-m

‘\ ’ connexions?
lockable component ‘“imi=* lots of possible states
up to the user K~ complex programming-wise

what about the state? 12

Formal Model

Assembly syntax
A=(C,Po,r,E,K,d,L)

C, component set
P, port set

0, OWners

r, references

E, entry points

K, controllers

d, domains

L, lockables

Semantic
e call stack
 parallel non-deterministic calls

constraints on locked elements

hypothesis for lockability
well-formed assemblies

Goals and perspectives
 prove lock algorithms

» simple control hypothesis
 lockable by construction

19

Conclusion and Perspectives

Presented today Perspectives

* AMR use case implementation

* L*C+pthreads - distributed
iImplementation _ integration
- up to 16k :

e experiments

e towards a HPC _
reconfigurable * lockable domains
component model formal model
- lockables * higher-level
- domains component features

— controllers

20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

