
 1

C2S@EXA Meeting
July 10, 2014

Towards a Reconfigurable
HPC Component Model

Vincent Lanore1, Christian Pérez2

1 ENS de Lyon, LIP
2 Inria, LIP

Avalon team

 2

Context 1/4

Adaptive Mesh Refinement

 3

Context 2/4

2D Recursive AMR

 4

Context 3/4

Classical AMR Algorithms

Distributed quadtree/octree structures
O(log n) costs

Example: Burstedde et al, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of
octrees, SIAM Journal on Scientific Computing, 2011

 5

Context 4/4

A More Scalable AMR Algorithm

● coordinates + runtime
● efficient O(1) communications and lookup
● easy distribution and load balancing

Langer et al, Scalable Algorithms for Distributed-Memory Adaptive Mesh Refinement, Computer
Architecture and High Performance Computing (SBAC-PAD), 2012 IEEE 24th International Symposium

 6

Problem

Challenges

A programming challenge
● lots of distributed computing units
● asynchronous refining and unrefining
● neighbors with unknown state

Performance constraint
● eg, benchmark at 5 ms/iteration with 2k ranks
on Cray XK6 ‘Titan’1

1 Langer et al, Scalable Algorithms for Distributed-Memory Adaptive Mesh Refinement, Computer
Architecture and High Performance Computing (SBAC-PAD), 2012 IEEE 24th International Symposium

 7

Programming Paradigm

Component Models

Reuse
● no reinventing the wheel
● mixing components from different sources

Separation of concerns
● low-level programming on one-side
● high-level application structure on the other side

High-level abstractions
● hierarchy
● connectors
● genericity
...

 8

Overview

Component Models: Principle

 9

Overview

Example: L²C

Low-level component
model
● on top of C++/Fortran
● components =

objects +
simple interfaces

● connectors
– C++/Fortran ref
– MPI

– Corba

Developed by

J. Bigot, C. Pérez

Characteristics

No overhead at runtime

Static assembly

Also

Charm++ version (gluon++)

 10

Example

Component Models and AMR

 11

Example

Component Models and AMR

 assembly reconfiguration
 quiescent state

 12

Ongoing Work

Component AMR Implementation

Implemented: L²C + pthread AMR benchmark
● as little synchronization as possible
● no actual computing
● first multicore performance tests

– on Grid'5000 stremi node with 2x12 1.7GHz cores
– 2-3 ms per iteration per thread up to 16k threads
– synchronization-bound

● ~1k C++ lines
– lots of bug-prone low-level synchronization
– verbose component reconfiguration (eg, instantiation)
– complex 1-to-n connexion logic

 13

Problem

Component Models and AMR

 14

Challenge

HPC Reconfigurable CMs

Existing Component
Models
● either low-performance

implementation
● or no support for

reconfiguration (eg, L²C)

Goal:
Component Model
● distributed
● reconfigurable
● efficient

 15

First step

Minimalistic Low-overhead Model

Our approach
● Take a simple &

efficient component
model (à la L²C)

● Add a few concepts to
ease reconfiguration

Lockables

Some elements can be
locked

Domains

Whole subsets of the
assembly can be locked
under certain conditions

Controllers

Components responsible for
domain locking and more

 16

Features

Lockables, Controllers, Domains
Controller API
● create
● destroy
● connect
● lock/unlock

domain
● view domain

contents
● add/remove

element

+ user-defined
reconfiguration
methods

 17

Example + Benefits

AMR Assembly

 18

Example + Problems

AMR Assembly

 19

Ongoing Work

Formal Model
Assembly syntax

A=(C,P,o,r,E,K,d,L)
● C, component set
● P, port set
● o, owners
● r, references
● E, entry points
● K, controllers
● d, domains
● L, lockables

Semantic
● call stack
● parallel non-deterministic calls
● constraints on locked elements
● hypothesis for lockability
● well-formed assemblies

Goals and perspectives
● prove lock algorithms
● simple control hypothesis
● lockable by construction

 20

The end

Conclusion and Perspectives

Presented today
● AMR use case
● L²C+pthreads

implementation
– up to 16k

● towards a HPC
reconfigurable
component model
– lockables

– domains

– controllers

Perspectives
● implementation

– distributed

– integration

● experiments
● lockable domains

formal model
● higher-level

component features

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

