CLAC: an hybrid OpenCL/MPI Discontinuous

Galerkin solver for generic conservation laws

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strub)
Inria Tonus & IRMA Université de Strasbourg

July 10, 2014

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

@ Efficient GPU programing.
@ Discontinuous Galerkin (DG) solver design.

© Some applications.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Conservation laws

Solution W(x, y, t) € R™ of Maxwell/fluids/MHD /Vlasov
equations. System of conservation laws.

O W + B FX(W) + 9, F¥ (W) = 0.

Approximation W/, of W(ilAx, jAy, nAt). Finite volume method
+ Strang splitting

X,n
Fil1)2j —0

% X,n .
Wi = Wiy Fiip
At Ax

—+1 y,n _ gyn
W — W N Fiie = Fijtae 0
At Ay '
Numerical flux: F’.)j;'{/zlj = Foum (W W),
7” —_—
Filite = Faum(W/ WG).

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

CPU Implementation

On large grids (> 1024 x 1024). We compare:

@ a naive C implementation without optimization on a CPU
single core;

@ the same program, but compiled with optimizations;

@ the same program with an additional optimization (tiling for
optimizing data locality);

@ the same program with OpenMP parallelization on a 16-core
CPU.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Comparison

Implementation ‘ Time ‘ Speedup ‘
Naive code 30 days 1
Naive code + optim. compil. 146 h 5
Naive code + optim. compil. + tiling | 97 h 8
OpenMP version (16 cores) 6.2 h 116

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

OpenCL model: an accelerator device (GPU or CPU) is made of
o Global memory (typically 2 GB);
e Compute units (typically 30).
Each compute unit is made of
@ Processing elements (typically 8);
@ Local memory (typically 32 kb).

The same program (kernel) can be executed on all the processing
elements at the same time.

@ All the processing elements have access to the global memory.

@ The processing elements have only access to the local memory
of their compute unit.

@ If two processing elements write at the same location at the
same time, only one wins...

@ The access to the global memory is slow while the access to
the local memory is fast (generally...)

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

A (virtual) GPU with 2 Compute Units and 4 Processing Elements

GPU

PE 1 |4

eaf
Cul

Local mem.

Global mem.

PE3F__,

PE 4 [

Local mem.

cu?2
N

Host

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

@ OpenCL: “Open Computing Language”. Library of C functions,
called from the host, in order to drive the GPU + C-like
language for the kernels. Available since 2009. Specification
managed by the Khronos Group (OpenGL).

@ Virtually, it allows to have as many compute units
(work-groups) and processing elements (work-items) as
needed.

@ The threads are sent to the GPU thanks to a mechanism of
command queues on the real compute units and processing
elements. OpenCL manages events and a task graph for
asynchronous out-of-order operations.

@ Portable: the same program can run on a multicore CPU or a
GPU. Drivers exist for: AMD CPU and GPU, Intel CPU and
GPU, MIC, ARM, IBM Power7, StarPU, etc.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Implementation of the splitting scheme

We organize the data in a (x,y) grid and for each time step:

@ we associate a work-item to each cell of the grid and a
work-group to each row.

@ we compute the fluxes balance in the x-direction for each cell
of each row of the grid.

@ we transpose the grid (exchange x and y) with an optimized
memory transfer algorithm [5].

@ we compute the fluxes balance in the y-direction for each row
of the transposed grid. Memory access are optimal.

@ we transpose again the grid.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

OpenCL + MPI

We apply a subdomain decomposition for multi-GPU computing

a=agp ay a2 az ag=b
~

GPU1 GPU 2 GPU 3 GPU4

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Comparison

’ Implementation ‘ Time ‘ Speedup ‘
Naive code 30 days 1
Naive code + optim. compil. 146 h 5
Naive code + optim. compil. + tiling 97 h 8
OpenMP (CPU Intel 8x2 cores) 6.2 h 116
OpenCL (CPU Intel 6x2 cores) 18 h 40
OpenCL (NVidia Tesla K20) 20 min 2160
OpenCL (AMD Radeon HD 7970) 16 min 2650
OpenCL + MPI (4 x AMD Radeon HD 7970) | 5 min 7848

Essential: no test, optimized transposition (10x faster than the
naive memory access)

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Partial conclusion

Well known conclusions
e GPU computing can be really faster,
@ But: no test in OpenCL or CUDA kernels,

@ Memory access are essentials.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Shock-bubble interaction

Two-phase flow conservation laws system. Density p, velocity
(u, v), internal energy e, gas mass fraction ¢.

W = (p, pu, pv, p(e + u*/2 + v?/2), pp).

Pre-
shock

Y2

http://www.youtube.com/watch?v=c8hcqihJzbw

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

http://www.youtube.com/watch?v=c8hcqihJzbw

Numerical results

tmax = 0.45 ms
Grid: 40,000x20,000 (4 billions unknowns for each time step) [3]
GPU time: 30 h (10xNVIDIA K20)

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Struk 3 i /MPI Discontinuous Galerkin sol

0.978 141e+03

P. Helluy (and J. Ju . Loechner, M. Massaro, T. Struk

127 693 1.38e+03 0.978 693 1.39e+03
[T I — |

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Struk : i i inuous Galerkin

MagnetoHydroDynamics (MHD)

W = (p, pu, pv, pw, By, B,, B, p(e + u?/2 4+ v?/2)). Velocity
(u,v,w), magnetic field (By, By, B;).
Orszag-Tang vortex (grid size up to 15000 x 15000) [4].

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Generalization of the FV method, DG method in a 3D space,

X = (x,y,z). We consider a mesh of the computational domain.
In a cell L of the mesh, the field is approximated by polynomial
basis functions (sum on repeated indices)

W(X,t) = W(t)pH(X), X e L.

The numerical solution satisfies the DG approximation scheme
VL, Vi /8tho,-L—/F(W,Vg0,-L)+/ F(W,, Wg, nig)ef = 0.
L L oL

R denotes the neighbor cells along OL.

nir is the unit normal on QL oriented from L to R.

F(W,, Wg, n) is the numerical flux (which satisfies
F(W,W,n) = F*(W)nx + F¥(W)ny).

Time integration of a system of ordinary differential equations.
Mass matrix M, = [, ofor

(]

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

DG approach and GPU

advantages:
@ varying order, mesh refinement.

local stencil.

high order = high amount of local computations.
many optimizations for hexahedrons meshes.

MIMD/SIMD parallelism. Subdomains (MPI), elementary
computations (OpenMP, CUDA, OpenCL) [1]

possible issues:

@ memory access (unstructured mesh).

@ branch tests in kernels (physical models, boundary conditions,
etc.)

@ MPI communications imply GPU<>Host memory transfers.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

CLAC

CLAC means Conservation Laws Approximation on many Cores. It
is a C++ library developed with AxesSim company in Strasbourg.
It is actually used for actual electromagnetic simulations.

@ "“Reasonable” C++: a few templates, almost no inheritance.

Google coding rules http://google-styleguide.
googlecode.com/svn/trunk/cppguide . xml

@ Git on Inria GForge.
@ Doxygen.
@ scons.

@ Boost: unit tests, graphs.

Would be useful: continuous integration...

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

CLAC data structure

@ Subdomain decomposition: each domain is associated to a
MPI node. Each MPI node is associated to an OpenCL device
(CPU or GPU).

@ Zone decomposition: each subdomain is split into volume
zones and interface zones. A zone possess identical elements
(same order, same geometry, same physical model). A
computation kernel is compiled for each zone (for avoiding
branch tests).

@ (Simple) non-conformity between zones is allowed.

e Geometry and interpolation are separated (possibility to
replace memory access by computations).

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

CLAC data structure

Example of a domain made of two subdomains, three volume zones
and three interface zones. the mesh is non-conforming.
Subdomain 1: only one big refined volume zone. Two interface

zones.
Subdomain 2: two small volume zones (coarse and refined). Three

interface zones.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Nodal interpolation

@ Numerical integration: Gauss-Legendre integration points G,f,

GO and weights wt, w9 on hexaedrons
k g Kk Wk

/h(X)dX ~ Y " weh(Gy).
L K

Nodal basis function ©-(GL) = &; .
@ Several optimizations: diagonal mass matrix, complexity
(d+1)3 = 3(d + 1)), etc. [2]

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Implementation details

@ A single kernel for OL and L integration steps. Intermediate
results stored in the cache of the compute unit. One processor
per Gauss point. The number of Gauss points is different on
OL and L = some processors are idling in the volume
integration step.

@ A function class (pointer to the actual function 4+ headers and
sources: needed for the OpenCL compilation at runtime). We
generally hide memory access into function calls.

@ Customized kernels are assembled and compiled for each zone.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

CLAC task graph

Important kernels:
@ Volume zone: internal fluxes and sources assembly (“Volume
flux).
@ Interface zone: field extraction from right and left volume

zones (“Extract left”, “Extract right”). The extraction may
imply MPIl communications.

@ Interface zone: flux computations (“Interface”).

@ Interface zone: boundary fluxes assembly on the left and right
volume zones (“Apply right” or “Apply left”).

@ Volume zones: RK2 integration step (“RK2").

GPU-host transfers occur only in the extraction task at an interface
between two subdomains.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Task dependency graph

For the moment, we use Boost Graph.

Start simulation 0

End simulation 0

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

MP1/OpenCL events management

Problem: how to express the dependency between MPI and
OpenCL operations ?

@ We decided to rely only on the OpenCL events management.

@ The beginning of a task depends on the completions of a list
of OpenCL events. The task is itself associated to an OpenCL
event.

@ At an interface zone between two subdomains, an extraction
task contains a GPU to host memory transfer, a MPI
send/receive communication and a host to GPU transfer.

@ we create an OpenCL user event, and launch a MPI blocking
sendrecv in a thread. At the end of the communication, in the
thread, the OpenCL event is marked as completed. Using
threads avoids blocking the main program flow.

e Work in progress: performance evaluations (problem with
NVIDIA devices).

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

W = (Ex, E,, E;, Hx, Hy, H,): electric and magnetic field. Maxwell
equations.
Plane wave with gaussian profile.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL/MPI Discontinuous Galerkin sol

@ Aircraft geometry described with 3,337,875 hexaedrons (~1
billion unknowns per time step). Several PML layers at the
boudaries.

@ We use 8 GPUs to perform the computation. The simulation
does not fit into a single GPU memory. 400 Gflops.

@ In this test case we spend about 30% of the computation time
in the memory transfers between the CPU and the GPU and
about 20% in the MPI communications. We expect much
better speedups with the asynchronous task graph.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Aircraft

Current (A)
0.00 0.853 1.71 2.56 341

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Struk

Waveguide filter

P. Helluy (and J. Ju . Loechner, M. Massaro, T. Struk

Waveguide filter

@ 8370 cells, 3 millions unknowns (second order nodal
interpolation).

@ 10 cPML layers on two sides.

o dt = 1.36e-13s et dx = 8.14316e-04m. tmax = 25e-0s.
184076 iterations. 19.5mmx9.525mm.

@ GPU time 4092s on one NVIDIA GTX 680.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Waveguide filter

Ez at 11.5 GHz, 12 GHz and 12.4 GHz.

Electric field at z=0.9525mm Gavim)

Electric field at z=0.9525mm e

Electric field at =0.9525mm Gavim)

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

Conclusion

@ CLAC: asynchronous hybrid DG solver based on OpenCL and
MPI.

o It works...

@ Work in progress: asynchronous command queues on NVidia
GPU, Gauss-Lobatto integration, memory transfer optimization
(zone transpositions), etc. Summer CEMRACS project
http://smai.emath.fr/cemracs/cemracs14/lessiv.pdf

@ Task graph: we are reaching our position of incompetence.
StarPU, SOCL ? PhD project in C2S@exa.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

http://smai.emath.fr/cemracs/cemracs14/lessiv.pdf

[@ Tristan Cabel, Joseph Charles, and Stephane Lanteri.
Multi-gpu acceleration of a dgtd method for modeling human

exposure to electromagnetic waves.
2011.

E Gary Cohen, Xavier Ferrieres, and Sébastien Pernet.
A spatial high-order hexahedral discontinuous galerkin method
to solve maxwell's equations in time domain.
Journal of Computational Physics, 217(2):340-363, 2006.

[§ Philippe Helluy and Jonathan Jung.
Two-fluid compressible simulations on gpu cluster.
2014.

[@ Michel Massaro, Philippe Helluy, and Vincent Loechner.
Numerical simulation for the mhd system in 2d using opencl.
2013.

E Greg Ruetsch and Paulius Micikevicius.

Optimizing matrix transpose in cuda.
Nvidia CUDA SDK Application Note, 20009.

P. Helluy (and J. Jung, V. Loechner, M. Massaro, T. Strut. CLAC: an hybrid OpenCL /MPI Discontinuous Galerkin sol

