A mixed finite element method for deformed cubic meshes Inria Project Lab C2S@Exa, annual meeting, Bordeaux

Nabil Birgle

POMDAPI project-team Inria Paris-Rocquencourt, UPMC

With : Jérôme Jaffré and Martin Vohralík

July 10, 2014

Goals

Numerical method

- Define a mixed finite element method for deformed cubes
- I pressure per cell
- 1 flux per face

High performance computing

- Implementation in Traces (ANDRA)
- Parallelism and optimization

Mixed finite element methods

\mathbf{RTN}_0 for tetrahedra and cubes (Raviart-Thomas-Nédélec [1])

Composite element for hexahedron (Sboui-Jaffré-Roberts [2])

Hexahedron

Hexahedron split into 5 tetrahedra

Composite mixed finite element method

Composite element with 5 tetrahedra

- Assume the faces are planar
- Choose the splitting

Cube split into 5 tetrahedra

Composite element with 24 tetrahedra

- Works with curved faces
- Single splitting
- Symmetry
- Conforming tetrahedral submesh

Cube split into 24 tetrahedra

Incompressible Darcy flow

Find $\mathbf{u} \in \mathbf{H}(\operatorname{div}; \Omega)$ and $p \in \mathbf{L}^2(\Omega)$ such that

$\mathbf{u} = -\mathbf{K} \nabla p$	in Ω
$\nabla \cdot \mathbf{u} = f$	in Ω
$p = p_0$	on $\partial \Omega$

Weak formulation

Find $\mathbf{u}_h \in \mathcal{W}_h$ and $p_h \in \mathcal{M}_h$ such that

$$\int_{\Omega} \mathbf{K}^{-1} \mathbf{u}_{h} \cdot \mathbf{v}_{h} - \int_{\Omega} p_{h} \nabla \cdot \mathbf{v}_{h} = -\int_{\partial \Omega} p_{0} \mathbf{v}_{h} \cdot \mathbf{n} \qquad \forall \mathbf{v}_{h} \in \mathcal{W}_{h}$$
$$-\int_{\Omega} q_{h} \nabla \cdot \mathbf{u}_{h} \qquad = -\int_{\Omega} fq_{h} \qquad \forall q_{h} \in \mathcal{M}_{h}$$

Define the approximation spaces \mathcal{W}_h and \mathcal{M}_h

Conditions to meet for the approximation spaces \mathcal{W}_h and \mathcal{M}_h

 $\mathbf{u}_h \in \mathcal{W}_h$ and $p_h \in \mathcal{M}_h$

- p_h must be constant on each hexahedron E of the mesh \mathcal{T}_h
- $\nabla \cdot \mathbf{u}_h$ must be constant on E
- \mathbf{u}_h must be in \mathbf{RTN}_0 inside the tetrahedral submesh \mathcal{T}_E of E
- \mathbf{u}_h must be uniquely defined by this value on each face F of the mesh

Definition of the approximation spaces \mathcal{W}_h and \mathcal{M}_h

$$\mathcal{M}_h = \{q \in \mathbf{L}^2(E) : q|_E \text{ is constant on } E, \forall E \in \mathcal{T}_h\}$$

- \mathcal{F}_h is the set of faces of the mesh \mathcal{T}_h
- \mathcal{W}_h is defined as a vectorial space with the basis functions \mathbf{w}_F , $F \in \mathcal{F}_h$

Definition of the approximation spaces \mathcal{W}_h and \mathcal{M}_h

 $\mathcal{W}_h = \operatorname{Vect} \{ \mathbf{w}_F, F \in \mathcal{F}_h : \mathbf{w}_F |_E \text{ is solution of } (\mathcal{P}_{E,F}) \}$

• A local problem $(\mathcal{P}_{E,F})$ is defined to meet the conditions for each \mathbf{w}_F

• The basis function \mathbf{w}_F will solve the local problem $(\mathcal{P}_{E,F})$ inside E

The local approximation spaces $\widetilde{\mathcal{W}}_E$ and $\widetilde{\mathcal{M}}_E$

•
$$\mathcal{T}_E$$
 is the tetrahedral mesh of E

• $\widetilde{\mathcal{W}}_E$ and $\widetilde{\mathcal{M}}_E$ are the mixed finite element spaces

$$\widetilde{\mathcal{M}}_E = \{ q \in \mathbf{L}^2(E) : q |_T \text{ is constant on } T, \forall T \in \mathcal{T}_E \}$$

 $\widetilde{\mathcal{W}}_E = \{ \mathbf{v} \in \mathbf{H}(\operatorname{div}; E) : \mathbf{v} |_T \in \mathbf{RTN}_0(T), \forall T \in \mathcal{T}_E \}$

Composite mixed finite element method

The local problem $(\mathcal{P}_{E,F})$ inside the composite element

Find $\mathbf{w}_F \in \widetilde{\mathcal{W}}_E$ and $\widetilde{p}_F \in \widetilde{\mathcal{M}}_E$ such that

$$\int_{E} \mathbf{K}^{-1} \mathbf{w}_{F} \cdot \widetilde{\mathbf{v}} - \int_{E} \widetilde{p}_{F} \nabla \cdot \widetilde{\mathbf{v}} = 0 \qquad \forall \widetilde{\mathbf{v}} \in \widetilde{\mathcal{W}}_{E}$$
$$- \int_{E} \widetilde{q} \nabla \cdot \mathbf{w}_{F} \qquad = - \int_{E} \frac{1}{|E|} \widetilde{q} \qquad \forall \widetilde{q} \in \widetilde{\mathcal{M}}_{E} \qquad (\mathcal{P}_{E,F})$$

Explicit solution with 5 tetrahedra

Neumann boundary condition

 \mathbf{n}_F normal of the face F

$$\mathbf{w}_F \cdot \mathbf{n}_{F'} = \begin{cases} \frac{1}{|F|} & \text{ if } F = F' \\ 0 & \text{ else} \end{cases}$$

Cube split into 24 tetrahedra

July 10, 2014 8 / 26

Composite mixed finite element method with curved faces

Problem with curved faces

Constant velocities are not inside the approximation space \mathcal{W}_h

Proof (Nordbotten-Hægland [3])

- F is the union of 4 sub-faces F_i
- $\mathbf{n}_F = \mathbf{n}_{F_i}$ on the triangular sub-face F_i
- **u** is a constant velocity

 $\mathbf{u} \cdot \mathbf{n}_{F_i} \neq \mathbf{u} \cdot \mathbf{n}_{F_i}$

Constant velocity \mathbf{u}

Nabil Birgle (Inria - UPMC)

C2S@Exa, ANDRA

Composite mixed finite element method with curved faces

Neumann boundary condition with curved face

- $\mathbf{w}_F|_E$ solves a local problem inside E
- $\mathbf{w}_F \cdot \mathbf{n}_{F'} = 0$ if $F \neq F'$

Constant velocity ${\bf u}$

Approximated velocity \mathbf{u}_h

• The error between ${f u}$ and ${f u}_h$ depends on the mesh

Neumann boundary condition with curved face

 $\mathbf{u}\cdot\mathbf{n}_F$ is not constant if F is a curved face

 $\mathbf{u} \cdot \mathbf{n}_{F_i} \neq \mathbf{u} \cdot \mathbf{n}_{F_i}$

Adapt the Neumann boundary condition

$$\mathbf{w}_F \cdot \mathbf{n}_F = \frac{1}{|F|}$$

 $ar{\mathbf{n}}_F$ is the mean of the normal \mathbf{n}_{F_i}

$$\bar{\mathbf{n}}_{F} = \frac{\sum_{i=1}^{4} |F_{i}| \, \mathbf{n}_{F_{i}}}{\left\|\sum_{i=1}^{4} |F_{i}| \, \mathbf{n}_{F_{i}}\right\|_{L^{2}}}$$

Deformed cube

Neumann boundary condition

$$\mathbf{w}_F \cdot \mathbf{n}_F = \frac{\bar{\mathbf{n}}_F \cdot \mathbf{n}_F}{\int_F \bar{\mathbf{n}}_F \cdot \mathbf{n}_F}$$

Exact solution

Convergence error inside the domain $\Omega = [0; 1]^3$ with different meshes.

$$p = 2xz + \frac{y^2}{2} + z \qquad \qquad \mathbf{u} = -\begin{pmatrix} 2z \\ y \\ 2x + 1 \end{pmatrix}$$

 $\begin{array}{c} - & \mathbf{RTN}_0 \text{ on tetraedral mesh} \\ - & \mathbf{O} \text{ Composite } \mathbf{RTN}_0 \\ - & \mathbf{RTN}_0 \text{ on hexaedral mesh} \end{array}$

 $\begin{array}{c} \longrightarrow \mathbf{RTN}_0 \text{ on tetraedral mesh} \\ \hline \bullet & \text{Composite } \mathbf{RTN}_0 \\ \hline \twoheadrightarrow & \mathbf{RTN}_0 \text{ on hexaedral mesh} \end{array}$

$$y = 0.2$$

 $y = 0.8$

$$y = 0.2$$

 $y = 0.8$

- $\rightarrow \mathbf{RTN}_0$ on hexaedral mesh

- $\rightarrow \mathbf{RTN}_0$ on hexaedral mesh

Shift randomly the vertices $\pm 0.3h$

- \rightarrow **RTN**₀ on tetraedral mesh \rightarrow Composite **RTN**₀
- $\rightarrow \mathbf{RTN}_0$ on hexaedral mesh

Shift randomly the vertices $\pm 0.3h$

- $\rightarrow \mathbf{RTN}_0$ on hexaedral mesh

Numerical Experiment (Hybrid form - pcg - Traces)

32768 hexahedra 786432 tetrahedra

- $\xrightarrow{} \mathbf{RTN}_0 \text{ on tetraedral mesh} \\ \xrightarrow{} \mathbf{Composite } \mathbf{RTN}_0$
- $\rightarrow \mathbf{RTN}_0$ on hexaedral mesh

Numerical Experiment (Hybrid form - pcg - Traces)

32768 hexahedra 786432 tetrahedra

- \rightarrow **RTN**₀ on tetraedral mesh \rightarrow Composite **RTN**₀
- $\rightarrow \mathbf{RTN}_0$ on hexaedral mesh

Conclusion

Convergence error

- The convergence is optimal for planar faces
- If the curved faces are fixed, the velocity converges
- The composite error is between the two \mathbf{RTN}_0 errors

Prisms and pyramids

- The same methodology can be apply for prisms and pyramids
- Local and conforming refinement

Projection of the solution into the \mathbf{RTN}_0 tetrahedral space

- $\bullet\,$ With \widetilde{p}_F in $(\mathcal{P}_{E,F})$ the pressure is defined on the tetrahedral submesh
- A posteriori error estimation (Vohralík [4])

Traces

Implementation in Traces

- Put the composite method in Traces (hexahedron, prism, pyramid)
- Check the matrix
- Check the method with basic test cases

Perspective

- Build a specific test case
- Study the parallelism
- Try another solver
- Do a posteriori error estimation

References I

- Pierre-Arnaud Raviart and Jean-Marie Thomas.
 A mixed finite element method for 2-nd order elliptic problems.
 In Mathematical aspects of finite element methods, pages 292–315.
 Springer, 1977.
- Amel Sboui, Jérôme Jaffré, and Jean Roberts.
 A composite mixed finite element for hexahedral grids.
 SIAM Journal on Scientific Computing, 31(4) :2623–2645, 2009.
- J.M. Nordbotten and H. Hægland.

On reproducing uniform flow exactly on general hexahedral cells using one degree of freedom per surface.

Advances in Water Resources, 32(2) :264–267, Feb 2009.

Martin Vohralík.

Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods.

Mathematics of Computation, 79(272) :2001–2032, 2010.