
Continuous Integration

Towards more reproducible science
the Gysela5D case

Julien Bigot1

In collaboration with:
● Chantal Passeron2, Guillaume Latu2

● Virginie Grandgirard2, Fabien Rozar1,2

● Laurent Léger3, Isabelle Dupays3, Marie Fle3

1Maison de la Simulation, 2CEA/IRFM, 3CNRS/IDRIS

Many thanks to the Inria Continuous Integration platform Team

C2S@Exa -- Bordeaux – Jul 10, 2014

mailto:C2S@Exa

Jul 10, 2014 J. Bigot -- C2S@Exa 2

Motivations

● Improve confidence in simulation results
– Is observed behavior due to a bug or is it a new physics

discovery?

● Improve reproducibility of simulation results
– What configuration was used to get some results?

– What code changes impact the results?

● Improve code “cost”
– Reduce crash during production

● Reduce loss of computation hours

– Reduce time lost in tracking bugs
● Reduce loss of developer hours

Jul 10, 2014 J. Bigot -- C2S@Exa 3

The Gysela5D case

● Magnetic confined plasma simulation code
– For study of transport & turbulences in tokamak

● Developed in Fortran95 (≃47kloc) & C (≃2,3kloc)

– Alternative implementations for lots of modules

● About 10 years of history
– CVS, then SVN

● ≃ 5 developers

– applied mathematicians, computer scientists

● ≃ 5-10 users

– Mostly physicists, some applied mathematicians

– Run & read the code, propose code change

Jul 10, 2014 J. Bigot -- C2S@Exa 4

Outline

● Context
● The platform
● Ensuring the code compiles & runs
● Validating the results

– Bit exact comparison

– What to do when it goes south?

– Smarter comparison

● Conclusion & future work

Jul 10, 2014 J. Bigot -- C2S@Exa 5

The Gysela dev. work-flow

time

11

9
release-v1.1

5 feature1

master

6

3 4 8 feature2

2

7

release-v1.0

1 410

12
release-v2.0

release

● Left SVN linear history (all changes at same level)
● A git based work-flow

– A release branch (The production code, what users see => SVN)
– An integration branch (“master”, a.k.a. next release)
– Multiple features branches (concurrent developments)

● Achievement:

– 1 change = well identified feature branch

– Master should always be stable

● Especially before release
● Tools:

– Dedicated git commands

– Gitlab for merge requests & bug/fix assoc.

Jul 10, 2014 J. Bigot -- C2S@Exa 6

CI integration in work-flow

● Automatic application on master
– Triggered by a git hook on each change

● i.e. a feature integration

– On breakage: mail to the culprit + the dev mailing list

– Also triggers other automated processes
● Doxygen doc generation
● Some static analysis (case consistency, dead code, ...)

● Manual application on feature branches
– Dedicated bash command

– Sends mail to the requester only

– Expected before merge in master

Jul 10, 2014 J. Bigot -- C2S@Exa 7

Ensure the code compiles

● Inria continuous integration
platform
– Jenkins

– CloudStack based testbed (VMs)
● For us: Linux amd64 + gcc + mpich

● On code change
– Compile w. large combination of

compile flags / code path

– Compiler warning analysis &
reporting

● Last 100 results & logs kept

Jul 10, 2014 J. Bigot -- C2S@Exa 8

Ensure the code runs

● Keep one version of the executable
– default compilation options

● Reworked launching strategy
– Synchronous mode (vs. batch)

– Self-contained (vs. launch script + binary)

● Execute mini-runs on the VMs
– In 9 different configurations

– With 2 MPI process x 1 OMP thread

– About 2 minute runs each

Jul 10, 2014 J. Bigot -- C2S@Exa 9

Results validation

● ☺ Gysela is a fully deterministic code

– Message handling order fixed

– Pseudo-random number generation is
deterministic (fixed seed)

●  Foundations not fully deterministic

– Compilers FP optimizations can alter results
● Unrelated code changes can impact optimizations

applied

– MPI reductions have no fixed operations order
● FP rounding approximations can vary

Jul 10, 2014 J. Bigot -- C2S@Exa 10

Achieving deterministic
execution

● A dedicated compilation mode
– Compiler option disabling FP optimizations

● Keep user specified operation order
● Ensure result reproducibility

– Dedicated implementation of MPI_Reduce
● Not as efficient (memory or time) as the original

but
● Always apply reduction operations in the same order

● Achievement: bit perfect results reproducibility
– Currently only on same machine/compiler

– Can this be portable?

Jul 10, 2014 J. Bigot -- C2S@Exa 11

Bit exact comparison

● When the “code version” didn't change
● Comparison of the main 5D data in checkpoint files

– All other quantities based on it

– Removed the ghost zones from the checkpoint

– HDF5 files ⇒ Comparison w. h5diff

– Small runs ⇒ small files (2 x 4MB)

● With previous code revision
– Reference checkpoint files stored on the Inria forge

● Between different input data
– e.g. 4 iter, 1 restart, 4 iter vs. 8 iter

Jul 10, 2014 J. Bigot -- C2S@Exa 12

When results don't match

file line
var = value
file line
var = value
...

● Find out where things went south
– Deterministic mode generates traces (dedicated fortan module)

– Based on instrumentation in code: DBG_CKSUM_PRINT(var)

– Generated trace file:

– On code modification
● Filename, line might change

But
● Execution order should remain stable ⇒ (var, value) order conserved

– Intrusive instrumentation to cover large code
● A dedicated branch, automatically merged w. master by jenkins when

possible

For scalars: the value
For arrays: a FNV-0 hash

+size

Jul 10, 2014 J. Bigot -- C2S@Exa 13

When results can't match

● Some changes modify the results
– New physics

– Change in mathematical scheme

– Change in algorithms/parallelization

– …

● Some changes remain very small
– Change in the “code version” minor (Major.minor)

– Changes ignored at 10-14 threshold

● Even small changes can lead to large bit by bit
change
– e.g. a shift of the 5D function in one dimension

Jul 10, 2014 J. Bigot -- C2S@Exa 14

Smarter comparison

● Identify comparison metrics
– Macroscopic values that remain stable

– Input from physicists needed

● Make the code less sensitive to perturbations
– e.g. Added a HF filter applied periodically

● Create data with well known expected results

but ...

● Will requires a parallel machine to run in a
reasonable time

Jul 10, 2014 J. Bigot -- C2S@Exa 15

Conclusion & future work

● Gysela is a deterministic code, with reproducible results in
deterministic mode

● Automated: doc generation, branch merge, static analysis,
compilation, run, bit exact comparison

● Not everything can be automated: also a merge request system
● Built tools to trace execution & identify divergences
● Still a lot to do

– Unit tests: more developments & execution

– Physics-based macroscopic comparisons

– Comparison of timing

– Validation on a large range of architecture / compilers

Port to actual super-computers (WIP w. IDRIS)

– Apply to more codes (work stated on Hydro & Jorek)

⇒

