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Abstract: In the context of knowledge management, we focus on
the representation and the retrieval of past experiences called
cases within the Case-Based Reasoning (CBR) paradigm. CBR
is a problem-solving method based on the reuse of past
experiences that represent pieces of knowledge. The first step of
this kind of reasoning is the retrieval from the memory of
relevant cases to solve anew problem by reuse and adaptation.
In this paper, we propose aframework to be used in the design
of CBR systems that need a retrieval of cases with time-
extended situations. Time-extended situation assesament is
required in many different applications uch as automatic
control, medical problem solving, process sipervision and
forecasting. Inside our framework for past experiences
management, we propose a representation model that mainly
handes stuations described by a set of sequences of events
andor sampled data. We dso propose a complex retrieval
strategy that integrates the retrieval of different types of
knowledge: abstract, concrete and potential cases. Our
framework, implemented in an object-oriented way, can be
applied to a general class of problems and mainly supports the
knowledge discovery and explanation.

1. INTRODUCTION

In the context of information and krowledge management, we
have studied the management of past experiences called cases
within the underlying Case-Based Reasoning paradigm.
Generally speing, Case-Based Reasoning (CBR) is a problem-
solving method based on the reuse of cases [1]. A case basically
represents a problem situation, the solution that has been
applied (or a way to compute it), and sometimes its evaluation.
Cases must be structured and indexed into a memory in order to
be reused when similar problems are encountered. The first step
of the reasoning is the retrieval through indexes of relevant
cases which are somehow simil ars, or match partially the current
problem situation. The gaals of others geps are the reuse of the
past solution by adaptation, the evaluation of the proposed
solutions and finally the learning of this new experience in the
memory for future reuse. Thus, Case-Based Reasoning addresses
the storage and retrieval of knowledge, and reuse of knowledge
in a connected way. Case-Based Reasoning leads to a new

generation of databases where data ae not only stored for saving
purposes but are dso intended to be reused, which is a key point
in many problem-solving activities.

In this paper, we will focus on the representation and the
retrieval isaies of cases with time-extended situations. We
intend to use not only the current state of the observed process
or activity but also its past history during the situation
asesanent and the retrieval step. Many approaches in CBR
have taken into acocount only an instantaneous stuation
described by a finite set of data that represents the state of the
world at a particular time, but in alot of red world problems it
is not enough. In medical problem solving, the pattern of patient
state changes is usually more important than a particular state
[14], and medical records have to be consulted. When you want
to forecast or to understand the behaviour of an intelli gent agent
such as a human being, you have to analyse temporal sequences
of interactions 18].

Few existing works in Case-Based Reasoning have tried to
represent and wse time-extended situations inside cases in
different applications: robot control [17], process forecast
[19,16], process sipervision [8], trend prognoses for medical
problems [21] and medical risk detection and forecast [5]. In
these works, the representation and the retrieval of this kind of
situations have shown many specificities compared to standard
and instantaneowstuations in CBR, mainly because:

* the process or activity is observed by one or multiple

streams of data coming from different sensors or sources,

« the data may be incomplete and noisy,

e the observation data can be obtained on a regular basis
(sampled data) or without any fixed frequency (event
driven observation),

e the retrieval must integrate the matching o data
histories.

Instead of having an approach restricted to a specific
application, our goal is to cope with a classof problems and we
propose aframework for the management of past experiences
that addresses the representation and retrieval of cases with
time-extended situations. First, we will analyse the requirements
of our approach compared to related CBR works. Then, we will
present our time-extended situation framework composed of a
representation model and a retrieval strategy. Finaly, we will
ill ustrate the use of our framework for a plant nutrition control
problem.



2. REQUIREMENTS OF OUR FRAMEWORK

Our goal is to improve the management of past experiences
based on our knowledge of different applications auch as plant
nutrition control (cf. 84) and on the analysis of the limitations of
related works in CBR [17,19,16,8,21,5]. First, we will define
the requirements to cope with a genera class of problems in
order to improve the reusability of the proposed management
techniques. Then we will addressfour other isaues that we want
to integrate in order to extend the existing representation and
retrieval methods.

2.1. Design of a Reusable Framework

Related CBR works [17,19,16,8,21,5] are gpli cation-oriented,
even if some of them partialy present more genera results
[1916,5]. In our approach, we want to design a reusable
framework for the management of cases with time-extended
situations. For this purpose, we have defined the feaures of the
aimed class of problems. These feaures have not been
addressed as a whole yet by these related works:

» the processor activity is observed through multiple data
streams, with incomplete and roisy data, and where the
data occurrences are accurate and ordered,

« forecast of some streams of data may be available,
¢ both sampled data and events must be handled,

e instantaneous data must be included in a situation to
represent constant operational properties,

e the retrieva must take into acoount the domain
knowledge and the problem context.

With these reguirements, the goal of our framework is to
provide arepresentation model, that can be gplied to different
applications, and aretrieval strategy. The retrieval strategy must
define a structured sequence of retrieval steps in which the
specific methods of matching could be defined in regard to the
application domain knowledge. The gplication will then be
able to retrieve relevant cases identified by the behaviour of a
set of data streams which are similar to the current problem
behaviour.

2.2. Cases for Knowledge Discovery

We want to use our framework as a knowledge discovery and
explanation tod and we must be &le to confront acquired
knowledge with domain experts (with poor domain knowledge).
For this reason, a case must be related to anly one explicit
concrete situation, it must explain and evaluate its outcome and
may be linked to simil ar cases of successor failure. This goal is
not satisfied by the works based on non-exlicit situations
[19,17] where asituation is a dynamic part of the history stored
in the case because feaures of each situation cannot be retained.
An explicit situation must be used asin [16,8,21] but must also
satisfy al other requirements (cf. §2.1). In addition, the situation
has to represent only the relevant data over time used for
ressoning, and the selection of relevant data may become fine-
grained and case-dependent due to the incressing domain
knowledge.

2.3. Use of Domain Scripts

These scripts represent temporal relations between observation
data and can be used to define typical scenarios that are well
defined in the domain knowledge. A script is in fact a type of
abstract cases. Abstract cases are dso used in other works
[17,21] but do not cope with both event and sampled data.

2.4, Use of Situation Restrictions

These restrictions are a kind of viewpoints and they can be
identified semantically even in a poor domain knowledge. These
restrictions are used mainly in the retrieval to compute the
matching on a smaller part of the situation. In REBECAS [19],
viewpoints are used to select only specified entities, and in [21],
different trend descriptions represent abstractions of past
behaviours over pre-defined sets of time periods. The first
approach uses restrictions on the observation variable space and
the second one on the time space, but we neeal to extend this
notion by taking both spaces into account.

2.5. Efficient Behavioural Data Storage

When the system observes a process with sensors for example,
the amount of data can become very large. In SINS [17], the
storage problem is addressed by the credion of more ebstract
cases which summarise the knowledge coming from old cases
and rew experiences, but the process histories not taken into
acoount are forgatten. This problem is not redly addressed in
the other approaches and all the relevant observations are stored
into memory without any specific treament. In our approach, we
think that all the relevant knowledge cannot be known at a given
instant asin SINS and we may need to consult not only the old
cases but also the process histories, in order to update the
system knowledge. Thus, we need to store many histories and
the representation must provide away to reduce the storage
space needed for behavioural data.

3. PROPOSED FRAMEWORK FOR REPRESENTATION
AND RETRIEVAL

From the &ove requirements, we first propose an object-
oriented representation model based on the separation of the
observation data inside the remrds from the knowledge
represented in cases. Based on this representation, we have
designed an open retrieval strategy for cases indexed by time-
extended situation. This framework has been implemented in
the CBR*Tods software library [12], and we will finally point
out the main features of the implementation.

3.1. Observation Data Representation

Our goal is not to define a general purpose observation data
representation as in temporal or time series databases
approaches [22,236], but we need to define a1 abstract
representation model to make explicit the asumptions needed
by our framework on these data.

3.1.1. Variables and Time Series

We aame that process and its environment are observed
through a set of variables and their evolutions are recorded into
different time series. The values of variables must be pre-



processd to partially cope with misdng and roisy data. Signal
procesing methods and domain knowledge can be used to
generate missng values, to delete eroneous data and to reduce
noise. In our framework, no assumption is made dther for the
data type of eeach variable or for the frequency of data

ocaurrence. A time series X represents the evolution over time
of one variable X . X is an application from a finite set Ty to
aset Ey defining the domain value of the time series. For

tOTy, X(t) denotes the value taken by the variable X at the

date t. Ty is a subset of Q. a totally ordered set. Qg
represents our model of the red-world time & the level of time
series.

We have defined two types of time series: sampled and
event-based time-series. In sampled time series, the duration
between two following elements of Qg and Ty are constant

(cf. Figurel).

Figure 1: Example of a numeric sampled time series

When a time series is not sampled, it is an event-based time
series and each value of a variable is called an event. For
example, if the events have ameaning o a state change, we
obtain a concise history (dfigure2)
e Montana Massachusetts Alaska death
E=living
areas
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Figure 2: Concise history of living areas (adapted fro&®])

In addition, independently of being sampled or event-based,
a time series may have forecast observation following the past
red observations. To take into account al these definitions and
constraints, we propose an objet-oriented class hierarchy that
abstracts the data access to the time series in the class Time
Series (cf. Figure 3). This abstraction defines the interface
needed by our framework while leaiing aen the
implementation. Due to the composition of two Simple Time
Series, the class Forecast Time Series allows easy updates of
forecast data while uniform access methods are maintained.
Other classes have been derived from Simple Time Series to
implement sampled or event based time series.

Compared to time series database systems (TSMYS)
[22,23,6], Qg is gmilar to a calendar [22] and represents the

set of time points derived from a time grandarity [23], T

represents the set of data pants [23], but forecast data in time
series are not explicitly supported. It may be useful to integrate
in our framework a TSMS for a low level management. This
interface could be done eaily by defining new specialised
classes.

3.1.2. Records

A record R is composed of the time series of all variables
between two precise dates (t,,t,) 0Q% andarecord context (cf.

Figure 3). All time series must use the same time model Q..

The notion of records is smilar to a group of time series [6] and
the record context is aking of group header, but in a record we
asaume more constraints on time series. Our model of records
presents two main advantages:

e the \ariable histories are segmented according to the
record context. The observation of a processcan indeed
usually be decomposed in periods of time which do not
have avy causality relations. For each period of time
constant and specific parameters can be expressed, such
as the type of the process operational constraints or the
type of the environment. For instance, if we observe a
doctor decision making process we will creae arecord
for each patient, and the name of the patient will be a
part of the record context.

* the storage of time series can ke optimised. The record
manages also the storage of all time series it contains.
The numerical time series can be gproximated
(compresgon with lost) through segmentation techniques
[9] for example. The symbolical time series can be
compressed on the finite dphabet defined by the events
of a record, with Huffman coding [10] for instance. In
addition, the records enable data sharing between
overlapping time-extended situations. Thus, the storage
of time series can be greatly reduced.

{ordered} Data

date : Date
value

Time Series

Record Context

observations

Simple Time Series Forecast Time Series

forecast

‘ Sampled Time Series ‘ ‘ Event Based Time Series ‘

Figure 3: Classes for records and time series representations

using the OMT notation2[0]

3.2. Knowledge Representation

Knowledge is gored in each case which retains a piece of
experience based on observation data. In our framework, each
case is related to atime-extended situation that defines when the
case is relevant. In order to hande different types of knowledge
and krowledge discovery, we dso use three types of cases:
abstract,potentialandconcrete

3.2.1. Time-Extended Situation Representation

A time-extended situation must define the relevant feaures
among the available data in a record in such a way that these
feaures can be identified at the current reference date, when a
new problem has to be solved. This identification must also



consider different kinds of data (numeric, symbolic), different
kinds of times sries (sample or event-based), and may concern
data before the situation reference date or after it, as far as
forecast data ae taken into account in the current problem
situation. The record context may also defines some relevant
instantaneous features for the reasoning.

For these reasons, we propose the object oriented-model
depicted in Figure 4, for the representation of time-extended
Situation. A time-extended situation has an optiona
instantaneous part and a behavioural part. The instantaneous
part contains the record context. The behavioura part refersto a
record at a precise reference date, defines for each variable aset
of elementary behaviours, and may relate these behaviours
through a set of temporal constraints (cf. Figure 4). Each
elementary behaviour can represent a single item of data or a
sequence of data of a time series.

‘ Time-Extended Situation %

0
Instantaneous Part

reference Q

Behavioural Part

1[ O

Temporal Constraint

operands

Figure 4: Time-extended situation representation model

In order to identify elementary behaviours in the new
problem relatively to the reference date, we asciate to each
behaviour a location constraint. We propose three kinds of
location methods (cFigureb):

e by position: the number of elapsed events is ecified
from the reference date.

e by dapsed time: the duration from the reference date is
specified.

e by value. The value could be an event, a sequence of
events or a sequence of sampled data. This value is
specified by a position from the reference date in the
origina situation. A similarity measure must be defined
in order to locate the best data or the sequence of data
inside atime series when applied in a new situation. An
additional time range may be alded to constraint the
search space.

After the definition of these dementary behaviours, we obtain a
uniform representation of more astract pieces of the situation
behaviour which can be connected through explicit temporal
relation constraints. Each elementary behaviour has a beginning
and an ending date which can be related by using a temporal
logic formalism on intervals?].

-5 events
-4 events
by position Y g events
T T T T T
« -95 seconds e 25 sea:;rlds 10seonds
i [ ] sampli e
by elapsed time — I L S,
Value = (a,p)
«a peEH—mM8Mm events
by value T T T T T >
Elementary behaviour Reference date

Figure 5: Elementary behaviour location constraints
The proposed object-oriented model is very flexible & we
are able:
« to select a set of relevant data sequences,
* to select precise events,

e to describe eplicit temporal constraints between
relevant data,

e to define an optional instantaneous part of a time-
extended situation.

For instance, we can represent a behavioural part which may be:

— simple: « The situation A is defined at the instant to by
the five last values of all the time series ». In this case,
the dementary behaviours are defined by position and
there aren’t any temporal constraints.

— or complex : « The situation B is defined at the instant
t1 by the \alues of the variable V; in the last 10
semnds, by a high increase of the \alue V», and by the
evat a followed by 3 on the variable Vs, 3 occurring
during the increase of V, ». This stuation (cf. Figure 6)
ill ustrates how it is possble to take event-based (V1 and
V3) and sampled (V2) time series into acoount in the
same situation.

Record by elapsed time

v, ab d faf ¢ |k a
1 1 T

Voo wlal 8 Bl e A R
L T T "oy vaiue T
by value

W\J Referencedate =t1

Figure 6: Typical behavioural part of a time-extended
situation

3.2.2. Three Types of Knowledge: Abstract, Potential

and Concrete Cases

In Case-Based Reasoning, abstract cases come from the domain
knowledge or they are built by manual or automatic
generaisation [3]. In the current version of our framework, we
do not address generalisation, but we use astract cases to
represents domain scripts. Thus, abstract case situations are



related to a record through a virtual date. This record does not
come directly from red observations because the time series are
built based on the domain knowledge.

We introduce the notion of potential cases. Potential cases
do not have aconcrete representation, and the knowledge they
represent is hidden inside the record data that are still stored in
memory. They can be identified by a direct search inside the
records according to a potential case template. This template
defines typical location and temporal constraints, and can be
instanciated at a given reference date. These cases cannot be
used drectly, but due to some new problems, potential cases
could become explicit as concrete cases§gf).

Concrete cases are the basic type of cases which represent an
explicit elementary experience and is identified by a time-
extended situation based on real observation data.

3.3. Retrieval Strategy

Based on our time-extended situation representation, we propose
a case retrieval strategy with an open representation and
implementation.

3.3.1. Problem Representation and Retrieval Goal

In Case-Based Reasoning, the retrieval step must identify one or
more cases that can be reused for the resolution of the current
problem. Asit is very rare to find a case that matches exactly the
current problem situation, the case-based reasoner must retrieve
cases that are similar to the current problem situation.

In our approach, a problem is defined by a time-extended
situation that may include forecast time series in its record. The
behavioural part of the problem situation does not integrate any
elementary behaviours nor temporal constraints, and all the data
of the record are acesghble. On the other side, each case defines
a situation with its own relevant structure, thus the retrieval
process must map the situation of the cases to the current

problem situation in order to evaluate the similarity of the cases.

3.3.2.  Strategy Definition

Using aur representation, we propose aretrieval strategy which
is divided into threemain steps and takes abstract, concrete and
potential cases into account. This retrieval processis based on
the following heuristics: it is better to retrieve an abstract case
than a concrete case because estract cases come from the
domain knowledge; and it is better to retrieve aconcrete case
than a potential case because aconcrete case has been reused at
least once.

1. Abstract case retrieval. Abstract cases are more
reusable and represent typical scripts. Even script with
complex temporal relations can be identified efficiently
[15]. If the matching of the current problem with an
abstract case is not sufficient, then the retrieval process
must continue.

2. Concrete case retrievarlhis step is divided as follows:

a. Filtering onthe record contex. The record context
defines properties of the process during a record.
The purpose of this sib-step is to select records that
have a compatible context with the current record
context: it is useless to retrieve cases related to
records where the operational properties are totally

different.

b. Restriction filtering. In our model, a restriction
takes both variable space and time space into
acoount by defining a filter on variables and time
horizons. Based on location constraints, a time
horizon is constrained by position or by elapsed time
relatively to the reference date of a situation.
Restrictions are used to filter the case base on a
restriction of the situation (goals, most important
relevant data, time horizons). The dms of this sub-
step are to ensure aminimal relevance of retrieved
cases and speed up the retrieval process.

c. Filtering besed onelementary behaviours. For each
case, the dementary behaviours are identified in the
current problem through the location constraints.
Then the case similarity is computed, based on
simil arity measures for each variable: numerical data
simil arity, or event sequence simil arity (with ordered
or unordered constraints, missng o added event

tolerances) based on elementary event similarities.

d. Seledion besed ontemporal constraints. Temporal
constraints are checked for each remaining cases and
ordered according to a similarity function.

3. Potential case retrieval. If matching cases are still not
found a selection of potential cases is done. First, the
potential case templates are selected. Then the potential
cases are identified by a linea seach inside the filtered
records from step 2/a. Finally, concrete cases are creaed
for the best matches.

3.3.3. Retrieval Representation

We propose an objet-oriented model based on indexes which are
used to build our complex retrieval strategy. An index is a
structure that provides accessto a set of cases acocording to a
given problem situation. Indexes may be simple or composite
(cf. Figure 7). Simple indexes are used to represent an
elementary access d$ructure such as gandard K-Neaest
Neighbours, K-d Trees [24], fuzzy prototypes [11]. Then, these
structures can be composed to build a more complex structure
through composite indexes with alternatives or in a sequential
manner.

Q

Simple Index

KNN Index ‘ Alternative Index ‘ ‘ Sequencial Index ‘

|
‘ First Alternative Index ‘

Intersection Index

Figure 7: Class diagram for index representation

Prototype Index

Kd-tree Index

@ﬂll

Our strategy is represented by a First Alternative Index
composed of three Sequential Index. The three main steps of the
retrieval are indeed dternatives and the retrieval result is



returned by the first aternative which finds at least one
matching case. Each alternative can be implemented inside a
sequence by specific indexes depending an the gplication. Thus
our framework is open and may be extended by the definition of
new indexes.

3.4. Framework Implementation

We have implemented our framework in a software library,
cadled CBROTods, using Java programming language. The
design of this library has been done using the Object Modelli ng
Technique [20]. Object-oriented design is central in our
framework, since we provide aset of classes that can be used by
composition and/or by inheritance in order to apply the
framework to a specific application. The CBRTods library
provides:

e clases to represent records, sampled or event time

series, elementary behaviours and temporal constraints;

» classesthat manage the retrieval strategy in an open way
since we can define and add new steps;

e classesthat implement indexing and retrieval techniques
used to build the retrieval process crisp and fuzzy
prototypical filtering [11], K-d trees [24], and the
standard K-Neaest Neighbour (KNN) method with an
extendible classhierarchy of similarity functions, as well
as potential case retrieval that we have defined in our
work;

e management of cases, records, indexes, and potential
case templates in coll ection classes, that use the standard
serialization package of Java for object persistence.

4. FRAMEWORK ILLUSTRATION ON A PLANT
NUTRITION CONTROL PROBLEM

In this section, we present an example from the gplication of
our framework to a plant nutriti on control problem. First we will
introduce the problem feaures, then we will describe the
instanciation of our framework for the representation of

observation data and knowledge, and for the retrieval process.

4.1. Plant Nutrition Control Problem

The @m of fertigation techniques are to suppgy plants with
nutrients and irrigation water so that the plants receive exactly
what they nead whil e the production constraints are satisfied. In
the @proach taken at INRA® [4], the purpose is to define an
automatic feedback controller that computes every day the
concentration of a fixed nurient mixture in the irrigation water
in order to maintain the concentration of the leechate aound a
defined set point. The leechate is the water collected after the
plants have @sorbed what they needed. A controller based on a
simple formula has been used [4] but the results can be
improved.

In this problem the domain knowledge is very poor and can
only be represented by a set of qualitative relations. Above dl,
the experts have observed fuzzy reaction delays: a change of the

! French National Research Institute in Agriculture.

nutrient mixture concentration has an impact on the leachate
concentration from 2 days in summer to 5 days in winter. The
problem situation cannot be reduced to a fixed set of values, but
must take into acoount the past histories of the observation
variables, and the forecast values of the sunlight radiation for
the future days. Asit is pointed out in [4] the weaher forecast is
reguired for improving the plant nutrition control procedure. We
have gplied our framework to this problem to build a
knowledge discovery workshop where we can:

e automatically associate regulation actions to a time-
extended situation inside a case,

e upcdate manualy if necessary the knowledge of a case by
modifying the time-extended situation description,

e and aid the operator to control the plant nutrition by
adapting the past control sequences.

4.2. Representation of Observation Data and

Knowledge

As we have seen previously, our framework supports the
representation of observation data, structured in variables, time
series and records, and the representation of the knowledge in
different types of cases.

4.2.1. Variables, Time Series and Records

In this appli cation, the processand its environment are observed
through dfferent sensors: temperature, humidity, volume and
concentration of the leachate and the nutrient solution. The
concentrations are evaluated by the dectrical condctivity of the
solution. As it is donein [4], the different values of each sensor
are gygregated to represent the relevant behaviour over a day.
This leads us to define aset of relevant variables. The controll ed
variable is the nutrient solution electrical condctivity for a day
(NEC), and the feedback variable (FD) is the diff erence between
the leeachate dectrical conduwctivity and the set point.
Disturbances to the environment are observed using aher three
variables: the maximum day temperature (DTM), the sunlight
radiation sum (SRS), the maximum humidity (HM). A record is
composed of the time series of the five variables. Each time
series is composed of numeric values for each day between the
beginning and the ending date of the record.

4.2.2. Cases

A concrete case contains: a concrete situation, the nutrient
electrical conductivity used to control the process and the
evaluation. The case evaluation is computed on the basis of the
feedback variable evolution. As we have seen previously, there
is acontrol delay correlated to the sunlight radiation from 2 to 5
days. This means that a case situation will not be defined by the
same relevant data whether the sunlight radiation is high or low.
Our representation model provides a simple way to select
elementary behaviours inside the record for each case. Thus,
four potential case templates are used in order to select the past
values from all variables from 2 days in winter upto 5 days in
summer. In templates, elementary behaviours are identified by
position from the reference date. During the reasoning concrete
cases will be creaed on the basis of retrieved potential cases.
Concrete cases may be then updited by the user and rew



elementary behaviours and temporal constraints can be alded
(cf. Figure8).

Variables of a

record by value
. by position

SRS ~—
DTM
HM
FD

Evauation
. L Solution
Time-extended situation Reference

date

Figure 8: Example of a plant nutrition control case

Abstract cases are used to describe emergency situations:
when the feedback variable goes outside upper and lower

bounds, the case-based reasoner must inform the operator.

4.3. Retrieval of Plant Nutrition Control Cases

We have gplied our retrieval strategy and we have selected the
appropriate retrieval technique for each step:

1. Abstract case retrieval. A set of abstract cases where
the system is not assumed to be under control has been
defined. The retrieval is made by a KNN seach with a
threshold simil arity. If there were no abstract cases with
enough good similarity, the retrieval must continue.

2. Concrete case retrieval.

a. Filtering onreoord contex. The record context is
defined by the leachate dectrical conductivity set
point which is constant for one record. The record
context filtering step is made by an exact seach
query on the current electrical conductivity set point
because we have not enough knowledge yet to reuse
cases of different set points.

b. Restriction filtering. We have defined the short
term restriction that reduces the past histories to two
days for a subset of variables. Thisrestriction is used
to select past histories that are relevant in all cases:
in winter and in summer. As the number of values
identified by the restriction is fixed, K-d tree
simil arity-based retrieval is used [24]. Cases that are
under the filtering similarity threshold are no more
taken into account.

c. Filtering based on elementary behaviours. A fine
grained filtering base on the remaining cases is done
using KNN with a similarity based on a mean
squared difference between vectors (similadid)[

d. Seledion beed on temporal constraints. The
selection based on temporal constraints uses a KNN
index based on a simil arity that computes the ratio of
the number of satisfied constraints with the total
number of constraints.

3. Potential caseretrieval. Finaly, if no case were found
and especialy at the beginning o the system life, the
potential case selection is made using the potential cases
templates. The selection of one template depends on the
current sunlight radiation. Then the templates are used

to scan the records identified in the step 2/a, in order to
identify relevant potential cases and dscover new
concrete cases.

5. CONCLUSION

In the CBR paradigm, the management of knowledge,
represented in cases, is a key part of the reasoning. We have
proposed a framework for past experience management that
takes into acoount the representation and the retrieval of cases
with time-extended situations. This kind of knowledge
management is often required in appli cations which ded with an
evolving processor activity. The originality of our work resides
in the design of a framework that integrates al the following
features according to our requirements:

*  We propose aframework that addresses a general class
of problems, and mainly it handes forecast data in the
problem description, and supports sampled and event-
based behavioural data through the definition of two
types of constraints: location constraints and temporal
relations. In addtion, the framework has been
implemented in an object-oriented way to enable its
specialisation to a wide range of applications.

e The framework supports knowledge discovery and
explanation through fine-grained situation description
and the retrieval of potential cases when needed.

e We have integrated domain scripts as abstract cases in
the first step of our retrieval strategy.

¢ We have used filters on both variable and time spaces to
ensure aminimal relevance of retrieved cases and to
speed up the retrieval.

* We have proposed the separation of concrete cases and
observation datain records in order to reduce the storage
needs while keeging experience knowledge through
potential cases.

In order to extend the supported class of problems and to
improve the framework, we plan to integrate: the representation
of temporal granularities [14], leaning methods to update the
situation of cases with the incressing knowledge, and other
index algorithms [7]. We ae dso studying the validation of our
framework to aher applications inside our class of problems:
collaborative agumentation support on Internet during a
decision making activity [13], and asgstance to a user during an
Internet browsing sesson. In the latter application, cases
identified by the past behaviours of users must be represented,
indexed and retrieved in order to determine the asdstance
actions.
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