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Abstract: In the context of knowledge management, we focus on
the representation and the retrieval of past experiences called
cases within the Case-Based Reasoning (CBR) paradigm. CBR
is a problem-solving method based on the reuse of past
experiences that represent pieces of knowledge. The first step of
this kind of reasoning is the retrieval from the memory of
relevant cases to solve a new problem by reuse and adaptation.
In this paper, we propose a framework to be used in the design
of CBR systems that need a retrieval of cases with time-
extended situations. Time-extended situation assessment is
required in many different appli cations such as automatic
control, medical problem solving, process supervision and
forecasting. Inside our framework for past experiences
management, we propose a representation model that mainly
handles situations described by a set of sequences of events
and/or sampled data. We also propose a complex retrieval
strategy that integrates the retrieval of different types of
knowledge: abstract, concrete and potential cases. Our
framework, implemented in an object-oriented way, can be
applied to a general class of problems and mainly supports the
knowledge discovery and explanation.

1. INTRODUCTION

In the context of information and knowledge management, we
have studied the management of past experiences called cases
within the underlying Case-Based Reasoning paradigm.
Generall y speaking, Case-Based Reasoning (CBR) is a problem-
solving method based on the reuse of cases [1]. A case basicall y
represents a problem situation, the solution that has been
applied (or a way to compute it), and sometimes its evaluation.
Cases must be structured and indexed into a memory in order to
be reused when similar problems are encountered. The first step
of the reasoning is the retrieval through indexes of relevant
cases which are somehow similars, or match partiall y the current
problem situation. The goals of others steps are the reuse of the
past solution by adaptation, the evaluation of the proposed
solutions and finall y the learning of this new experience in the
memory for future reuse. Thus, Case-Based Reasoning addresses
the storage and retrieval of knowledge, and reuse of knowledge
in a connected way. Case-Based Reasoning leads to a new

generation of databases where data are not only stored for saving
purposes but are also intended to be reused, which is a key point
in many problem-solving activities.

In this paper, we will focus on the representation and the
retrieval issues of cases with time-extended situations. We
intend to use not only the current state of the observed process
or activity but also its past history during the situation
assessment and the retrieval step. Many approaches in CBR
have taken into account only an instantaneous situation
described by a finite set of data that represents the state of the
world at a particular time, but in a lot of real world problems it
is not enough. In medical problem solving, the pattern of patient
state changes is usuall y more important than a particular state
[14], and medical records have to be consulted. When you want
to forecast or to understand the behaviour of an intelli gent agent
such as a human being, you have to analyse temporal sequences
of interactions [18].

Few existing works in Case-Based Reasoning have tried to
represent and use time-extended situations inside cases in
different appli cations: robot control [17], process forecast
[19,16], process supervision [8], trend prognoses for medical
problems [21] and medical risk detection and forecast [5]. In
these works, the representation and the retrieval of this kind of
situations have shown many specificiti es compared to standard
and instantaneous situations in CBR, mainly because:

• the process or activity is observed by one or multiple
streams of data coming from different sensors or sources,

• the data may be incomplete and noisy,

• the observation data can be obtained on a regular basis
(sampled data) or without any fixed frequency (event
driven observation),

• the retrieval must integrate the matching of data
histories.

Instead of having an approach restricted to a specific
appli cation, our goal is to cope with a class of problems and we
propose a framework for the management of past experiences
that addresses the representation and retrieval of cases with
time-extended situations. First, we will analyse the requirements
of our approach compared to related CBR works. Then, we will
present our time-extended situation framework composed of a
representation model and a retrieval strategy. Finall y, we will
ill ustrate the use of our framework for a plant nutriti on control
problem.



2. REQUIREMENTS OF OUR FRAMEWORK

Our goal is to improve the management of past experiences
based on our knowledge of different appli cations such as plant
nutriti on control (cf. §4) and on the analysis of the limitations of
related works in CBR [17,19,16,8,21,5]. First, we will define
the requirements to cope with a general class of problems in
order to improve the reusabilit y of the proposed management
techniques. Then we will address four other issues that we want
to integrate in order to extend the existing representation and
retrieval methods.

2.1. Design of a Reusable Framework

Related CBR works [17,19,16,8,21,5] are appli cation-oriented,
even if some of them partiall y present more general results
[19,16,5]. In our approach, we want to design a reusable
framework for the management of cases with time-extended
situations. For this purpose, we have defined the features of the
aimed class of problems. These features have not been
addressed as a whole yet by these related works:

• the process or activity is observed through multiple data
streams, with incomplete and noisy data, and where the
data occurrences are accurate and ordered,

• forecast of some streams of data may be available,

• both sampled data and events must be handled,

• instantaneous data must be included in a situation to
represent constant operational properties,

• the retrieval must take into account the domain
knowledge and the problem context.

With these requirements, the goal of our framework is to
provide a representation model, that can be applied to different
appli cations, and a retrieval strategy. The retrieval strategy must
define a structured sequence of retrieval steps in which the
specific methods of matching could be defined in regard to the
appli cation domain knowledge. The appli cation will t hen be
able to retrieve relevant cases identified by the behaviour of a
set of data streams which are similar to the current problem
behaviour.

2.2. Cases for Knowledge Discovery

We want to use our framework as a knowledge discovery and
explanation tool and we must be able to confront acquired
knowledge with domain experts (with poor domain knowledge).
For this reason, a case must be related to only one expli cit
concrete situation, it must explain and evaluate its outcome and
may be linked to similar cases of success or failure. This goal is
not satisfied by the works based on non-expli cit situations
[19,17] where a situation is a dynamic part of the history stored
in the case because features of each situation cannot be retained.
An expli cit situation must be used as in [16,8,21] but must also
satisfy all other requirements (cf. §2.1). In addition, the situation
has to represent only the relevant data over time used for
reasoning, and the selection of relevant data may become fine-
grained and case-dependent due to the increasing domain
knowledge.

2.3. Use of Domain Scripts

These scripts represent temporal relations between observation
data and can be used to define typical scenarios that are well
defined in the domain knowledge. A script is in fact a type of
abstract cases. Abstract cases are also used in other works
[17,21] but do not cope with both event and sampled data.

2.4. Use of Situation Restrictions

These restrictions are a kind of viewpoints and they can be
identified semanticall y even in a poor domain knowledge. These
restrictions are used mainly in the retrieval to compute the
matching on a smaller part of the situation. In REBECAS [19],
viewpoints are used to select only specified entiti es, and in [21],
different trend descriptions represent abstractions of past
behaviours over pre-defined sets of time periods. The first
approach uses restrictions on the observation variable space and
the second one on the time space, but we need to extend this
notion by taking both spaces into account.

2.5. Efficient Behavioural Data Storage

When the system observes a process with sensors for example,
the amount of data can become very large. In SINS [17], the
storage problem is addressed by the creation of more abstract
cases which summarise the knowledge coming from old cases
and new experiences, but the process histories not taken into
account are forgotten. This problem is not reall y addressed in
the other approaches and all the relevant observations are stored
into memory without any specific treatment. In our approach, we
think that all the relevant knowledge cannot be known at a given
instant as in SINS and we may need to consult not only the old
cases but also the process histories, in order to update the
system knowledge. Thus, we need to store many histories and
the representation must provide a way to reduce the storage
space needed for behavioural data.

3. PROPOSED FRAMEWORK FOR REPRESENTATION
AND RETRIEVAL

From the above requirements, we first propose an object-
oriented representation model based on the separation of the
observation data inside the records from the knowledge
represented in cases. Based on this representation, we have
designed an open retrieval strategy for cases indexed by time-
extended situation. This framework has been implemented in
the CBR*Tools software li brary [12], and we will finall y point
out the main features of the implementation.

3.1. Observation Data Representation

Our goal is not to define a general purpose observation data
representation as in temporal or time series databases
approaches [22,23,6], but we need to define an abstract
representation model to make expli cit the assumptions needed
by our framework on these data.

3.1.1. Variables and Time Series

We assume that process and its environment are observed
through a set of variables and their evolutions are recorded into
different time series. The values of variables must be pre-



processed to partiall y cope with missing and noisy data. Signal
processing methods and domain knowledge can be used to
generate missing values, to delete erroneous data and to reduce
noise. In our framework, no assumption is made either for the
data type of each variable or for the frequency of data

occurrence. A time series X represents the evolution over time

of one variable X . X  is an appli cation from a finite set TX
 to

a set EX  defining the domain value of the time series. For

t TX∈ , X t( )  denotes the value taken by the variable X  at the

date t . TX  is a subset of Ω
X

, a totall y ordered set. Ω
X

represents our model of the real-world time at the level of time
series.

We have defined two types of time series: sampled and
event-based time-series. In sampled time series, the duration
between two following elements of Ω

X
 and TX are constant

(cf. Figure 1 ).

  1    2     3    4     5     6   7    8   9   .... T

E= IR

Ω = ZZ

Figure 1: Example of a numeric sampled time series

When a time series is not sampled, it is an event-based time
series and each value of a variable is called an event. For
example, if the events have a meaning of a state change, we
obtain a concise history (cf. Figure 2 )

E= living
areas

1910             1928             1936                                      1980     T

Montana      Massachusetts   Alaska                               death

Figure 2: Concise history of living areas (adapted from [25])

In addition, independently of being sampled or event-based,
a time series may have forecast observation following the past
real observations. To take into account all these definiti ons and
constraints, we propose an objet-oriented class hierarchy that
abstracts the data access to the time series in the class Time
Series (cf. Figure 3). This abstraction defines the interface
needed by our framework while leaving open the
implementation. Due to the composition of two Simple Time
Series, the class Forecast Time Series allows easy updates of
forecast data while uniform access methods are maintained.
Other classes have been derived from Simple Time Series to
implement sampled or event based time series.

Compared to time series database systems (TSMS)
[22,23,6], Ω

X
 is similar to a calendar [22] and represents the

set of time points derived from a time granularity [23], TX

represents the set of data points [23], but forecast data in time
series are not expli citl y supported. It may be useful to integrate
in our framework a TSMS for a low level management. This
interface could be done easil y by defining new speciali sed
classes.

3.1.2. Records

A record R  is composed of the time series of all variables

between two precise dates ( , )t t f R0
2∈Ω and a record context (cf.

Figure 3). All ti me series must use the same time model ΩR
.

The notion of records is similar to a group of time series [6] and
the record context is a king of group header, but in a record we
assume more constraints on time series. Our model of records
presents two main advantages:

• the variable histories are segmented according to the
record context. The observation of a process can indeed
usuall y be decomposed in periods of time which do not
have any causalit y relations. For each period of time
constant and specific parameters can be expressed, such
as the type of the process operational constraints or the
type of the environment. For instance, if we observe a
doctor decision making process, we will create a record
for each patient, and the name of the patient will be a
part of the record context.

• the storage of time series can be optimised. The record
manages also the storage of all ti me series it contains.
The numerical time series can be approximated
(compression with lost) through segmentation techniques
[9] for example. The symboli cal time series can be
compressed on the finite alphabet defined by the events
of a record, with Huffman coding [10] for instance. In
addition, the records enable data sharing between
overlapping time-extended situations. Thus, the storage
of time series can be greatly reduced.

Record Context

{ordered} Data
date : Date
value

variable
Record

Time Series

variable

observations
Forecast Time Series

forecast

Simple Time Series

Sampled Time Series Event Based Time Series

Figure 3: Classes for records and time series representations
using the OMT notation [20]

3.2. Knowledge Representation

Knowledge is stored in each case which retains a piece of
experience based on observation data. In our framework, each
case is related to a time-extended situation that defines when the
case is relevant. In order to handle different types of knowledge
and knowledge discovery, we also use three types of cases:
abstract, potential and concrete.

3.2.1. Time-Extended Situation Representation

A time-extended situation must define the relevant features
among the available data in a record in such a way that these
features can be identified at the current reference date, when a
new problem has to be solved. This identification must also



consider different kinds of data (numeric, symboli c), different
kinds of times series (sample or event-based), and may concern
data before the situation reference date or after it, as far as
forecast data are taken into account in the current problem
situation. The record context may also defines some relevant
instantaneous features for the reasoning.

For these reasons, we propose the object oriented-model
depicted in Figure 4, for the representation of time-extended
situation. A time-extended situation has an optional
instantaneous part and a behavioural part. The instantaneous
part contains the record context. The behavioural part refers to a
record at a precise reference date, defines for each variable a set
of elementary behaviours, and may relate these behaviours
through a set of temporal constraints (cf. Figure 4). Each
elementary behaviour can represent a single item of data or a
sequence of data of a time series.

Date

 Location Constraint

Record Context

variable

Time Series

Instantaneous Part

Temporal Constraint

variable

Elementary Behaviour

selection 

operands

Record

variable

Time-Extended Situation

Behavioural Part

variable reference

Figure 4: Time-extended situation representation model

In order to identify elementary behaviours in the new
problem relatively to the reference date, we associate to each
behaviour a location constraint. We propose three kinds of
location methods (cf. Figure 5):

• by position: the number of elapsed events is specified
from the reference date.

• by elapsed time: the duration from the reference date is
specified.

• by value. The value could be an event, a sequence of
events or a sequence of sampled data. This value is
specified by a position from the reference date in the
original situation. A similarity measure must be defined
in order to locate the best data or the sequence of data
inside a time series when applied in a new situation. An
additional time range may be added to constraint the
search space.

After the definiti on of these elementary behaviours, we obtain a
uniform representation of more abstract pieces of the situation
behaviour which can be connected through expli cit temporal
relation constraints. Each elementary behaviour has a beginning
and an ending date which can be related by using a temporal
logic formalism on intervals [2].

Reference date

by elapsed time

by position

by value
events

10 seconds
sampling

events

-5 events

-4 events

25 seconds-95 seconds

Value = (α,β)

  α      β

Elementary behaviour

Figure 5: Elementary behaviour location constraints

The proposed object-oriented model is very flexible as we
are able:

• to select a set of relevant data sequences,

• to select precise events,

• to describe expli cit temporal constraints between
relevant data,

• to define an optional instantaneous part of a time-
extended situation.

For instance, we can represent a behavioural part which may be:

− simple : « The situation A is defined at the instant t0 by
the five last values of all the time series ». In this case,
the elementary behaviours are defined by position and
there aren’t  any temporal constraints.

− or complex : « The situation B is defined at the instant
t1 by the values of the variable V1 in the last 10
seconds, by a high increase of the value V2, and by the
event α followed by β on the variable V3 , β occurr ing
during the increase of V2 ». This situation (cf. Figure 6)
ill ustrates how it is possible to take event-based (V1 and
V3) and sampled (V2) time series into account in the
same situation.

Reference date = t1

V2

V1

V3

Record

µ      α         δ         β                        ε     λ

before

during

by value

by value

by value

by elapsed time

 a  b       d        f   a    f        c      k    a   b   g   e       b

Figure 6: Typical behavioural part of a time-extended
situation

3.2.2. Three Types of Knowledge: Abstract, Potential
and Concrete Cases

In Case-Based Reasoning, abstract cases come from the domain
knowledge or they are built by manual or automatic
generali sation [3]. In the current version of our framework, we
do not address generali sation, but we use abstract cases to
represents domain scripts. Thus, abstract case situations are



related to a record through a virtual date. This record does not
come directly from real observations because the time series are
built based on the domain knowledge.

We introduce the notion of potential cases. Potential cases
do not have a concrete representation, and the knowledge they
represent is hidden inside the record data that are still stored in
memory. They can be identified by a direct search inside the
records according to a potential case template. This template
defines typical location and temporal constraints, and can be
instanciated at a given reference date. These cases cannot be
used directly, but due to some new problems, potential cases
could become explicit as concrete cases (cf. §3.2).

Concrete cases are the basic type of cases which represent an
expli cit elementary experience and is identified by a time-
extended situation based on real observation data.

3.3. Retrieval Strategy

Based on our time-extended situation representation, we propose
a case retrieval strategy with an open representation and
implementation.

3.3.1. Problem Representation and Retrieval Goal

In Case-Based Reasoning, the retrieval step must identify one or
more cases that can be reused for the resolution of the current
problem. As it is very rare to find a case that matches exactly the
current problem situation, the case-based reasoner must retrieve
cases that are similar to the current problem situation.

In our approach, a problem is defined by a time-extended
situation that may include forecast time series in its record. The
behavioural part of the problem situation does not integrate any
elementary behaviours nor temporal constraints, and all the data
of the record are accessible. On the other side, each case defines
a situation with its own relevant structure, thus the retrieval
process must map the situation of the cases to the current
problem situation in order to evaluate the similarity of the cases.

3.3.2. Strategy Definition

Using our representation, we propose a retrieval strategy which
is divided into three main steps and takes abstract, concrete and
potential cases into account. This retrieval process is based on
the following heuristics: it is better to retrieve an abstract case
than a concrete case because abstract cases come from the
domain knowledge; and it is better to retrieve a concrete case
than a potential case because a concrete case has been reused at
least once.

1. Abstract case retrieval. Abstract cases are more
reusable and represent typical scripts. Even script with
complex temporal relations can be identified eff iciently
[15]. If the matching of the current problem with an
abstract case is not suff icient, then the retrieval process
must continue.

2. Concrete case retrieval. This step is divided as follows:

a. Filtering on the record context. The record context
defines properties of the process during a record.
The purpose of this sub-step is to select records that
have a compatible context with the current record
context: it is useless to retrieve cases related to
records where the operational properties are totall y

different.

b. Restriction filt ering. In our model, a restriction
takes both variable space and time space into
account by defining a filt er on variables and time
horizons. Based on location constraints, a time
horizon is constrained by position or by elapsed time
relatively to the reference date of a situation.
Restrictions are used to filt er the case base on a
restriction of the situation (goals, most important
relevant data, time horizons). The aims of this sub-
step are to ensure a minimal relevance of retrieved
cases and speed up the retrieval process.

c. Filtering based on elementary behaviours. For each
case, the elementary behaviours are identified in the
current problem through the location constraints.
Then the case similarity is computed, based on
similarity measures for each variable: numerical data
similarity, or event sequence similarity (with ordered
or unordered constraints, missing or added event
tolerances) based on elementary event similarities.

d. Selection based on temporal constraints. Temporal
constraints are checked for each remaining cases and
ordered according to a similarity function.

3.  Potential case retrieval. If matching cases are still not
found, a selection of potential cases is done. First, the
potential case templates are selected. Then the potential
cases are identified by a li near search inside the filt ered
records from step 2/a. Finall y, concrete cases are created
for the best matches.

3.3.3. Retrieval Representation

We propose an objet-oriented model based on indexes which are
used to build our complex retrieval strategy. An index is a
structure that provides access to a set of cases according to a
given problem situation. Indexes may be simple or composite
(cf. Figure 7). Simple indexes are used to represent an
elementary access structure such as standard K-Nearest
Neighbours, K-d Trees [24], fuzzy prototypes [11]. Then, these
structures can be composed to build a more complex structure
through composite indexes with alternatives or in a sequential
manner.

Simple Index

Alternative Index Sequencial Index

Union Index

KNN Index

Prototype Index

Kd-tree Index
First Alternative Index

Intersection Index

Composite Index

2..n
Index

2..n

Figure 7: Class diagram for  index representation

Our strategy is represented by a First Alternative Index
composed of three Sequential Index. The three main steps of the
retrieval are indeed alternatives and the retrieval result is



returned by the first alternative which finds at least one
matching case. Each alternative can be implemented inside a
sequence by specific indexes depending on the appli cation. Thus
our framework is open and may be extended by the definiti on of
new indexes.

3.4. Framework Implementation

We have implemented our framework in a software li brary,
called CBR∗Tools, using Java programming language. The
design of this li brary has been done using the Object Modelli ng
Technique [20]. Object-oriented design is central in our
framework, since we provide a set of classes that can be used by
composition and/or by inheritance in order to apply the
framework to a specific appli cation. The CBR∗Tools li brary
provides:

• classes to represent records, sampled or event time
series, elementary behaviours and temporal constraints;

• classes that manage the retrieval strategy in an open way
since we can define and add new steps;

• classes that implement indexing and retrieval techniques
used to build the retrieval process: crisp and fuzzy
prototypical filt ering [11], K-d trees [24], and the
standard K-Nearest Neighbour (KNN) method with an
extendible class hierarchy of similarity functions, as well
as potential case retrieval that we have defined in our
work;

• management of cases, records, indexes, and potential
case templates in collection classes, that use the standard
serialization package of Java for object persistence.

4. FRAMEWORK ILLUSTRATION ON A PLANT
NUTRITION CONTROL PROBLEM

In this section, we present an example from the appli cation of
our framework to a plant nutriti on control problem. First we will
introduce the problem features, then we will describe the
instanciation of our framework for the representation of
observation data and knowledge, and for the retrieval process.

4.1. Plant Nutrition Control Problem

The aim of fertigation techniques are to supply plants with
nutrients and irrigation water so that the plants receive exactly
what they need while the production constraints are satisfied. In
the approach taken at INRA1 [4], the purpose is to define an
automatic feedback controller that computes every day the
concentration of a fixed nutrient mixture in the irrigation water
in order to maintain the concentration of the leachate around a
defined set point. The leachate is the water collected after the
plants have absorbed what they needed. A controller based on a
simple formula has been used [4] but the results can be
improved.

In this problem the domain knowledge is very poor and can
only be represented by a set of qualitative relations. Above all ,
the experts have observed fuzzy reaction delays: a change of the

                                                            
1 French National Research Institute in Agriculture.

nutrient mixture concentration has an impact on the leachate
concentration from 2 days in summer to 5 days in winter. The
problem situation cannot be reduced to a fixed set of values, but
must take into account the past histories of the observation
variables, and the forecast values of the sunlight radiation for
the future days. As it is pointed out in [4] the weather forecast is
required for improving the plant nutriti on control procedure. We
have applied our framework to this problem to build a
knowledge discovery workshop where we can:

• automaticall y associate regulation actions to a time-
extended situation inside a case,

• update manuall y if necessary the knowledge of a case by
modifying the time-extended situation description,

• and aid the operator to control the plant nutriti on by
adapting the past control sequences.

4.2. Representation of Observation Data and
Knowledge

As we have seen previously, our framework supports the
representation of observation data, structured in variables, time
series and records, and the representation of the knowledge in
different types of cases.

4.2.1. Variables, Time Series and Records

In this appli cation, the process and its environment are observed
through different sensors: temperature, humidity, volume and
concentration of the leachate and the nutrient solution. The
concentrations are evaluated by the electrical conductivity of the
solution. As it is done in [4], the different values of each sensor
are aggregated to represent the relevant behaviour over a day.
This leads us to define a set of relevant variables. The controlled
variable is the nutrient solution electrical conductivity for a day
(NEC), and the feedback variable (FD) is the difference between
the leachate electrical conductivity and the set point.
Disturbances to the environment are observed using other three
variables: the maximum day temperature (DTM), the sunlight
radiation sum (SRS), the maximum humidity (HM). A record is
composed of the time series of the five variables. Each time
series is composed of numeric values for each day between the
beginning and the ending date of the record.

4.2.2. Cases

A concrete case contains: a concrete situation, the nutrient
electrical conductivity used to control the process, and the
evaluation. The case evaluation is computed on the basis of the
feedback variable evolution. As we have seen previously, there
is a control delay correlated to the sunlight radiation from 2 to 5
days. This means that a case situation will not be defined by the
same relevant data whether the sunlight radiation is high or low.
Our representation model provides a simple way to select
elementary behaviours inside the record for each case. Thus,
four potential case templates are used in order to select the past
values from all variables from 2 days in winter up to 5 days in
summer. In templates, elementary behaviours are identified by
position from the reference date. During the reasoning concrete
cases will be created on the basis of retrieved potential cases.
Concrete cases may be then updated by the user and new



elementary behaviours and temporal constraints can be added
(cf. Figure 8).

before

Solution

FD

NEC

HM

DTM

SRS

Variables of a
record

Time-extended situation Reference
date

by position
by value

Evaluation

Figure 8: Example of a plant nutrition control case

Abstract cases are used to describe emergency situations:
when the feedback variable goes outside upper and lower
bounds, the case-based reasoner must inform the operator.

4.3. Retrieval of Plant Nutrition Control Cases

We have applied our retrieval strategy and we have selected the
appropriate retrieval technique for each step:

1. Abstract case retrieval. A set of abstract cases where
the system is not assumed to be under control has been
defined. The retrieval is made by a KNN search with a
threshold similarity. If there were no abstract cases with
enough good similarity, the retrieval must continue.

2. Concrete case retrieval.

a. Filtering on record context. The record context is
defined by the leachate electrical conductivity set
point which is constant for one record. The record
context filt ering step is made by an exact search
query on the current electrical conductivity set point
because we have not enough knowledge yet to reuse
cases of different set points.

b. Restriction filt ering. We have defined the short
term restriction that reduces the past histories to two
days for a subset of variables. This restriction is used
to select past histories that are relevant in all cases:
in winter and in summer. As the number of values
identified by the restriction is fixed, K-d tree
similarity-based retrieval is used [24]. Cases that are
under the filt ering similarity threshold are no more
taken into account.

c. Filtering based on elementary behaviours. A fine
grained filt ering base on the remaining cases is done
using KNN with a similarity based on a mean
squared difference between vectors (similar to [17]).

d. Selection based on temporal constraints. The
selection based on temporal constraints uses a KNN
index based on a similarity that computes the ratio of
the number of satisfied constraints with the total
number of constraints.

3. Potential case retrieval. Finall y, if no case were found,
and especiall y at the beginning of the system li fe, the
potential case selection is made using the potential cases
templates. The selection of one template depends on the
current sunlight radiation. Then the templates are used

to scan the records identified in the step 2/a, in order to
identify relevant potential cases and discover new
concrete cases.

5. CONCLUSION

In the CBR paradigm, the management of knowledge,
represented in cases, is a key part of the reasoning. We have
proposed a framework for past experience management that
takes into account the representation and the retrieval of cases
with time-extended situations. This kind of knowledge
management is often required in appli cations which deal with an
evolving process or activity. The originalit y of our work resides
in the design of a framework that integrates all the following
features according to our requirements:

• We propose a framework that addresses a general class
of problems, and mainly it handles forecast data in the
problem description, and supports sampled and event-
based behavioural data through the definiti on of two
types of constraints: location constraints and temporal
relations. In addition, the framework has been
implemented in an object-oriented way to enable its
specialisation to a wide range of applications.

• The framework supports knowledge discovery and
explanation through fine-grained situation description
and the retrieval of potential cases when needed.

• We have integrated domain scripts as abstract cases in
the first step of our retrieval strategy.

• We have used filt ers on both variable and time spaces to
ensure a minimal relevance of retrieved cases and to
speed up the retrieval.

• We have proposed the separation of concrete cases and
observation data in records in order to reduce the storage
needs while keeping experience knowledge through
potential cases.

In order to extend the supported class of problems and to
improve the framework, we plan to integrate: the representation
of temporal granulariti es [14], learning methods to update the
situation of cases with the increasing knowledge, and other
index algorithms [7]. We are also studying the validation of our
framework to other appli cations inside our class of problems:
collaborative argumentation support on Internet during a
decision making activity [13], and assistance to a user during an
Internet browsing session. In the latter appli cation, cases
identified by the past behaviours of users must be represented,
indexed and retrieved in order to determine the assistance
actions.

ACKNOWLEDGEMENT

We would li ke to thank Brigitte Trousse for her useful
comments and suggestions.

REFERENCES

[1] A. Aamodt and E. Plaza. Case-Based Reasoning:
Foundational Issues, Methodological Variations, and
System. AI Communications, 7(1) :36–59, March 1994.



[2] J. F. Allen. Towards a general theory of action and time.
Artificial Intelligence, 23:123–154, 1984.

[3] R. Bergmann and W. Wilke. On the role of abstraction
in case-based reasoning. In I. Smith and B. Faltings,
editors, Advances in Case-Based Reasoning, volume
1168 of Lecture Notes in Artifi cial Intelli gence, pages
28–43. Springer, 1996.

[4] R. Brun, B. Paris, and I. Hammelin. Fertigation
management of rose plants grown in greenhouse on
rockwool. Adv. Hort. Sci., 7:109–111, 1993.

[5] M. Bull , G. Kundt, and L. Gierl. Case-based risk
detection and forecasting in a geographic-medical
system. In R. Bergmann and M. Wilke, editors, German
Workshop on Case-Based Reasoning, pages 59–64,
March 1997.

[6] W. Dreyer, A. K. Dittrich and D. Schimdt. Research
perspectives for time series management systems.
SIGMOD Record, 23(1) :10–15, March 1994.

[7] C. Faloutsos, M. Ranganathan and Y. Manolopoulos.
Fast subsequence matching in time-series database.
SIGMOD Record, 23(1) :419–429, May 1994.

[8] B. Fuch, A. Mill e, and B. Chiron. Operator decision
aiding by adaptation of supervision strategies. In
M.Veloso, K.D. Althoff , and M. M. Richter, editors,
Case-Based Reasoning Research and Development,
Lecture Notes in Artificial Intelli gence, pages 23–32.
Springer, 1995.

[9] P. Garnesson and G. Giraudon. Polygonal
approximation: overview and perspective. Technical
Report n°1621, INRIA, June 1991.

[10] G. Held, and T.R. Marshall . Data compression. J.
Wiley and Sons, 1991.

[11] M. Jaczynski and B. Trousse. Fuzzy logic for the
retrieval step of a case-based reasoner. In M. Keane, J.P.
Haton, M. Manago, editors, EWCBR-94 : Second
European Workshop on Case-Based Reasoning, pages
313-321, Chantilly, France, novembre 1994.

[12] M. Jaczynski and B. Trousse CBR*Tools: an object
oriented library for indexing cases with behavioural
situation. Research Report n°3215, INRIA, July 1997. in
French.

[13] N.I. Karacapili dis, B. Trousse and D. Papadias. Using
Case-Based Reasoning for argumentation with multiple
viewpoints. In D.B. Leake and E.Plaza, editors, Case-
Based Reasoning Research and Development
(ICCBR'97), volume 1266 of Lecture Notes in AI, pages
541–552. Springer, 1997.

[14] E. T. Keravnou. Modelli ng medical concepts as time-
objects. In M. Stefanelli and Jeremy Wyatt, editors,
Artifi cial Intelli gence in Medicine, volume 934 of
Lecture Notes in Artifi cial Intelli gence, pages 67–90.
Springer, 1995.

[15] M. Ghallab and A. Mounir-Alaoui. Managing eff iciently
temporal relations through indexed spanning tree. In
Proc. 11th IJCAI, pages 1297–1303, 1989.

[16] G. Nakhaeizadeh. Learning prediction from time series:
a theoretical and empirical comparison of CBR with
some other approaches. In Topics in Case-Based
Reasoning, volume 837 of Lecture Notes in Artifi cial
Intelligence, pages 65–76. Springer, 1994.

[17] A. Ram and J.C. Santamaria. Continuous case-based
reasoning. In AAAI Case-Based Reasoning Worksop,
pages 86–93, 1993.

[18] F. E. Ritter and J. H. Larkin. Developing process models
as summaries of HCI action sequences. Human -
Computer Interaction, 9:345–383, 1994.

[19] S. Rougegrez. Similarity evaluation between observed
behaviours for the prediction of processes. In Topics in
Case-Based Reasoning, volume 837 of Lecture Notes in
Artificial Intelligence, pages 155–166. Springer, 1994.

[20] J. Rumbaugh, M. Nlaha, F. Eddy, W. Premerlani, and
W. Lorensen. Object Oriented Modelli ng and Design.
Prentice Hall, 1991.

[21] R. Schmidt, B. Heindl, B. Pollwein, and L. Gierl.
Abstraction of data and time for multiparametric time
course prognoses. In I. Smith and B. Faltings, editors,
Advances in Case-Based Reasoning, volume 1168 of
Lecture Notes in Artifi cial Intelli gence, pages 377–391.
Springer-Verlag, 1996.

[22] A. Segev and R. Chandra. A data model for time-series
analysis. In Advanced Database Systems, volume 759 of
Lecture Notes in Computer Sciences, chapter 10, pages
191–212. Springer, 1993.

[23] A. Segev and A. Shoshani. A temporal data model based
on time sequences. In A.U. Tansel et al., editors,
Temporal Databases: Theory, Design and
Implementation, Benjamin/Cummings, chapter 11,
pages 248–270, 1993.

[24] S. Wess, K.D. Althoff , et G. Derwand. Using K-d Trees
to improve the retrieval step in case-based reasoning. In
S. Wess, K.D. Althoff and M. M. Richter, editors,
Lecture Notes in Artifi cial Intelli gence, Topics in
Case-Based Reasoning, pages 167-181, Springer, 1994.

[25] B. C. Willi ams. Doing time: putting qualitative
reasoning on firmer ground. In Proceedings of the AAAI
National Conference on Artifi cial Intelli gence, pages
105–112, 1986.


