
ABS: the Anti Bouncing Model for Usage Data Streams

Chongsheng Zhang∗, Florent Masseglia
INRIA Sophia Antipolis-Ḿediterrańee

AxIS Project-Team, 2004, route des Lucioles - BP 93
06902 Sophia Antipolis, France

{chongsheng.zhang,florent.masseglia}@inria.fr

Yves Lechevallier
INRIA Paris-Rocquencourt

AxIS Project-Team, Domaine de Voluceau - BP 105
78153 Le Chesnay, France
yves.lechevallier@inria.fr

Abstract—Usage data mining is an important research area
with applications in various fields. However, usage data is
usually considered streaming, due to its high volumes and rates.
Because of these characteristics, we only have access, at any
point in time, to a small fraction of the stream. When the data
is observed through such a limited window, it is challenging
to give a reliable description of the recent usage data. We
study the important consequences of these constraints, through
the “bounce rate” problem and the clustering of usage data
streams. Then, we propose the ABS (Anti-Bouncing Stream)
model which combines the advantages of previous models
but discards their drawbacks. First, under the same resource
constraints as existing models in the literature, ABS can better
model the recent data. Second, owing to its simple but effective
management approach, the data in ABS is available at any
time for analysis. We demonstrate its superiority through a
theoretical study and experiments on two real-world data sets.

Keywords-data streams; usage; clustering; bounce rate;

I. I NTRODUCTION

The bounce rate (BR) of a website is the percentage of
visitors (or users) who hit a given page and do not visit
any other page on that website. It is defined asBR = (To

Tv
)

with To the total number of visits viewing only one page
and Tv the total number of visits. According to Wikipedia
it essentially represents the percentage of initial visitors
to a site who ”bounce” away to a different site, rather
than continue on to other pages within the same site[12].
Bounce rate is very important for usage analysis and most
commercial websites would like to lower it1. Actually, let us
consider two websitesA andC. When a user clicks through
a paid advertising on websiteA and arrives on a landing page
on C, she is expected to navigate through several pages on
C. If this is not the real case, then the advertisements may be
not well targeted. Usually, the aim of commercial websites
is to drive their users through multiple pages since they are
expected to click on paid advertisings. For such websites,
bounce rate indicates how the pages succeed in encouraging

∗This work was partially funded by ANR, grant number ANR-07-
MDCO-008-01/MIDAS

1Meanwhile, some websites won’t try to lower their bounce rate. A
website might, for instance, want to provide its users with fast and accurate
information (in that case, it does not want to keep the users asmuch as
possible on its pages).

the users to browse different pages. There are many reasons
for a high bounce rate. We separate these reasons in two
categories.

The first category is related to the content of the page, say,
its relevance with regards to the users interests, the linksto
other pages, the bad ergonomics or the keywords which do
not reflect its content.

The second category is related to the data model used
for the usage analysis. This is particularly true for data
streams. We claim that, in some cases, the observed bounce
rate is higher than the real one, because of the data stream
model.To the best of our knowledge, this is the first paper
providing a study for lowering the observed bounce rate in
data streams.

Let us introduce some definitions related to usage data
streams. Because of their high volumes and rates, it is
usually impossible to analyze such streams in real time.
Sometimes, it is even impossible to solely store their whole
content.

Definition 1: An event ei =< uid, time, page > is a
tuple wherei is the event identifier,uid is the user identifier,
time is a timestamp andpageis the page requested by user
uid at that timestamp. Anevent data streamis a stream of
events.

Definition 2: An observation window of sizen is a set
of n events from the stream.

Definition 3: The navigation of a userui at time t is
the series of eventsex =< uj , tk, pl >, k ∈ [0, t] where
uj = ui.

According to definition 1, an event data stream contains
the users requests. Since the whole set of events from a
data stream is too large to fit in main memory, the stream is
usually processed through an observation window containing
a subset ofn events (C.f. definition 2). The navigation of
a user, as given by definition 3, contains the set of pages
that have been requested by that user up to the current
time. A model represents the information and description
of the stream. In our case, a model is a set of navigations,
built on the events that have been selected from the stream.
Obviously, the content of a model depends on the event
selection strategy. Letk, be the maximum number of events
that can be kept in main memory. A popular data stream



model is based on batches of events [5], [6] where the
observation window is the chunk containing the lastk events.
For each batch, the events are processed while the next batch
is being filled with the new events. Each batch is discarded
when the next one is ready for processing. Example 1
illustrates this model and its principle on a toy dataset.

(1)
Event e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

User u1 u2 u3 u4 u1 u5 u3 u6 u5 u7

Page a b d b c a e b c b

(2)
u1 u2 u3 u4 u5 u6 u7

a b d b a b b

c e c

(3)
u1 u3 u5 u6 u7

c e a b b

c

Table I
STREAMING EVENTS (1), THEIR CORRESPONDING NAVIGATIONS(2)

AND THE NAVIGATIONS IN Bn , THE BATCH THAT CONTAINS THE LAST

SIX EVENTS (3).

Example 1:Let us consider the events given in Ta-
ble I (1). Each eventei associates an event Idi, a user (or
visitor) and a page. The navigations on the whole dataset
in this example are given in Table I (2). For instance,
the navigation ofu1 contains two pages (a and c). For
simplicity, we only keep the pages in the navigations (we
don’t show the timestamps). Let us considerBn, which is
the batch containing the last six events in this stream (i.e.
[T5..T10]). The navigations ofBn are given in Table I (3).
The main observation is that the navigations of usersu1

and u3 are truncated. This has important consequences on
the data analysiss since i) the observed bounce rate in
Bn is much more important than the real bounce rate (4

5
in Bn vs. 4

7 in the whole data) and ii) the clusters that
would be obtained inBn and the ones obtained in the total
data are very different. Actually, a reasonable clustering
obtained on the whole dataset would be{Clust1 = (u1, u5);
Clust2 = (u2, u4, u6, u7); Clust3 = (u3)} which would be
described by the centers{a, c}, {b} and{d, e}. Meanwhile,
the clusters obtained forBn would be {Clust1 = (u1);
Clust2 = (u3); Clust3 = (u5); Clust4 = (u6, u7)} having
centers{a, c}, {b}, {e} and{c}.

Existing data stream models are based on removing obso-
lete events. Actuallythey sort the events by timestamp and
they maintain a maximum number of events in the model.
Therefore, the navigations of most users cannot be reliably
retrieved. In Example 1 the navigations of usersu1 andu3

are truncated.
Hence, the need for a better model that would not throw

away such a precious information. We introduce the ABS
(Anti-Bouncing Stream) model, a new model relying on a
novel point of view.

II. RELATED WORKS

Bounce rate is a recent, though important, measure that
is relatively unstudied in the literature. In [8], the authors
proposed interesting techniques towards prediction of an
advertisement bounce rate by analyzing its features. Though
not related with data streams and observation window issues,
this recent paper is one of the first studies on this subject.

RegardingData Streams Models, [6] gives an interesting
comparative study of batch and sliding windows (SW in the
remaining of this paper and Fifo in [6]). The authors propose
two approaches designed towards anytime algorithms and
their exploitation in data streams. With SW, we need to
maintain a list of current events in the model [9]. The main
difference with batch lies in i) the frequent updates ii) the
availability of the model at anytime. However, when a batch
is complete and ready for analysis at timet, the SW model
at time t contains the exact same events (and navigations).
Let us also mention some other models such as the landmark
windows [7], where the analysis is maintained for a window
ranging from one fixed point in the past to the current
time, and the decaying factor [3], [4] which aims to give
higher weight to recent events in the analysis. Most papers
on data stream mining have considered streams of feature
vectors [1], [10], [4], [5], [11], [13] where there is no link
between the records (i.e. each new record in the stream is
the whole set of a user’s requests, whereas in our context,
the users’ requests arrive in parallel and event after event).
Essentially, papers in this context are dedicated either to
clustering or to frequent itemset mining. For clustering, let us
cite [1] where the authors introduced the concept of micro-
clusters and the CluStream algorithm. For itemset mining,
[5] exploits the FPGrowth algorithm in a batch environment
and uses a decaying factor to manage the history of extracted
patterns. In this paper, we consider the case of data streams
where the events belong to global objects. In our case, these
events are pages requested by users. Therefore, the data
is streaming on two dimensions: the pages and the users.
Despite the possible applications associated with this kind
of data streams, they received little attention in the literature.
The authors of [5] also consider a data stream of events,
where the users sequences are built for each batch.

III. ABS: THE ANTI-BOUNCING STREAM MODEL

In this section, we propose a new model that allows for
a seamless representation of the recent events, makes the
data available for analysis at any time and has a fast and
straightforward update principle.

The key idea of our model is to eliminate the idea of
observation window on the event data stream. While the
models based on batches, sliding windows or decaying
factors maintain a list of events, our model only considers
the new incoming events one by one. However, we cannot al-
ways add new events without regularly removing some data
since we cannot afford the memory overhead. Essentially,



ABS provides a new management and pruning principle as
follows:

1) Acquire new events and update the model on the fly.
2) Maintain a relation of order between the users.
3) Monitor the current number of events in the model

and remove the last user from the model when the
maximum available memory is reached.

A. Update principle

The main difference between ABS and the existing mod-
els in the literature (besides the absence of an observation
window on the data stream) is that ABS doesn’t sort the
events.Instead of a relation of order between the events,
ABS proposes and exploits a relation of order between the
users. The most up to date user is at the head of the structure
while the user at the other end of the structure is the one
with the oldest update. Thus, ABS arranges the users in a
sorted list that is updated after each event is read from the
stream. When a new event occurs, the corresponding user is
updated or created, and moved to the head of the list. This
operation is not costly. Retrieving a user in order to add the
new event to its navigation can be done inO(1) time, thanks
to a map (as it is the case in Batch and SW). Afterwards,
moving the user to the head of the list is straight-forward
and done inO(1) time. Thanks to this update principle, the
users are always sorted from the less up to date to the most
up to date.

B. Pruning principle

The pruning principle of ABS allows for fast and relevant
removal of users. We consider a maximum number of
events allowed in the model. This maximum number can
be, for instance, equal to the size (number of events) of a
batch. When the current number of events is larger than the
maximum, ABS removes the last user from the model and
the number of events in the model is decreased accordingly
(i.e. decreased by the number of events of the removed user).
Consequently, the number of events in ABS and Batch or
SW is approximately the same at any time (the number of
pages contained in the user removed from ABS is negligible
with regards to the number of events maintained in the
model).Furthermore, the pruning step of ABS is faster than
SW, since we don’t need to retrieve any user for a removed
event. We just remove the user at the end of the structure.

C. Algorithm

As can be seen in our pseudo-code of ABS (Figure 1), the
data in our model is available for analysis at any time (like
SW) while proposing a management that is as straightfor-
ward as Batch. Furthermore, our model allows a seamless
representation of the recent data in the stream. Actually,
the navigations in ABS are usually longer, compared to a
Batch or a Sliding Window with the same memory size. We
propose an analysis of these properties in section III-D.

Algorithm: ABS
Input: DS, an event data stream andM , the memory size
(number of events).
Output: Navigations, the navigations contained in the
model.

nbEvents ← 0
While not end of streamDo

1) nbEvents++
2) e(u, t, p) ← ReadEvent(DS)
3) If u ∈ Navigations Then

AddEvent(Navigations[u],e)
4) Else CreateNavigation(Navigations, e)
5) MoveToFirstPosition(Navigations[u])
6) If nbEvents > M Then

a) nbEvents ← (nbEvents− number of events in
the oldest/last navigation)

b) RemoveLastNavigation(Navigations)

7) End If
8) If Analysis requestedThen Analysis(Navigations)

Done
End ABS

Figure 1. Algorithm for the ABS model.

D. Does ABS Avoid Splitting Down the Navigations?

We consider that i) the occurrence of eventei = (u, t, p)
is independent oft − 1 (the time of the previous event)
and ii) the probability distribution of a number of events
occurring in a period[0, T ] is the Poisson distribution. If
the expected number of occurrences in this interval isη then
the probability that there are exactlyn events isf(n, η) =
ηn.e−η

n! .
Let λi be the average rate of events for userui andNi be

the number of events associated withui during the period
[0, T ]. The distribution ofNi is a Poisson distribution given
by:

P [Ni = k] =
(λiT )k.e−λiT

k!

Let τi be the time interval between two events ofui.
The probability that the time between two events ofui

oversteps a valuet is given by: P [τi > t] = e−λit. Let
us now consider two usersa andb. At time t = 0, the event
(a, 0, p0) occurs, associated witha, and at timetb ∈ [0, T ],
the event(b, tb, ptb

) occurs, associated withb. Let us analyze
the probability thata remains in ABS and accumulates
pages in his navigation. The probabilityPa that an event
of a occurs beforeT is the probability that the second
event ofa occurs beforeT , knowing that this time is larger
than tb. P [τa ≤ T/τa > tb], this probability, is given by
1 − e−λa(T−tb) (according to the Bayes theorem). Let us
note P¬b the probability that no event associated withb
occurs beforeT . It is given by the probability that the time



0
0.2
0.4
0.6
0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro

ba
bi

lit
y

T − tb (or time elapsed sincetb)

Pa(x)
P¬b(x)

Figure 2. Probabilities that an event occurs for usera and does not for
userb.

between two events associated withb is larger thanT − tb,
i.e. P [τb > T − tb] = e−λb(T−tb).

If Pa is high (close to 1) andP¬b is low (close to 0),a
will remain in ABS, along with the event(a, 0, p0) but b,
along with the event(b, tb, ptb

) will be removed. Actually,
Pa depends on the valuesτa and T − tb. If the difference
betweenλa and λb is significant, then the event(a, 0, p0)
is highly likely to stay in the model. Let us consider, for
instance,λa = 2 (the average rate of events associated with
a is 2 per second) andλb = 0.5. Figure 2 gives the values
of Pa and P¬b for T − tb ∈ [0..4] in this case. At time
T − tb = 2 in Figure 2, we havePa ≃ 1 and P¬b ≃ 0.35.
Therefore, usera has a high probability to stay in the model
sinceP¬b is not small.

However, as can be seen in Figure 2, at timeT − tb = 4,
P¬b ≃ 0.15 and the chance that new events associated toa
and b occur are high. Actually, the analysis above is more
complicated when the period[tb, T ] is large. In this case, the
probability that an event occurs becomes high for any user
and it is not easy to evaluate the chance of(a, 0, p0) (the
first event ofa) to stay in the model. We need to consider
that a new event(a, t′, pt′) occurs to evaluate the probability
that (a, 0, p0) stays in the model.

Let U(t′) = {u ∈ U/∃(u, t, pt) wheret ∈ [0, t′]} be
a set of users where the last event(u, t, pt) occurs in the
period [0, t′]. Therefore, for each new event(a, t′, pt′) of a,
the probability thatu ∈ U(t′) is not associated with any
event during the period[t′, T ] is given by e−λu(T−t′). If
this probability is small, then the event(a, 0, p0) has high
probability to stay in the model. Actually, in this case the
probability P [τa ≤ T − t′] = 1 − e−λa(T−t′) must be
compared to

min{P [τu ≤ T−tu/τu > t′−tu] = e−λu(T−t′)/u ∈ U(t′)}

wheretu is the time of the last event ofu in the period[0, t′].
Therefore, the probability thata stays in ABS depends on
the minimum of valuesλu,∀u ∈ U(t′). In other words,
there are two important influence factors on the chances of
a to remain in ABS. First, as the valueλa represents the
frequency of events associated witha during this period, a

long navigation (where the number of pages is important)
has a significant probability to be updated in ABS. Second,
the probability thata stays in the model is larger when there
exists one userulow with a low frequency of events such that
one event ofulow occurs in the period[0, t′].

The above reasoning is based on time intervals. However,
our model is based on a given number of events. Meanwhile,
it is possible to build a relationship between the time period
[0, T ] and the numbern of events in the model. It is given
by the sum of Poisson distributions. Since the number of
events ofa in the period[0, T ] follows a Poisson distribution,
the mathematical expectation or meanE[Na] is equal to
λaT . Furthermore, since the random variables(Nu/u ∈ U)
are independent, we haveE[

∑
u∈U Nu] =

∑
u∈U λuT .

Consequently, the valueT of the period [0, T ] can be
estimated by:

T =

∑
u∈U λu

n
IV. EXPERIMENTS

We evaluate our algorithms from three points of view:
bounce rate, clustering results and time response. We have
implemented and tested three models (Batch, SW and ABS)
on two datasets. The first dataset comes from Orange Labs
(a major mobile phone company) in the context of the ANR
MIDAS project. It will be denoted as “Mobile usage” data
in the rest of this section. It contains 3 months of requests
from the suscribers to their mobile portal. For each month,
the log file is approximately 7GB and contains 19 millions
requests. The second dataset comes from the WWW access
log file of Inria from February 2006 to May 2007. It is
14 GB and contains 20 millions requests (both log file
formats are different, hence the different file sizes). For each
dataset we want to know if our results are close to the ideal
case where we could afford to analyze the stream with a
much larger window. Therefore, we consider a “reference”
model which is a batch of high capacity and the results
on evaluated models will be compared to the results on
the reference. Our reference is based on the principle of a
batch that is 3 times larger than the evaluated model. During
the stream processing, we randomly chose 200 random
points for our measures. The points are selected prior to
the experiment and are the same for each model. In the
following experiments, “Window Size” is the size of the
observation window (number of events allowed in memory).
When a batch is ready for analysis, the data of SW and
Batch at that point in the stream is the same. Therefore, our
measures often compare ABS to one model called Batch/SW
when it is clear from the context.

A. Bounce Rate and Average Length of Navigations

We first measured the bounce rate of each model (ABS
and Batch/SW) under the same constraint of memory size.
Our measures, given by figure 3 clearly show a lower bounce
rate for ABS on the mobile data. For instance, with a



 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

10000 20000 40000 60000 80000 100000 120000

B
ou

nc
e 

ra
te

Window size

Batch
ABS

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 1.32

10000 20000 40000 60000 80000 100000

A
vg

 n
b.

 o
f f

ea
tu

re
s/

cl
ie

nt

Window size

ABS
Batch

Reference

Figure 3. Average bounce rate (top) and average length of navigation per
user (bottom) in ABS and Batch/SW on the Mobile usage data.

memory size of 120,000 events, the bounce rate on the
Mobile usage data is 0.81 with Batch/SW and 0.79 with
ABS. There are approximately 5 millions users in this file.
The difference represents 100,000 users that were wrongly
considered in the bouncing category. The average navigation
length is represented by 3. We can observe that, unlike
Batch/SW, ABS is very close to the reference in the Mobile
usage data, whatever the memory size. Due to lack of space
we don’t show the comparison on the WWW usage data,
but they are very similar. The reader should keep in mind
that we don’t give here the real value of bounce rate and
average length of navigations in the Mobile usage data
(these statistics are not publicly available). These numbers
are obtained from observation windows on a biased sample.

B. Cluster Validation

We compared the clustering results on the data of ABS
and Batch/SW with the reference. Our clusters come from
an implementation of AP [14] applied at each random step.
For a comparison, we only keep the users at the intersection

between the evaluated model and the reference. We measure
the purity and entropy values as described in [2].

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

 0.11

 0.115

 0.12

10000 20000 40000 60000 80000 100000 120000

E
nt

ro
py

Window size

Batch
ABS

Figure 4. Average entropy on the Mobile usage data.

 0.88

 0.885

 0.89

 0.895

 0.9

 0.905

 0.91

 0.915

10000 20000 40000 60000 80000 100000 120000

P
ur

ity

Window size

Batch
ABS

Figure 5. Average purity on the Mobile usage data.

Figure 4 gives the average purity of the clusters on ABS
and Batch/SW compared to the reference with the Mobile
usage data. We can observe that ABS has a better entropy
than Batch/SW from 20,000 to 120,000 events in memory.
The global trend of ABS’ entropy is to decrease with the
memory size, when Batch’s entropy grows. Figure 5 gives
the average purity of the clustering of ABS and Batch/SW
with the Mobile usage data. Once again, the higher the
memory size, the better the clustering of ABS. Due to lack
of space we don’t show the comparison on the WWW usage
data, but they are very similar.

C. Time Response

The most time consuming part of our algorithms is the
analysis (i.e., in our case, the clustering). The complexity



WWW usage data
M ABS Batch SW Ref ABS Vs. Best

10000 423 902 939 4439 46.9 %
20000 2591 3983 4200 17782 65 %
40000 4163 5645 5686 24472 73.4 %
60000 11241 15101 15168 73535 74.4 %
80000 9173 10587 10665 63163 86.6 %
100000 14991 23848 23751 days 62.9 %
120000 14535 16806 16835 days 86.5 %

Mobile usage data
M ABS Batch SW Ref ABS Vs. Best

10000 164 159 294 505 103.1 %
20000 327 304 438 1254 107.5 %
40000 829 808 976 3806 102.6 %
60000 2090 1987 2231 9380 105.2 %
80000 1963 2947 3134 14380 66.6 %
100000 2250 2119 2269 days 106.1 %
120000 2857 2581 2737 days 110.7 %

Table II
RESPONSE TIME(SECONDS) WITH VARYING MEMORY SIZE ON THE

WWW AND THE MOBILE USAGE DATA.

of that step depends on the number of objects and their
average number of features. In Table II, we give the response
times of the models we have implemented (ABS, Batch and
SW). We also report the difference (percentage) between the
time response of ABS and the best time response among
the other models. For instance, on the WWW usage data,
with a memory size of 10,000 transactions, we observe that
the response time of ABS is 47% of Batch’s response time
(ABS is twice as fast). With the Mobile usage data, the
response times of ABS and the best model are very close.
With such a low difference in execution times, the criteria to
chose a model should be the observed bounce rate and the
clustering quality. From these points of view, ABS is better
than the other models. Eventually, all the models have longer
response times on the WWW usage data (compared to the
Mobile usage data) since the number of features is 8,000
(versus 24 features in the Mobile usage data).

V. CONCLUSION

Lowering bounce rate is a critical issue for most Web sites.
To that end, the best solution is obviously to understand the
reasons for bounce rate and to enhance the site accordingly.
However, the observed bounce rate might be higher than it
really is in the original usage stream. As we have shown,
this can be due to the model used for observing the stream.
We have proposed ABS, a new model that allows to i) lower
the observed bounce rate, ii) better represent the recent data
in the stream and iii) avoid to break down the navigations
represented in the model. Our experiments showed that our
model allows a better representation of data streams while
reducing the processing cost.

REFERENCES

[1] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S.
Yu. A framework for clustering evolving data streams. In
VLDB ’2003: Proceedings of the 29th international confer-
ence on Very large data bases, pages 81–92, 2003.

[2] Ramiz M. Aliguliyev. Performance evaluation of density-
based clustering methods.Inf. Sci., 179(20):3583–3602, 2009.

[3] Joong Hyuk Chang and Won Suk Lee. Finding recent
frequent itemsets adaptively over online data streams. In
KDD ’03: Proceedings of the ninth international conference
on Knowledge discovery and data mining, pages 487–492,
2003.

[4] Keke Chen and Ling Liu. He-tree: a framework for detecting
changes in clustering structure for categorical data streams.
The VLDB Journal, 18(6):1241–1260, 2009.

[5] C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu.Mining
Frequent Patterns in Data Streams at Multiple Time Granu-
larities. In H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha
(eds.), Next Generation Data Mining. AAAI/MIT, 2003.

[6] Philipp Kranen and Thomas Seidl. Harnessing the strengths
of anytime algorithms for constant data streams.Data Min.
Knowl. Discov., 19(2):245–260, 2009.

[7] Gurmeet Singh Manku and Rajeev Motwani. Approximate
frequency counts over data streams. InVLDB ’02: Proceed-
ings of the 28th international conference on Very Large Data
Bases, pages 346–357. VLDB Endowment, 2002.

[8] D. Sculley, Robert G. Malkin, Sugato Basu, and Roberto J.
Bayardo. Predicting bounce rates in sponsored search ad-
vertisements. InKDD ’09: Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 1325–1334, 2009.

[9] Wei-Guang Teng, Ming-Syan Chen, and Philip S. Yu. A
Regression-Based Temporal Pattern Mining Scheme for Data
Streams. InVLDB, pages 93–104, 2003.

[10] Li Tu and Yixin Chen. Stream data clustering based on grid
density and attraction.ACM Trans. Knowl. Discov. Data,
3(3):1–27, 2009.

[11] Li Wan, Wee Keong Ng, Xuan Hong Dang, Philip S. Yu,
and Kuan Zhang. Density-based clustering of data streams
at multiple resolutions.ACM Trans. Knowl. Discov. Data,
3(3):1–28, 2009.

[12] Wikipedia. Bounce rate — wikipedia, the free encyclopedia,
2009. [Online].

[13] Raymond Chi-Wing Wong and Ada Wai-Chee Fu. Mining
top-k frequent itemsets from data streams.Data Min. Knowl.
Discov., 13(2):193–217, 2006.

[14] Xiangliang Zhang, Cyril Furtlehner, and Michèle Sebag. Data
streaming with affinity propagation. InECML/PKDD (2),
pages 628–643, 2008.


