A Fast Approximation Strategy for Summarizing a Set of
Streaming Time Series

Alice Marascu
Inria Sophia Antipolis
AXIS Project-Team
2004, route des Lucioles
06902 Sophia Antipolis
alice.marascu@inria.fr

ABSTRACT

Summarizing a set of streaming time series is an important
issue that reliably allows information to be monitored and
stored in domains such as finance [12], networks [2, 1], etc.
To date, most of existing algorithms have focused on this
problem by summarizing the time series separately [12, 4].
Moreover, the same amount of memory has been allocated
to each time series. Yet, memory management is an im-
portant subject in the data stream field, but a framework
allocating equal amount of memory to each sequence is not
appropriate. We introduce an effective and efficient method
which succeeds to respond to both challenges: (1) a memory
optimized framework along with (2) a fast novel sequence
merging method. Experiments with real data show that
this method is effective and efficient.

1. INTRODUCTION

Recently, summaries of time series have drawn high atten-
tion because of their multiple applications and computation
complexity. Several important applications related to this
topic are querying [8], mining [4, 9, 7] and forecasting data
[5, 2]. The computation difficulty is related to the very large
volume of data that are continually produced at a very high
rate. Actually, new data arrive as a stream, so the amount
of computation time per data must be low. Furthermore,
as processed elements are discarded or archived and the size
of a data stream is unbounded this will lead to a mem-
ory problem. We introduce a memory optimized framework
along with a new representation of time series that allows
fast computing thanks to straight formulas. Let us suppose
we have an available amount of memory M. We want to
trace in time the behavior of maximum n time series; then
we can imagine the available memory as a matrix with n
rows. If the memory is uniformly distributed, we can keep
t = M/n values per time series; more precisely, each row
would keep maximum ¢ values. After ¢ entries, the available
memory M is full, so we have to apply an approximation

Permission to make digital or hard copies of all or part of thknfor
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC' 10 March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

Florent Masseglia
Inria Sophia Antipolis
AXIS Project-Team
2004, route des Lucioles
06902 Sophia Antipolis
florent.masseglia@inria.fr

Yves Lechevallier
Inria Paris - Rocquencourt
AXIS Project-Team
11 domaine de Voluceau
78153 Le Chesnay

yves.lechevallier@inria.fr

algorithm.

There exist several techniques trying to answer to this
problem.One class of techniques uses a local error optimiza-
tion. More precisely, when for a sequence the available mem-
ory (space) is exceeded, a compression of this sequence must
be done. Another class of techniques takes into account the
passing time and uses a decaying factor. In this case, the
older the value, the less important it is. Therefore, the older
values should be merged more often than the recent ones
(usually a logarithmic scale is used). In fact, most of ex-
isting solutions to the problems raised by the data stream
history management belong to the second class [3, 6, 11].
The main idea of these methods is that, according to the
human memory, we are generally more interested in recent
events than we are in older ones. As a matter of fact, the hu-
man memory keeps a detailed report of the “salient” events
but a careless record of the “unimportant” events (i.e. an
accident versus a breakfast). Based on this principle, we
propose a novel approach where the most important events
are kept with high fidelity, while the less important events
are kept at a coarser resolution. For this purpose we present
GEAR (Global-Error Aware Representation), a fast on-line
approximation algorithm. The main feature of GEAR s
its capacity to find the best approximation possible related to
the global framework; moreover, it is in real time. Since data
streams require to process the data as fast as possible, we
also propose a new representation which gives similar results
(compared to traditional PLA) but involving fewer variables
and operators. MITH (MlIddle THrough), our novel rep-
resentation, goes across the segments middles, involving a
novel formula to calculate the line’s coefficients.

The rest of this paper is organized as follows. Section
2 gives the definitions of our problems and Section 3 gives
an overview of related works. In Section 4, we present our
framework. Section 5 gives our new and fast approximation
technique and Section 6 provides a set of experiments de-
signed to evaluate the effectiveness and efficiency of GEAR
and MITH.

2. PROBLEM DEFINITION

In this section we introduce the concept of Global Error-
Aware Representation and define our research challenges.

2.1 Global Error-Aware Approximation

Let T'[1..n] be a set of n time series that we want to mon-
itor. Let T[j] be the 5" time series in 7. Then, at a step
s, T[4] = [j1, ---, Js] is the set of observations (measures) for

T[j]. Let us consider that we are provided with an amount
of memory of size M (that means we can keep in mem-
ory M segments or blocks or values). We consider the case
of discrete time. At each step we have a value for each
time series (if the time series doesn’t appear, we keep a zero
value, otherwhise, we keep its value). The maximum value
of s to store all the time series without any compression is
s = M/n. When (s x n) > M, the representation of the
original data has to be compressed and when (s X n) > M
the compression cannot be without loss.

A popular representation of time series is Piecewise Lin-
ear Approximation (PLA). Let A[l..n] be the set of approx-
imations calculated on n time series. Let S[i] be the size
of A[i] (i.e. the number of memory blocks used by Ai],
where a memory block represents a segment). We know that
>, Sli] = M. Let E[i] be the error of A[i] with respect to
the original data. Let E(A) be the global error of A[l..n].
Then, E(A) = >-"_, E[i]. Previous research considered ei-
ther 1) how to optimize the error of a single PLA of a single
time series (i.e. optimize E[i] by merging segments of A[i]).
or 2) how to give greater importance to recent events.

The obtained representation is such that Vi, j € [1..n], S[i] =
S[j] (i-e. the same amount of memory is used for all series).
However, to the best of our knowledge, there has been no
previous work on such an optimization for a set of streaming
series with a global-error aware approach (i.e. optimizing
E(A) by merging and re-allocating segments in A at each
step s). The first problem discussed in this paper is “how to
find the optimal distribution of M memory blocks in order
to have the least global error E(A) in an ongoing process.”
Solving this problem calls for a merging strategy.

2.2 Merging Segments

As explained in [8, 4], the PLA of two segments can be
computed in O(1). Starting from the PLA, we propose a fast
formula involving only a few parameters and operators. Fur-
thermore, we reduce the number of computational operations
for the new approximation of two segments. Our proposal
of a new representation will be explained in Section 5.

3. RELATED WORKS

In [7], the authors present a symbolic representation of
time series and the associated algorithm (SAX). SAX offers
a discretization of the original data into symbolic strings,
allowing manipulations on a symbolic representation, rather
than on the original data. [7] introduces a function that
returns the minimum distance between the original time se-
ries of two symbolic representations. In [10], the authors
propose segmented-means, a method intended to extract the
feature vector of every sequence of a time series set. For each
time sequence, segmented-means first partitions it into equal
length segments. Then, for each segment, the extracted fea-
ture is the mean of this segment. An important advantage
of [10] is the suitability of their method for any £, norm.

Techniques for incremental regression on time series are
given in [4] and [8]. In [4], the authors propose an inter-
esting principle to merge adjacent segments in linear time.
Since their objective is to obtain such summaries depending
on the user’s constraints, they do not focus on the optimiza-
tion of any error measure. In [8], the authors borrow the
segment merging principle from [4] and provide an inter-
esting theorem showing that “the error of the line segment
approximating all the original data points can be computed

as the sum of the errors of the two individual line segments
and the error between those two line segments and the line
calculated based on those two.” Then, [8] develops studies on
how to consider a user’s decaying function in the regression.

Managing a time series from its first value to the cur-
rent one is a feature of landmark models [4]. In [4], the
authors propose to store the summaries of streaming time
series in a cube. They use the decaying model of Tilted
Time Windows (TTW) in order to reduce the cost of com-
puting and materializing the values at a multi-dimensional
space. To conclude this section on related works, let us cite
[12], which deals with multiple streaming time series. The
authors propose the StatStream system to monitor the be-
havior of a set of streaming time series and to detect stream
pairs having a correlation coefficient larger than a user spec-
ified threshold. The comparison is made on reduced repre-
sentations (DFT) of the raw data streams. The correlation
are extracted thanks to pair-wise statistics that are com-
puted in a incremental fashion (in constant time) for any
pair of streams.

4. GEAR: MOTIVATION AND PRINCIPLE

In subsection 4.1 we present the general principle of our
approach to summarize a set of streaming series. We also
discuss the advantages of such a strategy compared to ex-
isting ones in subsection 4.2.

4.1 General Principle

Let us consider T'[1..n], the set of time series given in the
problem definition. At each step s (a new value is added
to each time series: zero, if the time series does not ap-
pear,otherwhise, its value), we want to update the repre-
sentations and their error rates in our data structure. In
order to maintain a globally satisfying error rate, we need
to choose the representations that minimize this error. The
main idea is that a representation with a low error rate will
have higher tolerance to merging two of its segments (com-
pared to a representation with a high error rate). When
(s x n) > M we need to release blocks (segments) in order
to take into account the new values. Therefore, at step s,
for each new value:

1. Let r be the representation having the minimum local
error. Then r will be compressed (two of its segments
are merged);

2. E(r), the local error of r, is updated;
3. E(A), the global error, is updated.

4.2 Motivation and Generic Algorithm

Approximations based on a decaying factor have some
advantages. One of them is that they give a good preci-
sion for recent events. However, they also have some draw-
backs, such as being blind to important stream fluctuations.
Fraud detection, for instance, might need to access previ-
ous anomalies in the history. An anomaly is a salient event
and for security purposes it should not be merged with any
other data, even when it becomes old. Our goal is to give
more importance to salient events, whatever their age. We
believe that querying the history of a streaming time se-
ries set must benefit from a model that carefully distributes
the precision on periods that require it. Figure 1 gives the
generic algorithm of GEAR. Without loss of generality, we

Algorithm GEAR

In: DS, a data stream of n time series and M, the number
of segments allocated to the model.

Out: at any step s, R[l..n], is the set of segments rep-
resenting DS with an optimal global error. RJ[i].last and
RJ[i].penultimate are the last and penultimate segments of
RJ[].

1. While (s x n) < M, assign one segment to R for each
new value of DS

2. Build C, the heap storing the costs of merging seg-
ments in R. // C[1] is the lowest value in C.

3. When a new set of n values arrives (at each step s),
Vi € [1..n]

(a) Buf fer = a segment assigned to DS[i][s]
(b) ErrorNew = ErrorEval(R][i].last, Buf fer)
(¢) If (ErrorNew < C[1])

i. Merge the last segment of R[] with Buf fer
i. Update the error of R[i] with ErrorNew

(d) Else, let t and ' be the couple of segments in C[1]

i. Merge t and ¢’ into ¢” and update the error
of the corresponding representation
ii. Update C with the costs of merging ¢ with
the previous and next segments
iii. Add Buf fer to R[i]

4. Update C with the cost of merging R[i].last with
R[i].penultimate
5. remove C[1]

Figure 1: The generic algorithm of GEAR.

consider that we use a heap (i.e. C) to sort the couples of
segments by increasing order of merging errors. The space
complexity of GEAR is O(M). Actually, in order to obtain
the result described in 4.1, we need to evaluate for a cou-
ple of segments in a given representation the new error that
would result from merging these segments. In a streaming
environment each optimization of this evaluation should be
much appreciated.

We compare PLA and MITH (our new representation,
based on the middles of the considered segment), when used
to evaluate or merge a couple of segments. [8, 4] give for-
mulas for calculating the PLA of two segments in O(1) and
for calculating the new error in O(1). Section 5 will give the
details of our approach for calculating the MITH representa-
tion of two segments and how to evaluate the corresponding
error. Therefore, each of the representations presented in [8,
4] and 5 might be used when merging two segments and up-
dating the error of the corresponding time series in GEAR.

5. MITH: A NEW REPRESENTATION OF
TIME SERIES

Even if the merging operation is linear in time, a difference
in execution times due to less operations might be crucial
for data streams. In this section we propose a novel rep-
resentation with a innovative idea based on the following
observation: when the cost of merging two segments is low,
the PLA line crosses the segments near their middles.

Despite its natural and instinctive characteristics, no pre-

vious works have exploited this principle.

We consider the case of the linear regression model
Y = a.X + 3, where « is the slope and § is the intercept.
In order to estimate o and (3, we have ((¢,4:),i=1,...,5) a
time series on set S = {i|i = 1,...,s}. Let j be the means
of the sample (j1,...,4s), then j = >_5_ ji/n. The idea of
least squares estimation is to minimize the sum of squared
errors: E(S) =37 el =57 (ji — a.i — B)?

A linear fit for a time series j; for ¢ € [1, s] is the linear re-
gression equation Y = a.X + 3. The parameters a and § are
chosen to minimize the residual sum of squares E(S). These
2o (=D (Gi—9)

5 (i—1)?
(s—1)s(s+1)/12 and

parameters can be obtained as follows: a =
and 8 = j —a.i where Y7, (i—i)® =
1= (s+1)/2.

51 Merging Two Segments

In the traditional PLA of a time series, each segment low-
ers the sum of squared errors between the representation
and the original values. Our proposal is to give a rather
intuitive, though effective, approximation. MITH, our new
representation, is the line which cuts the original two seg-
ments through their middles. This representation has two
main advantages:

1. It does not require to calculate numerous variables,
like the ones expressed in [8, 4], thus allowing a fast
computing;

2. It has a natural interpretation. Even if it does not
lower the sum of squared errors, it is easy to see that
our representation gives a very reliable approximation
of the original data. Actually, sum of squared error val-
ues are used when one wants to set a high penalty for
being further away from outliers, which is not always
the desired result when representing the original values
of streaming time series. As we will show, represen-
tations obtained by MITH and PLA are comparable.
However, we want our proposal to be less sensitive to
outliers. Therefore, regarding the error, the represen-
tation of MITH is a good compromise between £; and
L2 norms. Actually, our experiments will show that
MITH has better results when the error is measured
in £7 norm.

Let (i1,71) and (i2,j2) be the middle points of S; and So
with 71 = (k+1)/2 and 42 = (s + k + 1)/2. The equation
of segment S is obtained by solving the following set of lin-
ear equations: ji = a1 + 8 and j» = a.iz + 3 where
a = ﬁ zj, 8= % and the new middle point (3,)
of S is given by i = (s +1)/2 and j = a.i + 3. It is straight-
forward to demonstrate that j can be computed by j =
M The previous formula proves that the middle
point of S is the mean point of S and verifies: i = .37 i
and j = % S5 1 ji An interesting property of that point is
that it belongs to the linear regression line. The relation be-
tween the slopes of PLA and MITH lines can be measured
by:

oFLA kz - k.afLA 4
s3—s
3k(s — k) GMITH
2 _1 °

(s —k)® — (s — k).af“

s3 —s

5.2 UpdatingtheError Rate

THEOREM 1. The error of MITH on segment S = S1US2,
approximating all the original data points, can be calculated
recursively from the weighted errors of segments S1 and Sa
and the slope o of segment S.

Proof

The sum-of-squares error of S can be decomposed into
two parts: E(S) = Zle(ji —i— B+ Zf:k+1(ji —o.i—
B)2. The first part of this decomposition can be rewritten
as follows: Zle(ji —a.i—B—(a1.i+ B1) + (1.4 + B1))?
= Y0 (i — anii = B1)* + (i + B — i — B) + 2(ji —
ari—p1)((e1 —a).i+ (81 = B))

The first sum of squared values in the first line of the
previous rewriting, represents the sum-of-squares error of Sp
with MITH. The second part represents the error between
the MITH line of segment S; and the MITH line of the
segment S computed on segment S;. Like the PLA model,
MITH verifies that Zle(ji — a1 — f1) = 0 and the last
part must be simplified by: A(S1/a) = 2(c1 —a) 3, (ji —
1.1 — ﬁl)l = 2(0&1 — Oc) Ef:l 1.0i — k,‘(Oé1 — Oé) (a1(2k+ 1)(k+
1)/3 = Bi(k +1))

E(S) must be written as follows: E(S) = E(S1)+E(S2)+
E(S1 U S2) + A(S1/a) + A(Sa/a). The computation of
A(S1/a) or A(S2/a) depends on the slope of the new seg-
ment S and the values §(S1) = Zle i.j; and
(S2) = Y. g1 BT Therefore a linear relation
0(S) = 6(S1) + 6(S2) exists and § is maintained for each
segment. Furthermore, A(S1/a) can be easily computed as
A(S1/a) = —a.0(S1) + A(S1) where A(S1) depends only on
the segment S1 and we obtain: E(S) = (E(S1) + A(S1)) +
(E(S2) + A(S1)) + E(S1US2) —a(d(S1) +6(S2))

6. EXPERIMENTS

This section is intended to evaluate the efficiency of our
approach in a series of experiments. We have implemented
GEAR with both PLA and MITH representations. We have
also implemented a wavelet algorithm and a TTW algorithm
in order to compare GEAR to the most important existing
techniques. A description of the TTW technique can be
found in [4]. Though many time series datasets are avail-
able for download, they generally contain only one series
for each dataset. Actually, it is very difficult to find one
dataset made of a large number of time series correspond-
ing to the same “system”. Furthermore, it is not reasonable
to mix series related to “weather”, “finance” and “space ob-
servation” (for instance) in order to simulate a dataset of
multiple time series. In fact, we need to work on calibrated
datasets having multiple time series (for instance the values
of 100 stocks on several years). We evaluated our algorithms
on two real-world datasets. The first dataset (NYSE in the
rest of this section) has been built thanks to data down-
loaded from http://icf.som.yale.edu/nyse. It contains
134 times series, each made of 804 values corresponding to
the price and dividend information on NYSE stocks from
1815 to 1925. The second dataset (WEB in the rest of this
section) comes from the Web access logs of Anonymized Lab.
We have collected one year of usage in these files for a to-
tal of 14 Gb. A first preprocessing aimed to extract the
top frequent URLs from this dataset. We found 223 URLs,
with a minimum support of 1%. Then, we have reported in

our WEB dataset the fluctuations of the requests on these
pages with a jumping window of size 1000. In other words,
each time series is updated every 1000 requests and the new
value corresponds to the number of requests to the URL rep-
resented by that time series. To summarize, we have tested
our method on datasets corresponding to 134 and 223 time
series (357 time series in total).

GEAR (MITH and PLA versions) are implemented in
Java. The experiments are performed on a standard ma-
chine equipped with 2 Gb memory and a Pentium 4 proces-
sor operating at 2.2 Ghz. Our algorithms and datasets are
available on request and all our experiments can be repeated.

6.1 Comparing MITH to PLA

In this first set of experiments we evaluate, on both datasets:

e the impact of MITH on the average error at each step;

e the difference in terms of execution between the MITH
and PLA versions of GEAR.

)
=

—MITH i

Average error
S [e]
=
T |
=3
-x——‘—
%
<§

uo -
w
=
=
=z
T

=
=

~ 0 W N O W O M~ - O W ND
N 0 O ~~ M~ 0 0O O 0 — N N 9 T =

rrrrrrr N N NN NN NN
Values
513
c
[ON] —MITH .
v --—-PLA i
(o)) 5 I A
g1,1 A T ;‘ﬂ‘{ i
I il [t "y
z T H i \
1|

iy v‘.x"l\ f L il]
O O A M il
VEL V\NW KN V\J\/ V\NW

06 T

o

i}
:f;-;
5-1_

0,5 T T T T T T T

— M B o e D W T S W o
DO W DN D P ® MO T = o N o= o
- - — &— — = ™ ™ ™ & & ™~ & &N & &~

Values

Figure 2: Step by step average error of MITH and
PLA on NYSE (top) and WEB (bottom) datasets.

Figure 2 shows a sample of the average error of MITH and
PLA in the GEAR framework for NYSE (top) and WEB
(bottom) datasets. The error is computed as follows: Vi €
[1..slerr[i] = averageErroriZT (R[j][i]) where R[j][] is the
error (absolute value) between the representation of the *"
record in time series j and its real value in the dataset. In
other words, we measure the error in £;. Obviously, in Lo
the error of MITH cannot be better than that of PLA. On
the other hand, we consider the £ error as very important
since it is less sensitive to outliers. Therefore, for each time
unit, we know the average error of a representation for the

M | Mith/NYSE | RL/NYSE | Mith/WEB | RL/WEB
4000 2646 2863 1729 5652
1500 2756 2998 1480 5793
5000 2574 3000 1800 5906
5500 2637 3063 1624 5965
6000 2714 3049 5082 6024
6500 2697 2933 5069 6229

Table 1: Execution times of MITH and PLA on
NYSE and WEB datasets with varying number of
segments (M).

n time series at that time. For NYSE, the average errors
of MITH and PLA are very similar. The effectiveness of
MITH is illustrated on the WEB dataset. For this dataset
MITH has an excellent average error compared to that of
PLA. Subsection 6.2 gives the average global errors of both
representations and MITH allows GEAR to obtain a very
low global error (0.88) compared to PLA (2.53). This is due
to the fact that MITH is not intended to minimize the sum
squared error. therefore, our goal to lower the £y error is
better achieved by MITH (as illustrated by Figure 2).

Table 1 shows the execution times of GEAR when utiliz-
ing MITH and PLA for both datasets. The response times of
MITH are systematically lower than those of PLA. The ex-
planation simply relies on the mere formulas used by MITH
(given in Section 5) compared to the complex formula of
traditional PLA.

6.2 Comparing GEAR to TTW and Wavelets

In this section, our goal is to compare the error of GEAR
with those of TTW and wavelets. Table 2 gives the global
average error of each representation, compared to the origi-
nal data. For each representation the average error at each
step is computed as described in subsection 6.1. Then we
compute the mean value for the average errors vector. Each
representation (MITH and PLA) is given a total number of
5000 segments to approximate the time series. The repre-
sentation by means of TTW requires 11 segments for NYSE
and for WEB (this number is given by the logarithm of s,
the number of values for each time series, in the dataset).
The representation by means of Haar wavelets is given a
number of segments corresponding to that of GEAR (i.e.
M segments that are divided into M /n coefficients given to
each time series, with n the number of time series).

Table 2: Global errors of TTW, Wavelets and GEAR
with PLA and MITH

WEB NYSE WEB NYSE
TTW 17.24 2.45 PLA 2.53 0.86
Wavelets 14.05 1.56 MITH 0.88 0.87

7. CONCLUSION

In this paper we have presented (1) GEAR, a framework
for summarizing streaming time series and (2) MITH an in-
novative representation of time series allowing fast comput-
ing. GEAR is able to manage numerous time series of any
length thanks to its error balancing principle. This principle
allows each representation of a time series to obtain or to

give back segments. MITH is compared to PLA both with
formal and experimental studies. Our experiments assess
the relevance of this proposal. First, GEAR allows a bet-
ter handling of multiple streaming time series by lowering
the average global error. Second, approximation algorithm
based on MITH has fast response times compared to the
same algorithm based on PLA. Furthermore, in our exper-
iments, MITH shows a gain in precision when measuring
the global error in £1. Possible future tracks include 1) the
study of a fast error approximation based on surfaces and
the utilization of MITH for queries and 2) to study the data
configurations where the precision of MITH is better than
PLA.

8. REFERENCES

[1] E. Airoldi and C. Faloutsos. Recovering latent
time-series from their observed sums: network
tomography with particle filters. In KDD’04, pages
30-39, New York, NY, USA, 2004. ACM.

[2] Y.-A. L. Borgne, S. Santini, and G. Bontempi.
Adaptive model selection for time series prediction in
wireless sensor networks. Signal Process.,
87(12):3010-3020, 2007.

[3] J. H. Chang and W. S. Lee. Finding recent frequent
itemsets adaptively over online data streams. In
KDD’03, pages 487-492, 2003.

[4] Y. Chen, G. Dong, J. Han, B. Wah, and J. Wang.
Multidimensional regression analysis of time-series
data streams. In VLDB, 2002.

[5] H. Cheng and P.-N. Tan. Semi-supervised learning
with data calibration for long-term time series
forecasting. In KDD’08, pages 133-141, New York,
NY, USA, 2008. ACM.

[6] E. Cohen and M. Strauss. Maintaining time-decaying
stream aggregates. In PODS ’03: Proceedings of the
twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
223-233, 2003.

[7] J. Lin, E. J. Keogh, S. Lonardi, and B. Y. chi Chiu. A
symbolic representation of time series, with
implications for streaming algorithms. In DMKD,
pages 2—11, 2003.

[8] T. Palpanas, M. Vlachos, E. J. Keogh, and
D. Gunopulos. Streaming time series summarization
using user-defined amnesic functions. IEEE Trans.
Knowl. Data Eng., 20(7):992-1006, 2008.

[9] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming
pattern discovery in multiple time-series. In VLDB,
pages 697-708, 2005.

[10] B.-K. Yi and C. Faloutsos. Fast time sequence
indexing for arbitrary lp norms. In VLDB, pages
385-394, 2000.

[11] Y. Zhao. Generalized dimension-reduction framework
for recent-biased time series analysis. IEEE Trans. on
Knowl. and Data Eng., 18(2):231-244, 2006. Senior
Member-Shichao Zhang.

[12] Y. Zhu and D. Shasha. Statstream: statistical
monitoring of thousands of data streams in real time.
In VLDB’02, pages 358-369. VLDB Endowment, 2002.

