
Interacting with Computers xxx (2010) xxx–xxx
Contents lists available at ScienceDirect

Interacting with Computers

journal homepage: www.elsevier .com/locate / intcom
Increasing the expressive power of task analysis: Systematic comparison
and empirical assessment of tool-supported task models

Sybille Caffiau a,b,⇑, Dominique Scapin b, Patrick Girard a, Mickaël Baron a, Francis Jambon c

a LISI, ENSMA, Téléport 2, 1 avenue Clément Ader, 86961 Futuroscope Cedex, France
b INRIA, Domaine de Voluceau, Rocquencourt, B.P.105, 78153, Le Chesnay, France
c LIG/MultiCom, University of Grenoble, Bâtiment C, B.P. 53, 38041 Grenoble Cedex 9, France

a r t i c l e i n f o
Article history:
Received 26 June 2009
Received in revised form 3 June 2010
Accepted 9 June 2010
Available online xxxx

Keywords:
Task models
Tool-supported task modelling
Empirical assessment
0953-5438/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.intcom.2010.06.003

⇑ Corresponding author at: LISI, ENSMA, Téléport
86961 Futuroscope Cedex, France. Tel.: +33 5 49 41 1

E-mail addresses: sybille.caffiau@ensma.fr (S. Caffi
fr (D. Scapin), girard@ensma.fr (P. Girard), baron@e
Jambon@imag.fr (F. Jambon).

Please cite this article in press as: Caffiau, S., et
tool-supported task models. Interact. Comput. (
a b s t r a c t

Task analysis is a critical step in the design process of interactive systems. The large set of task models
available today may lead to the assumption that this step is well supported. However, very few task mod-
els are tool-supported. And in this latter category, few of them are based on a clear semantics (in this arti-
cle, the word semantics is used with the following definition: ‘‘the meaning of a word, phrase, sentence,
or text’’ from Compact Oxford English Dictionary�). This paper focuses on tool-supported task models
and provides an assessment of the features that have been considered as essential in task modelling. It
compares the different tool-supported methods, and evaluates the actual use of these features in K-
MADe, a tool aimed at contributing to the incorporation of ergonomics into the design process of inter-
active systems through activity and task analysis. The originality of the K-MADe tool is to be based on a
model whose expressive power lies on computable syntax while trying to be usable by every modelling
knowledge designer. This facilitates task description and analysis, but also model query and the migra-
tion within software engineering models and software lifecycle steps. Evaluation results demonstrate
the usefulness of an increased expressive power for task models, and their acceptance by users. They also
enlighten some weaknesses in the K-MAD method and suggest further improvements.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The benefits that well-designed interfaces bring to users are lar-
gely acknowledged today (Shneiderman and Plaisant, 2009).
Across domains (life-critical, industrial, home and entertainment,
collaborative,. . .) and beyond the functional point of view, it is
becoming more and more important to take the usability point of
view into account. Effectiveness, efficiency and user satisfaction
must be considered early in system design in order to increase
the acceptance of interactive applications. In a user-centered ap-
proach, studying the user activity – also known as task modelling
or task analysis – may be used to support user needs (Norman
and Draper, 1986; Dix, 1991). User-centered criteria such as task
conformance and task coverage (Dix, 1991) have been elicited.
Consequently, task analysis has acquired more and more value, to-
gether with the enrichment of task models and analysis methods.

Initially developed by ergonomists and usability specialists to
evaluate user activity, task modelling is currently often included
ll rights reserved.

2, 1 avenue Clément Ader,
3 16.
au), Dominique.Scapin@inria.
nsma.fr (M. Baron), Francis.

al. Increasing the expressive po
2010), doi:10.1016/j.intcom.20
in software design process studies. Several contributions have tried
to link task models to software models such as UML (e.g. Reffye
et al., 1988). One can assume that task analysis could be part of glo-
bal requirement analysis and could thus be considered to be a
more precise description of some parts of user requirements as
parts of task models are clearly defined. Attempts have also been
made to generate parts of software from task models (Mori et al.,
2004). Dynamic aspects of task models could also be described in
process modelling techniques, such as BPMN1 for example.

However, this success is mainly limited to research, and task
models are not extensively used in actual software design. As for
UML notation several years ago, task modelling suffers from a rel-
ative lack of reliable tools. Following the definition of Minsky (Min-
sky, 1988), a model of something is useful when it helps their users
in resolving questions they ask themselves about that thing. In the
meantime, problem solving requires the model semantics to be
clear. One way to reach this point is to be able to use tools that en-
force the model rules. Ensuring consistency of models, allowing
dynamic exploration such as simulation, giving the opportunity
to query and compare designs, facilitating links with other models,
all these are things a tool might do, founded on a non-ambiguous
1 http://www.bpmn.org/.

wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003
mailto:sybille.caffiau@ensma.fr
mailto:Dominique.Scapin@inria.fr
mailto:Dominique.Scapin@inria.fr
mailto:girard@ensma.fr
mailto:baron@ensma.fr
mailto:Francis.Jambon@imag.fr
mailto:Francis.Jambon@imag.fr
http://www.bpmn.org/
http://dx.doi.org/10.1016/j.intcom.2010.06.003
http://www.sciencedirect.com/science/journal/09535438
http://www.elsevier.com/locate/intcom
http://dx.doi.org/10.1016/j.intcom.2010.06.003

2 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx
semantics it might exploit, to allow design verification and
validation.2

Unfortunately, among the relatively high number of studies on
task modelling, very few tool-supported task models have been de-
signed, and only one has tried to exploit a well-described compo-
nent semantics (Paterno, 2004). Furthermore, when tools do
exist, they generally do not implement the whole model.

This study is a part of a more global work on interactive appli-
cation design based on task-based approaches. Our goal in this pa-
per is to evaluate the usefulness of task model features for users
involved in interactive system design. Based on our assumption
that tools are necessary for using models, we first selected the
most complete available tools, and made up both (1) a systematic
and feature based comparison of tool-supported systems, and (2)
an empirical assessment of the chosen model and tool.

This paper is organized as follows: Section 2 analyzes the exist-
ing task models that are tool-supported, in order to highlight their
strengths and weaknesses. In Section 3, the K-MAD (Lucquiaud,
2005) model and the K-MADe tool (K-MADe, 2006) are briefly de-
scribed, and compared with the other methods and tools, pointing
out the different concepts that are really implemented in the tool.
Sections 4 and 5 report the evaluation of the method. This evalua-
tion is divided into three parts: (1) an observation of the presence
of the concepts in relation with the weaknesses reported in Sec-
tion 2, (2) a case study conducted on several applications in order
to put the tool in practice, and (3) an empirical study where a par-
ticular attention is paid on actual usage of new features. Then, the
last section discusses the main results and prospects of this
research.
2. Comparative study of tool-supported task models

The (descriptive) representations/notations used for analysis
are usually identical to the (technical) method output representa-
tions/notations. Some methods have a translation step so that they
can output different representations that may be used in a soft-
ware engineering method, such as those supported by the UML
notation (Object Management Group, 1997).

One aspect of HTA (Annett, 2004; Annett and Duncan, 1967;
Shepherd, 1989; Shepherd, 1995) that makes it a rather simple task
analysis method is that it has only one single analysis representa-
tion. Most task analysis methods have a relatively small number of
steps and representational forms, such as Scenario-Based Design
(Carroll, 2000) and ConcurTaskTrees (Paterno, 2004). The coverage
of all analysis steps (as TOOD Abed et al., 2004; Mahfoudhi et al.,
2001) implies an important learning cost to use it. Methods such
as GOMS (John and Kieras, 1996a,b; Kieras, 2004) and UAN (Hix
and Hartson, 1993) are partial task analysis methods in that they
deal only with the later steps of what a task analyst does.

In software engineering, different steps use one or more repre-
sentations (Diaper, 2004). For instance, Data Flow Diagrams (DFD),
Entity Life Histories (ELHs), Entity Relationship Diagrams (ERDs),
and Process Outlines (POs) are used in Structured Systems Analysis
and Design Methodology (SSADM), in the same way as Use Cases,
Activity Diagrams and Interaction Diagrams are representations
used in UML. It would therefore seem advisable for task analysis
output representations to be in the form of one or more of such
software engineering representations or to be easily translated into
them. However, many task analysis methods (Balbo et al., 2004)
have been developed by researchers with a psychological back-
2 We use in this paper the classical software engineering (adapted from [IEEE-STD-
610]) distinction between verification (verify that a clearly specified problem is
solved properly) and validation (ensure that what is done meets the actual
requirements). Verification is generally made by semi-automatic or automatic tools,
while validation requires human interpretation.

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
ground and focused mainly on the first steps of user interface de-
sign, so their outputs often do not integrate well with those from
software engineering.

These task analysis methods generally have a very wide cover-
age and usually share common features (Limbourg and Vander-
donckt, 2004). Many methods (input–output diagrams, functional
flow charts, Petri nets, graphs, etc.) are available; some of them
make it possible to describe and formalize tasks carried out with
software tools (for instance Limbourg and Vanderdonckt, 2004;
Scapin and Bastien, 2001; Paternò et al., 1997). Beside expressive
power, validity and usability, essential issues concern the paths be-
tween the various models of analysis, design, and development, the
used languages, as well as the associated tools and services.

Two major kinds of classifications have been made among task
methods. In the first one, Balbo and coworkers (Balbo et al., 2004;
Jambon et al., 2001) propose a comparison to help designers to
choose a notation adapted to their needs. From the study and the
use of several task models, they propose a taxonomy that follows
six topics: goal, usability for communication, usability for model-
ling, adaptability, coverage and extensibility. The second classifica-
tion follows a very different approach. The comparison of task
model components may lead to building a meta-model. Limbourg
has followed this approach in Limbourg and Vanderdonckt
(2004), and has compared many models through their meta-mod-
el. This work thus aims at identifying common concepts in order to
connect them together. A meta-model approach allows the com-
munication and transformation between task models (to exchange
data, for example (Limbourg and Vanderdonckt, 2004). In relation
to the large range of models these two approaches demonstrate
how large the task modelling domain is. However, their features
have not been evaluated in any detail yet.

In this paper we also propose a comparison of concepts of some
task models. We did not use a meta-model based approach because
we concentrated on the semantics each model expresses. We pre-
ferred discussing each concept, in order to be sure that their mean-
ing in each model could be compared. Recently, we used a meta-
model approach in another work (Caffiau, 2009).

In order to improve knowledge exchanges between persons
with different skills that contribute in the interactive application
design, task analysis proposes to express data around tasks. In or-
der to perform task analysis, designers use several notations. Some
of them are ‘‘generic’’ ones: they do not address task analysis spe-
cifically but they may be used for task analysis (BPMN BPMN 2.0,
2010). As they do not address task analysis, they cannot be used
to perform any verification on the task analysis semantics.

Some models represent a technical viewpoint on tasks and activ-
ities. For example, the Tibco business studio tool was developed for
business and IT users (Tibco Business Studio, 2010).

In the user-centered design approach, one important issue is the
communication between domain experts (users of the designed
application) and designers (developers, human factor special-
ists. . .). Some other models aim at bridging the gap between both
expert types. We consider two different approaches. Firstly, several
tools allow designers to derive information from the task model. For
example, with this objective in mind, GOMS (John and Kieras,
1996b) proposes a temporal analysis of activities (according to ex-
pressed tasks, designers can determine execution time for a sce-
nario). Secondly, some models are developed as communication
support of the application design to improve user-designer ex-
changes. This paper presents a study of the last task model type.
It proposes a study on the structure of task models developed to im-
prove user-designer communication in a user-centered application
design approach. As our goal is to carry out a practical evaluation,
we decided to focus on tool-supported task models. This approach
may be viewed as limited. It is nevertheless the most pragmatic,
accurate and reproducible approach we could use. Among the large
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 3
number of task model languages proposed in literature, few of them
have a clear semantics. In this category, articles do not usually de-
scribe the complete semantics and syntax of the models. As a con-
sequence, some of their characteristics are ambiguous. Moreover,
their authors have gradually improved most of these task models,
and their accurate comparison requires a huge version tracking ef-
fort: their semantics usually vary according to publications.

Conversely, tool-supported task models, with or without expli-
cit definition of their semantics, can be assessed, including through
user testing. These tools could thus be considered as the ‘‘iron bird’’
of the semantics of the model. The tools are instant snapshots of
the semantics of their models at a tangible moment in the evolu-
tion of these models. To summarize, tools have both the advantage
of freezing the semantics of the models, and of accurately express-
ing the semantics of these models.

Moreover, participants of this evaluation are university stu-
dents (from the University of Poitiers). Due to this evaluation con-
straint, we selected task model tools with the following
constraints:

– Graphical: assuming that a graphical interface improves the use
– Documented: by user manual (such as K-MADe K-MADe, 2006),

video tutorial (such as IBM IBM Task Modeler, 2010), modelling
examples (such as TKS TKS, 2010 model for ADEPT (Johnson and
Johnson, 1993)

– Free and downloadable: we did not include some tools presented
in some papers (Dittmar et al., 2005; Gamboa and Scaplin,
1997; Biere et al., 1999; Heinrich et al., 2007; Molina et al.,
2005) when we did not find the website to download it or if
the tool was not free (such as the taskArchitect tool (TaskArchi-
tec, 2010) which is free only to express 20 tasks at most).

We found five candidates3 for testing: CTT (Paternò, 2001)
(CTTE), Diane+ Tarby and Barthet, 2001 (TAMOT), GTA Van der
Veer, 1996 (EUTERPE), an Eclipse plug-in (IBM task modeler) IBM
Task Modeler, 2010 and a task analysis environment (AMBOSS)
AMBOSS, 2008 that can be used for task model design.

2.1. Rapid description of tool-supported task models

We will briefly present task models and their associated tools
prior to comparing them in the next section.

2.1.1. CTT (CTTE)
ConcurTaskTree (CTT) is defined by its authors as a notation for

task model specifications to overcome limitations of notations
used to design interactive applications. Its main purpose is to pro-
vide an easy-to-use notation, which represents different temporal
relations at the same abstraction level and which can be used by a
task modelling novice. CTT is based on a hierarchical structure of
tasks represented by a tree-like structure. Each task is displayed
in a graphical tree-like format. Temporal relationships mainly de-
rive from LOTOS operators (ISO Systems, 1984; Paternò and Facon-
ti, 1992) which are able to express temporal relationships among
tasks at the same abstraction level.

ConcurTaskTree Environment (CTTE) is its associated tool,
which is largely used in the academic area. CTTE handles two con-
cepts: tasks and objects.

2.1.2. Diane+ (TAMOT)
Diane+ is a full methodology, which attempts at bridging the

gap between software engineering and human factors. As CTT,
3 Some of them, like TOOD, were not selected for evaluation as they were no longer
supported.

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
Diane+ focuses on the design of interactive applications. Diane+
integrates some characteristics from general ergonomics and cog-
nitive psychology and also intervenes in the software development
life cycle. Moreover, Diane+ supplies a specific model called Diane+
H for the task analysis representation.

Diane+ is a hierarchical task model composed of a set of opera-
tors. The representation is different from the CTT representation:
Diane+ uses boxes to specify task sub-levels. TAMOT is its associ-
ated tool. Diane + H handles only one concept: tasks.

2.1.3. GTA (EUTERPE)
Groupware Task Analysis (GTA) is a task analysis method that is

intended for modelling complex environments where many people
interact with interactive systems. Two tools are associated with
this model: GTA tool (no longer supported) and Euterpe. This last
tool does not include any pre-defined scheduling function. GTA
handles five concepts: tasks, roles, agents, objects and events.

2.1.4. IBM task modeler (IAWB)
The IBM Task Modeler (named since 2006 as IBM information

Architecture Workbench (IAWB)) is an Eclipse-based tool. It is used
for modelling human activities as hierarchical task trees. It can be
used to produce several task analysis diagrams such as hierarchical
task analysis (HTA) models or role and goal (RAG) diagrams. We
studied its use to perform hierarchical task analysis models. IAWB
was developed for creating ‘‘expressive diagrams that inform and
engage design stakeholders’’ (IBM Task Modeler, 2010). IAWB han-
dles three concepts: tasks, objects and roles.

2.1.5. AMBOSS
We did not find papers on the task model for the AMBOSS tool

(Giese et al., 2008). We therefore have considered models and tools
as a whole and we have sometimes inferred the model from the
tool. The AMBOSS tool aims at assisting task analysts in designing
their task models especially for safety critical systems. It provides
several views dedicated to specific aspects.

The tasks are hierarchically composed of sub-tasks according to
scheduling decomposition operators. AMBOSS handles four con-
cepts: tasks, objects, roles and barriers. Barriers are introduced to
express the protective mechanism of tasks. For example, in order
to complete an identification task, a barrier may express a condi-
tion on the validity of the entered password (for example: creation
of a barrier ‘‘password_OK’’). During the simulation of the task
model, the designer indicates if the barrier is triggered or not
(the task is performed only if the barrier is triggered).

2.1.6. Discussion about models and tools
Prior to comparing these five tools in detail, two remarks must

be made. Whilst every model is hierarchical, the task decomposi-
tion is not the same. The differences are presented below. In addi-
tion, by using these tools, differences can be identified for concept
definition despite the vocabulary they use. These differences seem
to be due to both the different origins of the models and to the goal
of their designers. Even if the terms used in the tools are not the
same, we considered what they represent independently from
their terminology. Finally, we observed some distance between
models and their implementation in tools. In the remainder of this
paper, we study only the models from the point of view of their
tools by only considering the implemented models (in the tools)
as the used models.

2.2. Comparing expressiveness and querying of task model through
their tools

In this section, we present a comparison of the notations and
tools selected above: CTT (CTTE), Diane+ (TAMOT), GTA (Euterpe),
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

4 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx
IBM information Architecture Workbench (IAWB) and AMBOSS.
Our final goal was to evaluate the expressivity of the models in real
use. Two points were of great importance here: (1) the semantics
of these models was not explicitly given by their authors, so, it
was sometimes difficult to find out the actual meaning of parts
of the models; (2) we chose models that own a graphical tool,
which is available to use in an evaluation stage. So, when the nota-
tion semantics was not clear, we interpreted it from the tool imple-
mentation. We compared two main points of the models: the
expressive power of each of their components and their querying
power.

2.2.1. Expressive power
The expressive power defines the capability of the model to ex-

press user activity. Expressed activity may be used as part of user
requirements, as the starting point of user-centered application de-
sign. This capability is assessed through the syntax of task models.
The comparison of the five tools: CTTE, TAMOT, Euterpe, IAWB and
AMBOSS highlights four different components: task, objects, events
and users. The expressive power of each of these components is
compared for all five tools.

2.2.1.1. Expressive power of tasks. Tasks are defined by several com-
ponents. Each of them plays a particular role. We identified three
different roles. The first one is task definition (information and char-
acteristics). The two others specify the scheduling. The scheduling
characteristics follow two levels. First, the scheduling at the task
level (local scheduling) is composed of characteristics that concern
the task itself. Secondly, the scheduling at the task model level is
composed of scheduling characteristics with implications on sev-
eral tasks (global scheduling). For each category a list of every char-
acteristic is given and their presence/absence in each task model
are stated.

2.2.1.1.1. Task information and characteristics. This category
groups two different entities: the informational task attributes
(attributes that add information about the task, but which do not
characterize it) and the task characteristics (except for scheduling
characteristics). The informational task attributes are: the name,
the number (unique identifier of the task), any related remark,
the goal (or objective), a media support and the room (place
where the task may be performed). The first six rows of Table 1
detail these informal task attributes for each tool. The set of task
characteristics is composed of the executant (who performs the
task), the significance (the importance of the task), the frequency
(how many times the task is usually performed) and the platform
(what specific target the task is performed on). One can notice that
informational task attributes are very subjective: no precise defini-
Table 1
Expressive power of task information and characteristic.

Tools CTTE TAMOT Euterpe

Name String String String
Number – – –
Remark String String String
Goal String – String
Media – – String Path
Room – – –
Executor Category: user, system,

interaction, abstract
Style: manual,
automatic, interactive

Type: complex, u
system), interact

Significance – – Relevance: norm
dangerous, optio

Frequency High, medium, low, ø – –
Platform PDA, Desktop, Mobile,

Voice
– –

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
tion is given for them. In contrast, the characteristics have usually
strong expressed semantics. Attribute values are often pre-defined
in the tools, which allows attribute computing. The models identify
these characteristics by using different words even if they repre-
sent the same concept. For example, the place where the task
can be performed is named Room in AMBOSS and Location in IAWB.
This vocabulary difference is explained by the situation of the ini-
tial model creation (Limbourg and Venderdonckt, 2004). The sec-
ond part of Table 1 describes for each tool: the name used to
identify the characteristics, when it differs from the concept name
(in Italic); and the pre-defined values.

2.2.1.1.2. Discussion: the expressive power of task information and
characteristics. The five tools define as common task data: the
name, the related remark and the executor. While the name
and the remarks are expressed using non-constrained texts
(String), the task executor is defined from existing values in the
tools. IAWB expresses task executors by two components: the type
(Cognitive, Communication, Physical, Other) and the Allocation
(User, System). Even if the five tools use different terms to repre-
sent the different executors, we can define four executor types.
When the task executor is known, the task can be performed by
a human (Human), by the system (System) or as a result of the reac-
tion of the system to human actions (Interactive). The last executor
type is the type used when task executor is not yet defined (Com-
posed). The existing executors may be different for each tool (see
Table 2).

Interactive tasks (tasks triggered by user action and producing
system reaction) are not described in the AMBOSS task model. Its
tasks are composed of abstract tasks or task that are performed
by human or system only. These executor types stand for a low
abstraction level of activity description.

In Euterpe, a task may be created without any executor. More-
over, even if it is possible to define whether a task is composed or
elementary, this tool does not distinguish tasks performed by hu-
mans or by the system. Finally, when a task is interactive, the inter-
action can be indicated from the interactions defined by the
designer. In IAWB, tasks are not specified as composed task. How-
ever, a task type may be ‘‘other’’, which can be used to express a
non elementary task.

Some tools add the possibility to provide additional comments
about tasks with the addition of the goal of tasks (CTTE, Euterpe
and IAWB), a media support path (Euterpe) or the room where
the task is performed (IAWB and AMBOSS). Moreover, some char-
acteristics are also added: the significance of tasks (Euterpe and
IAWB), the frequency (CTTE and IAWB) and the platforms on
which the task is performed (CTTE). Addition of frequency and
platform characteristics in CTTE allows the use of CTT task models
IAWB AMBOSS

String String
Integer (automatically done) –
String String
Three Strings (Goals, Inhibitors, Motivation) –
– –
Locations (composed by strings) String

nit (user or
ion, ø

Type: Cognitive, Communication, Physical, Other Role:
human,
system

Allocation: User, System
al, critical,
nal, ø

Business critical (Boolean), Importance (five
value scale), Safety critical (Boolean)

–

Integer (five value scale) –
– –

wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Table 2
Executor types of the task model tools.

CTTE TAMOT Euterpe IAWB AMBOSS

Interactive
p p p p

–
System

p p p p p

Human
p p p p

(Cognitive, Physical)
p

Composed
p

–
p

–
p

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 5
to generate interactive interface prototypes (Paternò and Santoro,
2002). Unlike CTTE, we do not find any information on the use of
these added characteristics for the other two tools (Euterpe and
IAWB) except on their informative role.

This task information and these characteristics constitute task
description. No rules are established to define the task information
and characteristics during the task modelling process. For example,
for frequency characteristics, designers have to choose the fre-
quency level from a set. However, the choice of the value depends
on the designer’s appraisal. Moreover, few characteristics are de-
fined from pre-defined value sets (semantically understandable
by systems) and when they are, their semantics is not always clear,
which shows that semantics is not exploited by the tool. For exam-
ple, what is the significance of a task defined by system allocation
and cognitive type? These two reasons (lack of definition rules and
non-use of semantics) limit the use of characteristics by the tools.

Task models are used to create interactive applications and also
to help ergonomics specialists to detect dysfunctions (Balbo et al.,
2004). Task models thus ought to integrate concepts and notions
traditionally used in ergonomics. However, the existing task model
tools are closer to the HCI specialist needs than to those of ergo-
nomics specialists (Couix, 2007). For example, only the IAWB tool
introduces the task number as an attribute of tasks, which is used
to organize the tasks.

2.2.1.2. Local scheduling. The local scheduling attributes are the set
of task characteristics that influence the task scheduling of the task
independently of its sub-tasks. From the use of the tools, we iden-
tified six characteristics in this set: the duration of the task execu-
tion, the task optionality, the interruptibility, the iteration and
the cooperation.

The duration task attribute gets temporal information concern-
ing task execution. We split time information into two main types.
Firstly, duration indication (how long has task been performed?)
and secondly, an indication about the task execution time (when
does the task execution start? When does it finish?).

The optionality of a task indicates whether the task has to be
performed for the activity to be complete or not (then, it is an op-
tional task). A task can be optional for different reasons (task not
mandatory in the system process, task required only under some
conditions. . .) and its execution is dependent from user’s prefer-
ences (for example: completing an optional field in a form) or pro-
cess requirements (for example: adding paper to print is
mandatory only if the printer has run out of paper).

Defining a task as interruptible indicates that its execution can
be stopped or not.
Table 3
Expressive power of the task local scheduling.

Tools CTTE TAMOT

Duration 3 integers (min, average, max) –
Optionality Boolean Boolean
Interruptibility Operator –
Iteration Boolean Integer (min, max)
Cooperatible Boolean –

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
In order to notify that some tasks can be performed several
times, the iteration can be present as a task characteristic.

The last local scheduling attribute found in the study of tools is
the cooperation task attribute. This attribute is a part of the local
task scheduling because, in order to be performed, a collaborative
task requires all actors to be available.

In Table 3, for each tool, we indicate the type or the values used
to express these characteristics.

2.2.1.2.1. Discussion: expressive power of local task scheduling.
Only CTTE does not allow the definition of the duration using a
time measure. AMBOSS provides duration expression as a quadru-
ple (numbers of days, hours, minutes and seconds) and IAWB has
only one value of days or hours or milliseconds or minutes or
months or seconds or weeks or years. In CTTE and AMBOSS the
duration is composed of three attributes (in order to specify the
duration coverage (minimum, maximum, average) or the task
place in the activity scheduling (the start point, the finish point
and the duration of the task). However, the duration attribute
seems to be linked more to a particular scenario than to a descrip-
tion of activities.

CTTE indicates the interruptibility of the tasks, using operators
for CTTE. In CTTE, a task is interruptible if it can be suspended
when one of its sister-tasks is performed. Then, this tool considers
that interruptions are performed at pre-defined moments (unlike
phone call events for example).

Only two tools take into account the task iteration: CTTE and
TAMOT. While CTTE allows the addition of the iteration character-
istic to a task, the number of iterations cannot be specified. TAMOT
allows indicating the minimal and maximal number of task
executions.

Last, in CTTE, tasks may be defined as collaborative (i.e. several
actors can perform the task). This characteristic is necessary in the
CTTE task description because the CTT model recommends design-
ing one model for each actor of each activity. Then, the collabora-
tive task attribute allows linking the different actors modelled for
the same activity.

2.2.1.3. Global scheduling. This category concerns only the schedul-
ing operators. Prior to analyzing the expressive power of schedul-
ing operators (Table 4), we specify how they are used in the tools.
While CTTE, Euterpe, IAWB and AMBOSS decompose their tasks
into sub-tasks, thus building task trees, TAMOT uses boxes of tasks.
Moreover, only CTTE uses operators to link the sister tasks whereas
the other tools use parent–child links (decomposition operators).

In order to express the global scheduling, we identified four
operators and two types of interruptions. Interruption can be
definitive or not: interrupted tasks can continue their execution
once the interrupting task is completed (without cancelling) or
can be definitely interrupted (with cancelling). The operators are:
sequence (tasks are performed by analyst defined order), concur-
rence (the tasks are performed concurrently and can be performed
at the same time), no order (the tasks are performed in any order,
every task will be performed and only one task can run at a given
time) and choice (only one task is performed). Table 4 summarizes
the presence of scheduling operators in each tool.
Euterpe IAWB AMBOSS

– 1 integer 3x4 integers (duration, min, max) (H, D, M, S)
Not clear Not clear –
– – –
– – –
– – –

wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Table 4
Expressive power of scheduling operators.

Tools CTTE TAMOT Euterpe IAWB AMBOSS

Sequence
p p

–
p p

Concurrent
p p

–
p p

No order
p p

–
p p

Choice
p p

–
p p

Desactivation
p

– – – –
Interruption

p
– – – –

6 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx
2.2.1.3.1. Discussion: expressive power of global task scheduling.
In CTTE, some other scheduling operators allow the specifying of
information exchange. However, this indication is an informative
element that does not modify the global scheduling (two tasks
linked by the concurrent-with-information-exchange operator
have the same behaviour in the CTTE simulation tool as two tasks
linked by the concurrent operator). Therefore, we do not distin-
guish between both types of scheduling operators in our compari-
son. In IAWB, some other scheduling operators are defined. These
operators are the four main variations. They express the possibility
or not to perform all sub-tasks (that express optionality).

Scheduling operators do not exist in the Euterpe model. The
links between tasks only indicate that a task is composed of other
tasks. Scheduling operators may be defined through a label on the
links between tasks. Due to this definition type, the tool cannot
interpret them and then, cannot exploit their semantics.

CTTE, TAMOT, IAWB and AMBOSS allow scheduling tasks
sequentially, concurrently, without any order or according to a
choice. In addition to the choice operator defined as the execution
of only one task from the subtask set, IAWB has operators that al-
low for the execution of several sub-tasks (the number is not spec-
ified). Only CTTE takes into account the interruptions (deactivation
or interruption) by using scheduling operators. These operators al-
low the specification of the interruptibility of tasks.

Finally, the use of some scheduling operators and task charac-
teristics can create an ambiguity. For example, what is the signifi-
cance of an optional task that is performed only if it is selected
(alternative scheduling)? In (Paternò, 2001), Paternò indicates the
ambiguity problems that can be raised using the CTT task model
scheduling operators.
4 http://www.ict.csiro.au/staff/Cecile.Paris/IIT-Track-Record-Past-Projects/Pro-
jects/Isolde/Tamot/Index.htm.
2.2.1.4. Expressive power of objects. In addition to tasks, other ele-
ments have been considered as essential in task models (Dix,
2008): users, events and handled objects (objects on which user
operations apply through functions, devices, tools, etc.), which in-
crease the task model expressive power. Users are the humans
who play a role in the activity. They perform the tasks or are at
the origin of the task (as would a supervisor). While the activity
progresses, some events may interfere. They are part of the activ-
ity. The last concepts are the objects handled in the activity. The
different task model tools incorporate some of these concepts.

2.2.1.4.1. CTTE. CTTE handled objects (Paterno, 2004) are task
properties. They are characterized by: a name (string); a ‘‘class’’,
to be chosen among string, numeric, object, description or position;
a type among perceivable (object presenting information or allow-
ing action of users) and application (internal to the system); an ac-
cess mode (only reading or modification); a cardinality among low,
median and high; and the platforms where the object is repre-
sented. To our knowledge, no documentation describes the con-
cepts of class and cardinality in detail. According to our use of
the CTTE tool, we associate the need of the cardinality characteris-
tic with the generation of interfaces (Paternò and Santoro, 2002)
based on CTT diagrams. However, the CTTE simulation tool does
not take objects into account and we only found some documenta-
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
tion relating to the use of objects for interface generation. CTTE
does not include users and events as specific concepts.

2.2.1.4.2. TAMOT4. The task model Diane+ integrates handled
objects, named data, and uses them to define conditions. How-
ever, in the associated tool, TAMOT does not allow the defining
of data and the only editable condition is the pre-condition, ex-
pressed as strings.

2.2.1.4.3. EUTERPE. In EUTERPE, handled objects are first-class
components. They are characterized by a name (string); a list of
attributes (each attribute is composed of a name (string) and a va-
lue (string)); and a list of users (the users who can manipulate the
object). The users are defined as labeled agents. Relations can be
defined between agents and objects (owner, create, destroy, use/in-
spect, change). An agent is defined by a name (string); a type (indi-
vidual, organization or computer system); and a role (a set of tasks
performed by an agent). Moreover, EUTERPE allows the definition
of events. These are composed of a name (string) and the set of
tasks linked with (task set).

2.2.1.4.4. IAWB. As for CTTE, the IAWB tool defines objects as
task attributes. They are defined by a name (a String), a description
(a String) and a type (a String). Values cannot be associated with
tasks and can be composed neither of attributes nor of other
objects.

In addition to handled objects, IAWB tasks can be associated
with roles. Roles in IAWB are users that perform the task. All com-
ponents associated to tasks are defined in a model dictionary and
can then be ‘‘linked’’ to several tasks. No semantics is defined to
these links.

2.2.1.4.5. AMBOSS. The AMBOSS environment allows defining
handled objects and the association between tasks and objects;
and defining users. The handled objects are composed of a name
(string), its description (string) and its type (physical or informa-
tion). Each object can contain other objects (definition of object
composed of objects).

One of the main usage of objects is to express pre and post-con-
ditions. Table 6 presents the definition of these attributes in the
tools. All the models include the pre-conditions associated to the
tasks. While CTTE, TAMOT and Euterpe express these pre-conditions
as strings, AMBOSS and IAWB express pre-conditions as a necessary
presence of components (barriers and messages for AMBOSS and
keywords for IAWB). However, both elements are expressed as
strings themselves. In order to specify the consequences of a task
execution on the handled objects, Euterpe and IAWB include post-
condition expressions. These pre and post-conditions are therefore
expressed as strings without any link with objects and without
any possibility to take the object values into account.

2.2.1.4.6. Discussion: the expressive power of objects. Table 5 pre-
sents the expressive power of objects in the five task model tools.
With the exception of TAMOT (which does not contain data from
the Diane+ model), all the tools contain the concept of objects.
They can be divided into two categories. First, the tools that con-
sider objects as task attributes (as CTTE and IAWB), and second
the tools that consider objects as first class model components
(as in Euterpe and AMBOSS). The definition of objects as task attri-
butes requires that handled objects are transferred to other tasks
by using operators in order to perform several tasks.

In CTTE, a particular object attribute is its cardinality. It is used
to help the designer to define the interactive element that repre-
sents that object. Moreover, perceivable objects may be a table or
a window and so this tool associates interactive objects to tasks.
The introduction of these elements (cardinalities and perceivable
objects) in the task model illustrates the link between handled
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://www.ict.csiro.au/staff/Cecile.Paris/IIT-Track-Record-Past-Projects/Projects/Isolde/Tamot/Index.htm
http://www.ict.csiro.au/staff/Cecile.Paris/IIT-Track-Record-Past-Projects/Projects/Isolde/Tamot/Index.htm
http://dx.doi.org/10.1016/j.intcom.2010.06.003

Table 5
Expressive Power of Objects.

Tools CTTE TAMOT Euterpe IAWB AMBOSS

Abstract Object – – –
p p

Concrete Object
p

–
p

– –
Attribute name Not computable –

p
–

p

Attribute type Not computable – – – Not computable
Attribute value Not computable –

p
– –

Users Task owner –
p p p

Events – –
p

– –

Table 6
Expressive Power of task attributes that can use objects.

Tools CTTE TAMOT Euterpe IAWB AMBOSS

Pre-condition String String String Keywords Barriers +
messages

Post-condition – – String Keywords –

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 7
objects and interface presentation. This definition is close to a sys-
tem-based point of view whereas in all other tools, object concepts
try to focus on ergonomic aspects. While objects defined in CTTE
are concrete (a value is associated to the object as soon as it is de-
fined), IAWB and AMBOSS do not allow giving a value to object
attributes thus staying at an abstract level. This abstract level of
definition freezes the manipulation of task model objects, which
limits the expression to a static state of the world.

The condition verifications are mandatory for task execution.
Then, to allow the validation of task models by the user and thus
the validation of the task scheduling (using simulation), these con-
ditions need to be computed. In order to compute the conditions,
the definitions of used entities and conditions have to be comput-
able. However, all tools define conditions using non-computed
strings and do not manipulate the defined objects. The same obser-
vation can be made concerning post-conditions when they are
present (in Euterpe and IAWB). Only AMBOSS integrates the check-
ing of the pre-conditions prior to performing the tasks. However,
these pre-conditions are expressed by the presence of barriers
and messages (as strings).

Only Euterpe considers events as objects. Except for TAMOT, all
tools take into account the notion of users but they do so in differ-
ent ways. In CTTE, a tree is designed for each role (for example, a
CTT tree for the salesman, one for buyer) with a global tree that
contains all the activities (here, the sales activity). Then there is a
tree for the organization and a tree for each actor. However, this
modelling stops potential data exchanges (such as those of the
handled objects) between several users and limits the description
of group activities. IAWB considers the user as a task attribute
and thereby does not make any distinction between user data
and task data. However, there are two different types of data that
may have consequences on another. For example, a task actor has a
function on a group. This function may justify the presence of a
task that modifies object values. So, user information and handled
objects are linked but not dependent. On the contrary, Euterpe
identifies two different concepts: the roles and the agents. Lastly,
in AMBOSS, several humans and systems can be created as specific
concepts and associated to the tasks. The definition of users as a
concept independent from the tasks allows associating a same user
to all the tasks performed by that user.
2.2.2. Model querying
Querying models in a tool relates to its capability to use the

semantics of the model according to its syntax. We identified
two different features: the verification of the model and its simu-
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
lation. The capability of model querying guarantees that a model
is designed according to its associated tool. The model syntax al-
lows the use of task models by other approaches in order to gener-
ate interfaces (such as Mori et al., 2003), to allow migration
between different platforms (such as Calvary et al., 2001) or ex-
change data between task models expressed by different syntaxes
(Limbourg et al., 2001). We consider that these features do not de-
pend on task model tools. They rely to independent tools that may
use designed task models as input. As an example, the tool TERESA
(Mori et al., 2003) uses CTT task models (designed by using CTTE)
independently from CTTE itself, for generating user interfaces.

2.2.2.1. Verification. Three tools: CTTE, Euterpe and AMBOSS, allow
the verification of the grammatical correctness of the models.
However, none allows the verification of every model entity. All
verify the grammatical consistency of the decomposition of the
task (hierarchically), indicating for example whether an interactive
task consists of tasks performed by other executors. The tools CTTE
and AMBOSS allow the grammatical verification of the used oper-
ator. This type of verification enables to establish the coherence of
the operators and their use. For example, tools detect the absence
of scheduling operators whereas tasks are non elementary (AM-
BOSS) or have some sister tasks (CTTE).

As shown in the previous sections, CTTE, Euterpe, IAWB and
AMBOSS incorporate objects that complete task composition.
However, only Euterpe allows a grammatical verification of these
elements. It verifies two types of object constraints: the verifica-
tion of the cardinality constraints and the verification of the type
constraints (Fig. 1).

The cardinality constraint is composed of the set of constraints of
coherence between the defined entities and the used ones. For
example, Euterpe detects the presence of events that do not trigger
any task or the presence of agents without any role.

The type constraint detects the inconsistencies in the type defi-
nition of entities. For example it can detect an object composed of
itself.

Lastly, even if all the tools allow the description of conditions
(as pre/post-conditions), none of them trigger any verification on
conditions: they do not manage their semantics. The types of
grammatical verification for each tool are summarized in Table 7.

2.2.2.2. Simulation process. The last capability that we studied is the
simulation (Table 8). Owing to the limited number of computable
features in the tools, only two, CTTE and AMBOSS, allow model
simulation. This observation raises the issue of using model com-
ponents and their validation. Some models are clearly designed
to edit task models and facilitate the communication (as Euterpe
which does not pre-define scheduling operators). But why do other
tools have some pre-defined components that are not used?

CTTE and AMBOSS simulate models according to the scheduling
specified by operators. Then the produced scenarios may be re-
corded and replayed. A scenario is a particular running example
of task model (a specific sequencing of tasks). However, as objects
are not manipulated by tasks by using references on entities (as
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Fig. 1. Verification of (a) constraints and (b) heuristics on the Euterpe models.

Table 7
Verifications of tools.

Tools CTTE TAMOT Euterpe IAWB AMBOSS

Hierarchical
p

–
p

–
p

Operator
p

– – –
p

Entity – –
p

– –
Expression – – – – –

Table 8
Simulation presence in tools.

Tools CTTE TAMOT Euterpe IAWB AMBOSS

Scheduling
p

– – –
p

Object – – – – –
Expression – – – –

p

Record/replay scenario
p

– – –
p

8 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx
TaoSpec Dittmar et al., 2005 textually does, for example), no simu-
lation of the state of the objects can be performed. AMBOSS takes
the conditions of the task execution into account. These conditions
are composed of the presence of barriers and messages expressed
as strings. For example, the entry of a password to use an applica-
tion may be expressed as a barrier.

2.3. Main issues from model comparison

From the above study, several main weaknesses can be pointed
out about the five tools considered, from the point of view of their
potential usability in the interactive application design process.

The first observation that results from the use of tools is the
difference between model compositions and features implemented
in tools. For example, the task model Diane+ includes objects
whereas its associated tool (TAMOT) does not manage these
elements. The task models are defined from requirement studies;
thus, the elements that compose the task models are elements that
have been proved to be a part of model activity expressions. The
absence of these elements in their associated tools limits the
expressive power of task models.
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
Moreover, a precise semantics is often lacking in task model
description. Some components are just given an informal descrip-
tion, and are represented in the model as a free text or a simple
list of values. In addition, each characteristic can have a value, but
how to use this value is not clearly defined. For example, the
importance levels of tasks in IAWB are not semantically de-
scribed, so one cannot know how to actually use it. Does it mean
that a task that is important may interrupt another task? This
point limits the use of some task model components for full mod-
elling – as the user does not know how and why they can be
used.

As we indicated above, task model components can be divided
into two different types: the pre-defined components (components
for which values are defined from a pre-defined set) and the infor-
mational ones. Few components are defined from pre-defined
value sets (and then are computable); the most commonly de-
fined component is the scheduling operator. Except for Euterpe,
all of the tools pre-define its values. Pre-defined components can
be used to perform verification (computing them) on task models
using the simulation tool for example as in CTTE and AMBOSS.
While some components are modelled to inform, others ought to
be used to animate models, as objects. The definition of objects fol-
lowing a specific syntax can allow the specifying of information ex-
changed between tasks and to perform some computing (object
value modifications. . .).

In addition to an informational definition of task model compo-
nents (as task name), we observed that conditions are also textu-
ally defined. The definition of conditions should complete the
scheduling of activities expressed by scheduling operators. Never-
theless, their textual definition does not allow their verification
and consequently, their usage. Consequently, the conditions be-
come only informative.

The simulation of models provides a dynamic view. This re-
quires computable characteristics, and the evolution in the state
of the ‘‘activity world’’. However, we noticed that the objects are
not taken into account in the dynamics of the model. This could
be explained by both previous observations. As the complete activ-
ity description implies object definition (Dix, 2008), the simulation
of activity description implies the dynamic simulation of object
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 9
evolution. By simulating task models that integrate objects, one
can obtain a simulation that is closer to the dynamic behaviour
of the future system. Therefore, the addition of dynamic objects in-
creases the set of elements that can be verified.

Lastly, task models can be used as documents about activities
that allow for example discussions between several users in order
to compare different task models. This characteristic of task mod-
els is limited because the data and its semantics are not
accessible.

These six points limit the capability for these models to be
actually used. A new task model, K-MAD, was specially designed
to address these limitations. This model aims at incorporating
the concepts presented above and to remove the ambiguities
pointed out. An associated tool (K-MADe) has been jointly
developed.

3. Presentation of K-MAD and K-MADe

The initial work concerning task modelling for user interfaces
(Scapin, 1988) had several objectives: to consider the way in
which users represent their task, and not only the logic of the
data-processing, nor the ‘‘prescribed’’ task; to take into account
the conceptual and semantic aspects and not only the syntactic
and lexical aspects; to obtain a structuring of the tasks in a
uniform way; to carry out descriptions from a declarative (cur-
rent state of things) as well as procedural (way to reach these
states) point of view; to allow parallelism and not only sequen-
tial representation (synchronization of the tasks); and to be
computable.

From these first ideas and various requirements, a first task
analysis model (‘‘MAD’’: Méthode Analytique de Description) was
proposed (Scapin and Pierret-Golbreich, 1989a; Scapin and Pier-
ret-Golbreich, 1989b) at the intersection between ergonomics,
computer science, and artificial intelligence. The tool E5MAD was
developed (Delouis and Pierret, 1991).

In parallel, a method for task information gathering was defined
(Sebillotte, 1991); it consists mainly of semi-directed interviews
based on the ‘‘Why? and How?’’ technique. A practical methodol-
ogy of task analysis for extracting the relevant characteristics use-
ful for the design of interfaces was proposed (Sebillotte and Scapin,
1994; Sebillotte, 1994).

This work was continued according to an iterative process:
development (for example, implementation of the model in an ob-
ject oriented fashion), organization of the tasks at various levels of
abstraction, on site validation (house automation, management of
ship fires, air traffic control, railway regulation, etc.), modifications,
and validation again.

Research work (TKS, 2010; Gamboa, 1998) also focused on the
design and specification of interfaces. Two models were designed:
a task model (MAD* TKS, 2010) and a model for conceptual inter-
face design (ICS Hammouche, 1995) as well as procedures for
transforming one model into another, and links with low level
interface aspects (via the ILOG-Views�6 toolbox). The work led to
the implementation of the task analysis editor EMAD* and to a soft-
ware design environment (ALACIE (Gamboa, 1998)).

From this previous work and the study of other task models, a
task model kernel was created. This kernel corresponds to the need
for a task model that contains the different task model compo-
nents. The current model (K-MAD), based on the review of the
existing models and tools, is described in Lucquiaud (2005). The
current version of the tool (K-MADe) is described in Baron et al.
(2006), and available at: http://kmade.sourceforge.net/.
5 ‘‘E’’ for Editor.
6 http://www.ilog.com/products/views/.

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
3.1. The K-MAD model

K-MAD intends to facilitate the implementation of a user-cen-
tered, model-based approach for the design and the ergonomic
evaluation of interactive software based on tasks.

K-MAD can be used either for on-site needs collection, user
activity analysis, product validation, etc. It can also be used during
the various phases of the development cycle, from task model
specification and design to user evaluation and documentation
writing phases. K-MAD aims at being a kernel that allows the
description of all types of activity that would satisfy the require-
ments identified in the related work section.

3.1.1. Main characteristics of the model
K-MAD is a hierarchical model. It represents the user’s activity

as a tree of tasks, from the most general one (root) to the most de-
tailed ones (elementary actions). In order to express activities, the
K-MAD model is composed of components and scheduling
characteristics.

3.1.2. Components
Four concepts are defined in the K-MAD model: tasks, objects,

events and users.
Tasks: a task is defined by a name, a number, a goal, a dura-

tion, and feedback (observable effects by the user). Moreover,
some other information can be associated to the task: observa-
tions (a free textual commentary), level of importance (small,
average, high), frequency (small, average, high), executor (user,
system, interactive, abstract). When the executor is a user, a spe-
cific feature can be defined, the modality (sensorimotor,
cognitive).

Handled objects: these objects characterize the environment of
the user, they are objects the user handles or that influence the
course of the user’s activity. Objects are defined by a name and
attributes. They are represented in K-MADe by two levels of object
classes:

– Abstract objects: characteristics relating to the concept handled
by the user with abstract attributes (characteristics of the
abstract object). For example, a car (expressed as an abstract
object) may be defined by a color (an abstract attribute).

– Concrete objects: they correspond to instances of abstract
objects with concrete attributes (that allow a value to be
assigned for each characteristic of abstract attributes of abstract
objects). For instance, the Smith’s car is red (a concrete value of
the abstract attribute).

Concrete objects are organized in groups, which are defined by
their name and a type of group.

Users: set of users involved in the described activity. When the
task executor is a user, the various users associated with the tasks
are identified as actors, characterized by a name, a level of experi-
ence in the modelled activity (beginner, average, expert) and com-
petence (skills).

Events: set of events that can be triggered or caused by the de-
scribed activity. They are defined by a name as string.

Dynamic models: in order to obtain a dynamic model, a task is
associated with potential side effects: post-conditions (actions
resulting from the task, i.e. dynamics of the model objects: modifi-
cation of the attribute values, creation or removal of objects),
events (events can be generated during the execution of the task).

3.1.3. Scheduling characteristics
K-MAD tasks own a set of scheduling mechanisms that are ap-

plied to the task, independently from others (local scheduling). The
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://kmade.sourceforge.net/
http://www.ilog.com/products/views/
http://dx.doi.org/10.1016/j.intcom.2010.06.003

10 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx
conditions of the execution are the pre-conditions (conditions for
the task to be achievable) and the iteration conditions (conditions
for the repetition of tasks).

Moreover, tasks can have several sub-tasks for which the sched-
uling is described by: a triggering event, a need (optional, manda-
tory), an interruptibility flag (yes, no), and a scheduling operator
(sequential, alternate, no order, parallel). If there is no scheduling
operator, when a task is not composed of other tasks, it is defined
as elementary. Even if elementary is not a scheduling operator, it
belongs to this set because it concerns information about the
decomposition of the task.
3.2. The tool: K-MADe

K-MADe implements all characteristics of the K-MAD model. It
allows the task models to be described, modified and queried
(query functionalities are under development). It is available in
French and in English and was developed with version 1.5 of the
Java JDK. It addresses all kinds of users (users with different back-
grounds) wishing to describe all types of activities. K-MADe can
also be used to help the end-user in his task via a help system,
especially during training. However, this environment was partic-
ularly intended for ergonomics and Human Computer Interaction
(HCI) specialists.

In addition, depending on their training, the use of current parts
of the model and tool can vary: from simple graphical description
(for non-computer trained users) to detailed specification of tasks,
objects and conditions (for computer trained users).
3.2.1. Technical characteristics
The graphics interface uses the Swing toolbox. Different API

were also used:

– JGraph7 for the modelling part of the task tree.
– L2Fprod8 for adding graphic components to the basic Swing API.
– JGoodies9 for the ‘‘look and feel’’ of the tool.

The Express language (ISO EXPRESS, 1994) was used for model-
ling the task model and for the ‘‘state-of-the-world’’ objects (cur-
rent state objects). The implementation of Express modelling was
carried out by a ‘‘custom’’ API which provides all the services for
creating and handling objects.

Finally the XML language was chosen to describe the grammars
associated with the expressions of pre-conditions (see Fig. 3a),
post-conditions and iterations. This option facilitates the design
of tools that can exploit these elements of the model easily. The
handling of XML files requires the use of an additional API: DTD-
Parser.10 This API makes it possible to analyze an XML file accord-
ing to its DTD.
3.2.2. The K-MADe components
The K-MADe tool has been developed in order to be used by

people wishing to describe and analyze human operators or users,
in computerized environments or not, in real or simulated, site-
based or laboratory-based situations. Although all kinds of profiles
can use this tool, it is particularly intended for ergonomists and HCI
specialists. As there are many skill variations in such populations,
the tool allows different levels of description, from simple graphi-
cal drawings to detailed mathematical expressions using several
tools:
7 http://www.jgraph.com.
8 http://common.l2fprod.com.
9 http://www.jgoodies.com.

10 http://www.wutka.com/dtdparser.html.

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
– Graphic editor of the K-MAD task model. Use of direct manipu-
lation techniques for constructing, handling and cancelling
tasks (label 1 in Fig. 2).

– Task characteristics editor (see the list above). The editor has
three forms. A basic form with only the main task characteris-
tics, a form which lists all task characteristics in tables (label
2 in Fig. 2), and finally a printable form (summarized) with all
task characteristics.

– Editor of abstract objects, users, events and concrete objects.
Objects can be added, modified and removed. Sheets (label 3
in Fig. 2) allow these object definition spaces to be accessed.

– Tool for expressing the pre-conditions, post-conditions and iter-
ations. A grammar defines condition expression components
(Fig. 3a). The tool is able to check whether the grammar of
expressions is correct (Fig. 3b).

– Simulator for animating task models.
– Various tools for analyzing task models (statistical, coherence,

queries. . .).
– Tool for printing task trees and task characteristics.

More information about the K-MADe tool may be found in its
user manual.11
4. Evaluation of the K-MAD/K-MADe expressive power

K-MAD includes computable entities and conditions that cannot
be found in other task models. Despite studies that demonstrated
the pertinence of adding expressive power to task models through
object definitions, it seemed interesting to evaluate how these
additions can be used in actual task modelling activity. To be fully
completed, such an evaluation needs a tool that supports these
model features. K-MADe meets this requirement, as it is close to
the model.

The aim of our work is to concretely evaluate how computable
aspects of task models are effectively used during task modelling.
The study is conducted in three phases. Firstly, from our compari-
son presented in Section 2, we look at how K-MADe covers the dif-
ferent notions the previous methods/tools manipulate. We
particularly pay attention to definitions of computable compo-
nents and management of these notions, and we focus on how K-
MADe responds to the major limitations described in Section 2.3.
Secondly, observations from a large case study, where task model-
ling was used for varying purposes, are provided. Thirdly, an
empirical study of K-MADe usage, where the use of advanced fea-
tures was encouraged, is reported.

4.1. Coverage of the kernel

K-MADe aims at offering a tool with a task model kernel that al-
lows the expression of an activity as detailed as if it was described
with all other tools. In order to analyze the coverage of this model,
we will indicate what elements can be found in K-MADe and
compare them with those found in other models. Tables 9–11
summarize the task characteristics, scheduling and objects found
in K-MADe.

4.1.1. Task characteristics
Among the task characteristics found in the five task model

tools, only two are not implemented in K-MADe, the room (pres-
ent in AMBOSS) and the platform (present in CTTE). Both charac-
teristics are defined in the tool to meet their specific
requirements. The room is the space where tasks are performed
(Giese et al., 2008) and the platform is used to help the production
11 http://kmade.sourceforge.net/.

wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://www.jgraph.com
http://common.l2fprod.com
http://www.jgoodies.com
http://www.wutka.com/dtdparser.html
http://kmade.sourceforge.net/
http://dx.doi.org/10.1016/j.intcom.2010.06.003

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 11
of interface prototypes (Mori et al., 2004). These characteristics do
not seem essential for task modelling. Nevertheless, if required by
the activity domain, they can be fully defined by the way of K-
MADe handled objects (see Section 4.1.3).

The K-MADe task characteristics can be classified in three
groups following their informational level. Some characteristics
are completely informational: the informative ones. We consider
as elements in this group: task name, task remark, goal and med-
ia support. Lower informational level characteristics are task ele-
ments that are pre-defined (the user chooses among values) but
are not exploited in the tool: the significance and the frequency.
The last group contains the task characteristics that are pre-de-
fined and exploited in K-MADe: the task number (generated by
the tool) and the task executor (this characteristic is checked).
4.1.2. Scheduling
Even if K-MADe allows the association of several users with

tasks, as most task models, it does not take into account the task
cooperatibility aspect as such. In K-MADe, the task duration is
considered as information, and therefore defined as free text. In
contrast, all other scheduling components are defined by a pre-de-
fined value: task optionality, priority, interruptibility, iteration,
pre-condition and scheduling operators. These pre-defined
descriptions allow these components to be exploited by tools (as
for simulation). In K-MADe, the deactivation and the interruption
are not expressed as operators (as in CTTE). Moreover, K-MADe
was developed to express the user activities describing the
achievements of her/his goals (as state in Sinning et al. (2007), to
perform idealized task models). As the deactivation of task does
not allow the achievement of its goal, the deactivation is not in-
cluded in K-MADe.
Fig. 2. The main windo

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
4.1.3. Objects
K-MADe contains all the object types found in the tool-sup-

ported task models: handled objects, events and users. Moreover,
each object has an attribute name; an attribute type and an attri-
bute value and both types of objects (abstract and concrete) are
present in the model. No other tool possesses all these concepts.
Objects, users and events are defined as independent task model
components, as first-class components (instead of CTTE). Next,
they are used for defining pre/post-conditions or iteration.

4.1.4. Querying power
4.1.4.1. Verification. K-MADe allows the same verifications as the
other tools (CTTE, Euterpe and AMBOSS): hierarchical, operator
and object (Table 12). Moreover, as Euterpe, K-MADe focuses its
verification on the use and syntax definition of elements. However,
while in the verification of Euterpe, objects are requested by the
users (using the tool presented in Fig. 1), K-MADe automatically
performs verifications on objects prior to authorizing their use
(for example, to define conditions).

In addition to these objects, K-MADe computes the defined
expressions (pre, post and iteration conditions) and verifies their
syntax according to objects.

4.1.4.2. Simulation. By using pre-defined values, the description of
activities allows the simulation of models taking into account more
characteristics. As two other task model simulation tools (CTTE and
AMBOSS), the K-MADe simulation tool takes into account the
scheduling and allows the recording and replaying of scenarios.

As AMBOSS, it integrates the simulation of expressions. How-
ever, these expressions are composed of mathematical syntax
(operators, functions and computer types (see Fig. 3)). This type
of definition was used to allow the computation of expressions that
w of K-MADe tool.

wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Fig. 3. (a) A part of the pre-condition grammar. (b) The window to write task pre-condition.

Table 9
Task characteristics that can be found in K-MADe.

Presence Computable

Name
p

(String)
Number

p p
(Automatically

generated)
Remark

p
(String)

Goal
p

(String)
Media

p
(Path)

Room –
Executor

p
(Interactive, Abstract, User,

System)

p

Significance
p

(High, medium, low)
Frequency

p
(High, medium, low)

Platform –

Table 10
Scheduling elements that can be found in K-MADe.

Presence Computable

Duration
p

Optionality
p

(Boolean)
p

Priority
p

(Low, medium, high)
p

Interruptibiliy
p

(Boolean)
p

Iteration
p

(Formal expression)
p

Pre-condition
p

(Formal expression)
p

Cooperatibity –
Sequence

p p

Concurrent
No order
Choice
Deactivation –
Interruption –

12 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive power of task analysis: Systematic comparison and empirical assessment of
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.2010.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Table 13
Simulation presence in K-MADe.

Scheduling
p

Object
p

Expression
p

Record/replay scenario
p

Table 11
Objects that can be found in K-MADe.

Presence Independent

Abstract object
p p

Concrete object
p p

Attribute name
p

–
Attribute type

p
–

Attribute value
p

–
User

p p

Event
p p Table 14

Characteristics of case studies performed using K-MAD.

Application Name Number
of users

Platform type Goal of the
use of K-MAD

Webmail 1 (1) Computer Design
ParAdmin 1 (1) Computer Validation
Volley-ball game

marking sheet
1 (1) Tablet Design

Mastermind 1 or 2 (1) Computer Design
Genindexe All employees (4) Computers Design

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 13
manipulate objects. Therefore, the K-MADe simulation tool also
simulates the (dynamic) state of the world specified as a set of ob-
jects Table 13 shows elements take into account for the dynamic
simulation.

As seen above, K-MAD and its tool K-MADe cover the great
majority of the concepts that exist in each task modelling tool-sup-
ported method. Restrictions are few, and mainly due to a difference
in goals: for example, in CTT, the platform permits the direct gen-
eration of interfaces, which is not considered as a ‘‘kernel’’ function
of task models in K-MAD. The next step is to evaluate how useful
these features are, and how they solve the restrictions we reported
in Section 2.3.

4.2. Case studies evaluation

In order to study the real K-MADe coverage power, we used K-
MADe to model five activities. The case studies were chosen to
study the modelling of a wide range of interactive applications
(interaction type, user number, user type, application platform).
Then, we designed the application task models corresponding to
activities with different types of users; different system types;
and on different platforms. Moreover, task models were used in
order to target different goals (Balbo et al., 2004) (design,
validation. . .).

4.2.1. Case study description
We used K-MADe to validate one application (ParAdmin) and to

design the other four. The choice of these case studies allowed us
to design task models in three different contexts. First, three of
them (the webmail, the volley-ball marking sheet and the Master-
mind game) were designed for training. Second, the ParAdmin
application was designed in a research context, with frequent evo-
lutions. And last, Genindexe was designed in order to produce an
operational software application. Table 14 summarizes the charac-
teristics of each case study and why the K-MAD model was used.

4.2.1.1. Webmail. The first application is a classical mail applica-
tion, in its web form. This design is based on a task model express-
ing all activities that allow communication by email (address book
management, email production, management of received
emails. . .).

4.2.1.2. ParAdmin. In order to study the role of the K-MADe task
model to validate an application interface, we modelled the man-
agement of a data warehouse. A tool, named ParAdmin (Bellatreche
et al., 2008), was developed to perform this task without previous
Table 12
Verification of the K-MADe tools.

Hierarchical
p

Operator
p

Object
p

Expression
p

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
task analysis. In order to allow its use by many people, task models
were used to propose some changes.

4.2.1.3. Volley-ball game marking sheet. The last studied activity
concerning only one user is the completion of a volley-ball game
marking sheet (during a game). This activity is traditionally per-
formed using a paper sheet. The goal of the design of this activity
is to migrate to a tablet platform and then, to automate calcula-
tions and verifications (for example, to evaluate from the data en-
tered whether a game is finished or not).

4.2.1.4. Mastermind. The design of the mastermind game shows the
needs for an application used simultaneously by several users.
Mastermind is a code-breaking game. A player (the code-maker)
defines a code and a second player (the code-breaker) guesses it.
This game was developed to be used on computers by one (the
computer plays the code-maker role) or two players.

4.2.1.5. Genindexe. The last application was designed for managing
the activity of a genetic analysis laboratory.12 This laboratory must
fulfill the rules of regulatory organisations such as the FDA (US
Food and Drug Administration) and the COFRAC (French accredita-
tion institution). A task model has been designed to create an
application adapted to the activities of all employees according
to their security requirements (such as traceability of samples).

4.2.2. What are the main K-MADe benefits?
K-MAD and K-MADe have been designed in order to deal with

the weaknesses underlined by the comparison of existing task
model tools. Therefore, they try to answer the questions left un-
solved by the other systems. In this section, we detail how they
solve the questions from Section 2.3. Then, we give a summary
of our observations about the expressive power of K-MAD/K-MADe
in the context of our case studies. Moreover, these case studies
illustrate how K-MAD compensates for some expressive limita-
tions from the use of task models to design interactive applications
that Sinning et al. Sinning et al. (2007) have identified. In the last
part, we show how K-MAD addresses (or not) these expressive
limitations.

4.2.2.1. K-MADe answers to issues from the comparison of mod-
els. The comparison of task model tools reveals six points that limit
their use to perform task analysis:
12 http://www.genindexe.com/.

wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://www.genindexe.com/
http://dx.doi.org/10.1016/j.intcom.2010.06.003

14 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx
– the difference between model and tool components,
– the lack of semantic description,
– the lack of pre-defined value components,
– the lack of computable conditions,
– the weaknesses of object consideration in the dynamics of the

model,
– the non-accessibility of data and their semantics.

The implementation of K-MADe was performed in two steps.
The first one aimed at coding the kernel following the EXPRESS
description of the model. All components of the model as in Luc-
quiaud (2005) are included. In a second stage, the interface was
developed. It allows the use of the model concepts and is expanded
to facilitate the modelling process (such as the addition of unknown
as task executor). In spite of these additions, the tool allows the
description of K-MAD task models. Therefore, the implemented
K-MAD model (in K-MADe) is very close to the theorical defined
K-MAD model.

The K-MADe developers have offered a user manual (http://
kmade.sourceforge.net/) that explains the semantics of K-MADe
components and how to express them. This documentation aims
at facilitating the use of the K-MADe functionalities and also at
defining the semantics of the K-MAD concepts for future users.
The use of K-MADe shows that with the user manual, few compo-
nents are left with unclear semantics. Only the semantics of the
task interruptibility characteristic according to the scheduling
operator usage stays unclear. Studies are currently performed in
order to define the semantics of this feature in the following ver-
sion of K-MADe. During the K-MADe development, the major con-
cern was to allow users to perform computable task models. Each
component can thus be defined in order to be computable when
it makes sense to do so (several components cannot be computed
as for example task names): task number (as IAWB), task executor
(as other task models), scheduling characteristics (optionality (as
CTTE and TAMOT), priority, interruptibility (as CTTE) characteris-
tics), scheduling operators (as others task models) and objects. Ob-
jects reflect the state of the world. As previously indicated, the task
execution may be conditioned by this state of the world, according
to the state of objects. As these objects are defined by computable
values, they can be used to express conditions following pre-de-
fined syntax (see Fig. 3 that shows one of the condition edition
windows). These conditions are computed during the simulation
of task models. Through the computing of conditions, objects are
taken into account in the dynamics of the model.

The last limitation of the task model use is the non-accessibil-
ity of data and semantics. Adding the capability to access task
model data and semantics increases the interest of such task model
tools. For this reason, since the beginning of the K-MADe design,
designers have planned to provide functionalities that allow task
model data and semantics to be accessed (Lucquiaud, 2005). Full
access to these elements is provided in K-MADe, but advanced
exploration functionalities need to be implemented in the tool.

4.2.2.2. Lessons learned from case studies. Increasing the power of
task models in incorporating computable objects is a real help in
task modelling.

The studied task models express activities of several users, sev-
eral systems and were chosen in order to design or validate differ-
ent interactive applications. The design of these wide application
types highlights the benefits of the computable object use.

The first benefit is common to all case studies. Objects are used
in order to complete the task scheduling. In task model tools, task
scheduling is mainly expressed through scheduling operators (Sec-
tion 2.2.1.3). However, some task completions cannot be expressed
through scheduling operators only. For example, to design the vol-
ley-ball marking sheet task model, objects were mandatory to ex-
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
press the end of a game. A volley-ball game ends when one team
wins at least 3 sets, no matter what the score of the other team
is. Thus, the number of sets is not pre-determined. This condition
for the end of a game can be expressed only because K-MAD sched-
uling operators and computable objects are jointly used.

In addition to this scheduling role, entities can be computed and
therefore, help the validation. For example, when designing the
ParAdmin task model, a dysfunction was detected: the data ware-
house could be sorted according to three different algorithms.
However, the task that chooses the sorting type was not always
performed. By using the simulation tool of K-MADe (which dynam-
ically manipulates the objects), we were not able to define the sce-
nario that uses such data when required.

The simulation of task models that exploit the computable enti-
ties (and expressions) provides a complementary representation
of the hierarchical task tree. From the Genindexe case study, this
representation of the state-of-the-world is closer to the user repre-
sentation of the final application. However, the presentation of the
state-of-the-world in the simulation tool (label 1 in Fig. 4) is diffi-
cult to understand for users who are not the designer.

Finally, using K-MADe to design the different case study task
models highlights the importance of tools that exploit pre-de-
fined entities. In K-MADe, we mainly use the grammar-checking
and the simulation tools. The grammar-checking tool allows a
quick detection of grammar errors (as a wrong pre-condition)
and to use the simulation tool to perform scenarios using state-
of-the-world entities (as to perform scenarios for each actor).
Nevertheless, features that K-MAD offers do not seem to be com-
plete enough to take all situations into account. The case studies
highlighted two other needs concerning users and events. Using
K-MADe, users can be associated to a task that specifies who per-
forms it. This type of definition is not adapted to express activities
of a group of users (i.e. as the Genindexe Company). Euterpe allows
this definition as a particular agent. K-MADe should also have such
kind of multi-user characterization.

Moreover, while events can trigger or suspend the task execu-
tions, they cannot totally cancel them whereas some events trigger
the cancelling of tasks (for example, rainy weather may cause the
cancelling of a walk). Only CTTE clearly allows the expression of
task cancelling by using the deactivation operator. But, what are
the consequences of the use of this action on the state of the
world? Does cancelling tasks imply the state of the world goes
back to a previous state? Or does it stay in its current state? CTTE
does not take into account the state of the world when this opera-
tor is used and does not provide answers to these questions. In
contrast, prior to allowing task cancelling, K-MADe requires to
identify the action to be made on state-of-the-world objects.

4.2.2.3. K-MAD compensates for limitations of other task models. Task
models can be used to design interactive applications. To achieve
this goal, Sinning et al. Sinning et al. (2007) identified some needs
that are common to all type of interactive applications: the unsuc-
cessful termination of tasks; the expression of non-determinis-
tic choices (decision making without any participation of the
user); the concurrent execution of several ‘‘instances’’ of tasks.
These points cannot be expressed using any task model tool but
they are mandatory to design interactive applications (Sinning
et al., 2007). This observation leads the authors to suggest add-
ons to be developed in CTT. We used K-MAD to perform the task
analysis of the case studies in order to show how this model can
address these needs. These needs are confronted here to K-MADe
solutions.

4.2.2.3.1. Unsuccessful termination of tasks. In the context of K-
MADe use, the unsuccessful termination of tasks cannot be speci-
fied (users do not want the unsuccessful termination of their tasks
and K-MADe was developed to express the achievements of user’s
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://kmade.sourceforge.net/
http://kmade.sourceforge.net/
http://dx.doi.org/10.1016/j.intcom.2010.06.003

Fig. 4. The K-MADe simulation tool.

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 15
goals). As we establish in a previous article (Caffiau et al., 2007),
task models are not really suited for expressing the actual dialogue
model of interactive applications. While simulation looks like dia-
logue of applications, many ergonomic considerations impose to
largely enrich the dialogue model of application compared to task
models (Palanque et al., 2003).

The last two limits (the non-deterministic choices and the exe-
cution of several ‘‘instances’’ of tasks) can be expressed using the
K-MAD components.

Non-deterministic choices are choices that are made without
any participation of users. For example, the feedback for sending
an email may be: the indication of the email as a sent email or
the message of a sending system error (no connection). K-MADe al-
lows the expressing of this kind of choice: the system task feedback
is composed of two system sub-tasks with pre-conditions (Fig. 5).
As conditions are computed to simulate the task model, the per-
formed system task is the one triggered by the state-of-the-world,
independently of the user.

The instance iteration is defined as the execution of several
‘‘instances’’ of a task. For example, for the concurrent execution
of sending new email (creating, editing and sending emails), the in-
stance iteration corresponds to the concurrent execution of a task
several times (iteration characteristics). Each execution manipu-
lates several concrete objects of the same abstract object (in this
example, several emails). In our case study, by using the conditions
and the choice operator, the iterative task send new email, allows
the creating, editing and sending of several emails at the same time
(Fig. 6).
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
Even though this modelling produces scenarios that create, edit
and send several instances of emails (Fig. 7), these instances are
visually presented on the task model. Sinning et al. Sinning et al.
(2007) propose to add new scheduling characteristic that specifies
this particular iteration. Thus, two different kinds of iterations will
specify the task iteration characteristics: first, the sequential task
iteration (task executions are sequentially performed) as the task
model tools currently propose and secondly, the instance task iter-
ation (iteration of instances). This proposition allows the distinc-
tion of the two different iteration concepts.

Moreover, while CTTE and TAMOT specify the task iteration as a
boolean (without any other information on the iteration) and as
integers (minimum and maximum of iterations), K-MADe has
two means of defining the task iteration. When the iteration num-
bers is known and frozen (for example, the task of placing a peg in
the current combination in the mastermind game), this number is
specified (Reffye et al., 1988 for the place token task iteration in
Fig. 8) and if this number is not known, the iteration condition is
expressed as a mathematical predicate (While(not(getValue($Evalu-
atedCombination, $NombrePlaced)==4)) and (card($EvaluatedCombi-
nation)<8)) for the propose combination task in Fig. 8.

5. Empirical evaluation of K-MADe usage in designing
applications

This section presents a study that evaluates the implications of
an approach that integrates computable entities for modelling user
activities. This study is exploratory in the sense that it is an overall
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Fig. 5. A ‘‘non-deterministic choice’’ in K-MAD.

Fig. 6. Iteration of a task manipulating several emails.

13 It must be noted that this amount of time does not refer to full time training. Only
a few hours were spent on this training by each student.

16 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx
examination of potential difficulties encountered during training
and usage of a particular task model and tool, without precon-
ceived hypotheses or selection of particular experimental vari-
ables. Besides, it is, to our knowledge, the first study of this kind
reporting data on actual use of task modelling with a tool. While
K-MADe is dedicated to users with different skills (computer scien-
tists, ergonomics experts. . .), the subjects of our study belong to
only one category: HCI students. The target of our evaluation is
the use of task models for the design of applications. In order to
better understand why computable entities are/can be used, we fo-
cus on two aspects: their learning and their usage in the task mod-
elling process. We thus divided our study into two evaluations.

The first evaluation aimed at defining the learning process of
the computable aspects during task modelling. In the second eval-
uation, usage of computable entities in task modelling design was
investigated.

5.1. Subjects

Two groups of students took part in this evaluation; their char-
acteristics are summarized in Table 15. All participants were stu-
dents in their fourth year at university. The first group was
composed of 48 bio-informatics students (31 males and 17 fe-
males), and the second one of 20 computer science students (that
had been studying computer science since their first year at uni-
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
versity) (19 males and 1 female). Only one computer science stu-
dent (participant in the second group) was not a native French
speaker. Nevertheless, they all attended the same HCI course.
5.2. The study schedule

The study was divided into two steps. During the training
(1 month13) on the modelling of task activities using the K-MADe
tool, a first evaluation was conducted; once students were trained,
a second evaluation was performed to identify their usage of the
model. The first step was performed during the lecture and two
practical sessions. Four task models were designed during this step
(TM1, TM2, TM3 and TM4). The second step was an evaluation of
usage of K-MADe computable data (only the TM3 task model).

However the second group (computer science students) only
completed the second (and not the first) evaluation. Then, the data
of the evaluation of the use of computable entities in the task mod-
elling design were gathered from all students. Fig. 9 summarizes
the different steps for each group. We can divide the study into
three different categories: the lecture, the practicing of the HCI
course and the evaluation session.
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Fig. 7. Example scenario (with dynamics of objects) from task model presented in Fig. 6.

Fig. 8. Specification of the iteration number.

Table 15
characteristics of the two groups of participants.

Group 1 Group 2

Number 48 (31 males/17 females) 20 (one non-French speaker)
(19 males/1 female)

Study level 4th year of French university 4th year of French university
Study domain Bio-informatics Computer science

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 17

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
5.2.1. Lecture
This course focuses on user-centered design, with task model-

ling as part of it. The lecture in task modelling did not aim at teach-
ing the numerous task models; it only focused on the K-MAD
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Fig. 9. Steps and the designed task models.

Table 16
Observation sheet example.

Type Observation Time

FU The main window is not accessible (‘‘simulation’’ is noted but
the simulation window is not accessible either).
=> re-launch K-MADe 14h32

G Looking for the object definition 14h34
14h37

F User does not understand the semantic of the
button with shell-hole

14h40

18 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx
model. This model was explained in details in the lecture (nearly
4 h) and students practiced task modelling using K-MADe during
the practical courses. Even if they were not modelling experts, they
were more extensively trained on using a task model notation than
some ergonomics experts (Couix, 2007).

The second part of this course focused on evaluation (basic con-
cepts of evaluation and main methods used (Nielsen et al., 1993).
As the students played the role of observers, the protocol applied
in this survey was used as an example in order to facilitate their fu-
ture work of evaluation. However, as this study was their first prac-
tical evaluation, their participation was limited to observation and
observation notation. The subjects’ notes were completed by other
data (user-log and task models).
5.2.2. Training course
During the first practical session, students had to design two

different task models. The first one presented their activity before
arriving at university each morning (TM1). Few concepts were
used to design this task model. They had to decompose this activity
without defining objects or conditions. From the design of the sec-
ond task model (TM2), all K-MADe concepts were used. This sec-
ond task model described the activity of a clerk in a car rental
office (described by textual report of a rental secretary interview).
To design this task model, the students were paired and had no
time limit, after the end of the practical session (we estimated this
time nearly to two hours).
5.2.3. Usage sessions
During the usage evaluation session, students were requested

to model the activity for completing a volley-ball game marking
sheet (TM3). Instructions for this activity were given at the begin-
ning of the sessions. They were composed of the official instruc-
tions of the French Volley Ball Federation (FFVB) and two
examples of marking sheets (completed and non-completed ones).
Finally, to design the last task model (TM4), students were able to
ask questions to the tutors. From this task model, they had to de-
sign the software program for a laboratory. Only the first group
of students (bio-informatics students) worked on task model TM4.
14 It should be noted that this method may disturb the user, and change the task.
5.3. Evaluation method

In order to perform this assessment, we used a classical evalu-
ation technique (Nielsen et al., 1993): real-time expert observation
of subjects using the tool. In order to evaluate the progression of
the use of computable concepts in the apprenticeship of task mod-
elling, a two level observation was conducted: an observation of
the first whole group (global observation) and an observation of
the behaviour of each student (individual observation). The indi-
vidual observation of all students (of the first and second groups)
allowed the evaluation of the usage of the K-MADe computable
components.
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
5.3.1. Global observation
After each session of the first group, the tutors noted what they

had observed. The global understanding difficulties (wordings and/
or concepts) were written in detail (for example, when students
did not use iteration condition as a Boolean condition). The tutors
also noted the student answers. These notes aimed at helping in
the interpretation of other gathered data (as task models).
5.3.2. Individual observation
This observation was set up in the evaluation session (Fig. 9). All

students were paired. During the first half part of the session, one
student acted as a task model designer (using K-MADe, so named
user), while the second acted as the evaluation expert (named ob-
server). They reversed roles during the second part. Each session
lasted 1 hour and a half with a 15 min break between sessions.
The modelled activity was the same for all students and was intro-
duced in French at the beginning of the sessions. The case study
was the volley-ball game marking sheet. K-MADe was used to
model the tasks to be performed.
5.3.2.1. Observers’ notes. During the modelling, the observer en-
sured that the user verbally described his/her modelling process14

(asking questions (why do you do this? What do you want to do?
What are you looking for?) that were given by evaluation instruc-
tor), and noted what s/he observed concerning the use of the tool
by his/her user (hesitations, exploration in several parts of the soft-
ware without actions, etc.). In order to help observers in their
evaluation, observation sheets were given to them (illustrated in
Table 16). These sheets were mainly composed of a three column
table corresponding to the three types of information recorded
for each observation:

– The type of the observation among a set of defined categories
(user goal (G), tool functionalities (F), functionality utilization
(FU) and information (I)).

– The observation in textual form.
– The time of observation (reporting the time of the user com-

puter in order to correspond to the user-log (generated with
computer hour)).
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Fig. 10. A user-log produced using K-MADe.

Table 17
The collected data.

Session Task
model

Group1 Group 2

Session 1 TM1 – Tutor notes – Tutor notes
TM2 – Tutor notes

– Task models
Session 2 TM3 – User-logs

– Observer-student
notes

– Student exploitation
document

– Task models
– Tutor notes

– Observer-student
notes

– Student exploitation
document

– Task models
– Tutor notes

Session 3 TM4 Tutor notes tutor notes –

Table 18
The selection of the task model data.

Gathered Used

TM2 11 8
First group TM3 folders 48 46
Second group TM3 folders 20 19

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 19
As this study was the first practical evaluation of students, their
participation was limited to observation and observation notation.
In order to complete the observers’ notes and the designed task
model, two other types of data were used: user-logs and
questionnaires.

5.3.2.2. User-logs. To complete the observations carried out during
the evaluation, the users in the first evaluation used a version of K-
MADe that produced user-logs. This version allowed the keeping
track of user’s actions using timestamps and produced a text-file
(the user-log). Particularly, this log indicates when the user enters
and exits each K-MADe space (task space, abstract objects, edition
condition windows (pre, post and iteration). . .). Fig. 10 shows an
example of this file.

5.3.2.3. Questionnaires. At the end of the evaluation session, the
participants of the second group were asked to complete a ques-
tionnaire in French about the use of objects. This questionnaire
was composed of five questions on definitions, object deletions
and conditions. Questions focused on object understanding (When
do you use them? Why? And how?).

5.4. Data

Since each session tried to reach different goals, we did not col-
lect the same data for each experiment. In this section, we present
the results of each study. Table 17 summarizes the data gathered
according to the session and the evaluation goal. The data that
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
could not be used to perform an evaluation was not included in
the analysis (Table 18). In the second part of this section, the selec-
tion of the data is justified.
5.4.1. Collected data
The goal of the first task model exercise (TM1) is to introduce

the use of K-MADe, therefore, we did not collect any specific data
from this modelling session. While the second task model (TM2)
was designed, students used all concepts of K-MAD for the first
time. The task models to analyze the students’ understanding of
computable concepts of K-MAD were collected.

The third task model (TM3) aimed at reaching two different
goals: the knowledge of the task modelling process; the knowledge
of the computable entity usage and difficulties. And lastly, in order
to evaluate the use of computable entities after the task model
apprenticeship, students designed their last task model (TM4).
5.4.1.1. Modelling process. The first group evaluation session
(designing TM3 for group 1) aimed at analyzing the task modelling
process, particularly when the K-MADe entities are defined and
when they are manipulated. In order to obtain this information,
user-logs and notes from the observers were used. These two types
of information allow the collection of two complementary data.
While the observer is focused on usage, what the user goals are
and how s/he models conceptually, the user-logs give information
on how the K-MADe components are used. Using timestamps on
both data, we can determine how users actually use K-MADe tool
components.

Moreover, students were requested to exploit their notes and
user-logs to write an evaluation report. This report included the
modelling process of the observed user, his/her use and usage of
the tool, and an analysis of the resulting model. Even though the
produced documents were readable and quite organized models,
observer notes and user-logs were also collected for expert
analysis.

This first group evaluation session helped to determine when K-
MADe entities were used in the global modelling process. We did
not collect any precise information about their usage. The objective
of the second group session was to answer this question.
5.4.1.2. Computable entity usage and difficulties. As for the first
group, the user behaviour of the second group subjects was re-
ported in the observer notes and a document was written to report
their observations. However, as user-logs do not provide informa-
tion about entity usage, we did not use them for this session. In or-
der to analyze K-MADe entity usage, we considered two types of
data: the models and the questionnaires. The verification of enti-
ties in the resulting models indicates the degree of understanding
of the object concept. The questionnaire analysis (associated with
the student report analysis) keeps records on the difficulties and
needs in using objects.
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Fig. 11. Percentage of students defining computable entities during the first
session.

Table 19
Distribution of students by process.

Did not use any formal entities Schema 1 Schema 2 Schema 3

12 15 10 9

20 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx
5.4.2. Selection of data
As students were paired to perform the second task model

(TM2), there were 11 models from the first group. However, two
task models were not returned. In addition, one returned task
model was not completed due to a computer virus so we did not
take it into account. Eight TM2 were analyzed.

During the second sessions we collected one folder per user. It
included the observer notes, the observer exploitation document,
the task model, the user-log (for group 1) and the questionnaire
(for group 2). The first evaluation session aimed at gaining some
understanding on the modelling process. The data used to infer
the user modelling process was mainly taken from user-logs. This
file was automatically generated without any technical problem.
However, we did not wish to use these user-logs without taking
into account the context (reproduced in the observer-student
notes and the exploitation documents). Two of the folders were
not complete (observer notes or task model were not provided)
and therefore were not included in the analysis. We ended up con-
sidering 46 out of the 48 folders in our analysis (corresponding to
the 48 students of group 1).

The data used for the second group evaluation included all the
information in the folders; we could therefore only consider the
fully-completed folders. For the first analysis, the observer notes,
the student exploitation documents and the task models were only
used to help us to give a context to the user-log data but for the
second one they were essential. During this evaluation process,
we observed that the only non-French speaking student was not
able to understand all the directives (this observation was con-
firmed when he had to complete the questionnaire). He was there-
fore not considered in the analysis. The second part of the
evaluation is based on 19 complete folders.
Fig. 12. Edition of a

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
5.5. Learning of the use of computable aspects

The data collected during all learning sessions allow us to study
the computable aspect of the learning time: the use of decomposi-
tion operators, entities (objects, events and users) and conditions.

Decomposition operators schedule sub-tasks. The use of the
grammar verification tool highlights the users’ misconception
about this concept. They sometimes mixed up the notion of
decomposition and inheritance and thus defined tasks composed
of only one subtask. This misunderstanding was explained and cor-
rected by the tutors as soon as it was detected during the first
session.

During this first session, in order to design their second task
model (TM2) students had to define abstract objects, concrete ob-
jects, events, users and to use them to write pre, post and iteration
conditions. All these concepts were presented during the lecture
and the tutors illustrated the editing of a pre-condition. They also
corrected the students’ mistakes. We did not evaluate whether stu-
dents correctly used the entities but only whether they used them
or not. Fig. 11 presents the percentage of students who defined
computable entities to design the second task model (TM2). As
shown in this figure, the abstract and concrete objects and their
use to define post-conditions seem to be well understood. The def-
inition and the use of objects require the manipulation of string (to
name), set types (to group objects) and basic computer types (to
define attributes). All students have a computer science back-
ground: the use of these types does not cause any problem. Whilst
the necessity of defining entities is understood by students, their
roles and links seem to be less assimilated. Concrete objects are
used to define conditions; however, 12.5% of students who defined
abstract objects did not instantiate them and 12.5% did not use ob-
jects to express any conditions. Twenty-five percentage of students
thus defined abstract objects without any link to another concept.

Concerning the computable conditions, 87.5% of students de-
fined at least one post-condition from the first session onwards.
We do not take into account the definition of pre-conditions be-
cause tutors used them to illustrate the use of the K-MADe calcu-
lator (see Fig. 3). When students did not succeed in defining their
conditions using the K-MADe calculator (by using the mathemati-
cal syntax), they did it literally using textual definition (Fig. 12).
Even though the definition of the K-MAD computable entities
and conditions using K-MADe caused some difficulties, the neces-
sity of their use appeared natural for students in order to complete
pre-condition.

wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Fig. 13. Schemas of student task modelling process.

Table 20
Users defining each of K-MADe elements.

Event User Abstract object Concrete object Group Pre Post Iteration

Group 1 9 9 34 28 34 18 18 9
Group 2 5 2 19 19 19 16 17 16

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 21
the task scheduling (Caffiau et al., 2008). Students of this study had
some computer science knowledge. Since this first usage evalua-
tion, we have observed students with different skills. For non-com-
puter science students, while object definition is natural, the use of
conditions is not.

Fig. 11 shows that few students used iteration conditions, events
and users. Iterations are defined as pre and post-conditions (using
the calculators), without more technical difficulties. Events and
users are defined with string. The lack of use of these concepts
may be due to the teaching. Whilst objects, pre- and post-condi-
tions had been presented (and illustrated) by tutors, iteration,
users and events had only been presented in the lecture (without
any example).
5.6. Modelling process

After students had discovered the K-MADe tool and the K-MAD
model, their task modelling processes were studied during the
evaluation session and especially the intervention of computable
entities in this process. Prior to identifying the intervention of ob-
jects in the task modelling process, it was observed that some stu-
dents did not define objects. Indeed, 26% of users (12/46) of the
first group in the second session did not try to define (or use)
any K-MADe computable entities. However, we cannot precisely
identify why. Two reasons may explain the absence of these ele-
ments in the task model process: the limited duration of the exper-
iment, or the non-assimilation of object concepts. Student notes
and reports did not allow us to identify the main reason. Six partic-
ipants indicated that the sessions were not long enough but others
(6/12) did not give any relevant information on the subject.

From the 34 remaining folders, we identified three main sche-
mas followed by users to design task models. Table 19 presents
the distribution of students for each process. The most used
(44.10% of schemas integrating computable entities) are divided
into two steps. Firstly, the user composes the task tree (decom-
poses tasks). Secondly, s/he iteratively writes entities and associ-
ates them with tasks. The steps of the second most used schema
(29.4%) are sequential. The user performs the task decomposition
prior to defining all entities, and then associates them with the
tasks (using conditions). Moreover, an incomplete process (fol-
lowed by 22% of user-students) is composed of the first two steps
of the second schema. The last schema is the iteration of the second
one. Fig. 13 summarizes the first and the second schemas.

These observations give us some understanding on the role that
objects have in the task modelling process. As an example, the con-
current definition of objects and task tree composition indicates
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
that users associate objects and tasks. Conversely, when the defini-
tion and the use of objects are separated from the task tree compo-
sition, we can deduce that the user defines objects only to use
them for condition expressions. Therefore, objects associate prop-
erties and tasks for some users.

5.7. Definition of computable entities (after learning)

The second investigated point is the definition of computable
entities to model tasks. We especially aimed at identifying what
computable entities are used and why.

5.7.1. What computable entities are used?
From the data gathered in both evaluation sessions (of group 1

and 2), Table 20 shows how many students define each task model
component. According to these results, few users integrated the
concepts of events (20% in the first group and 26% in the second)
and users (20% and 10.5%) in the task modelling process. On the
opposite, the major part of the first group users and all user-stu-
dents of the second group defined the objects (abstract and con-
crete objects) in order to model the activity.

To define event and user entities, only one-level strings are used
(non-composed definition). Associating them with tasks is easy
when using the selection among the defined elements. In contrast,
the abstract and concrete objects are composed of several con-
cepts, and their definition is quite hard. The lack of use of events
and users cannot be related to their complexity. No explanation
can be inferred in that case.

5.7.2. Why are computable entities used?
However, Table 20 also indicates the proportion of users using

pre, post and iteration conditions. In the evaluation session, these
three types of object manipulation were widely used in the task
modelling process (for the second group, 84% defined at least one
pre-condition, 89.5% defined at least one post-condition and 84%
defined at least one iteration condition). Prior to editing these con-
ditions, the user needs to define the objects (abstract objects, con-
crete objects and groups). The objects may be defined only to allow
the definition of conditions. Therefore, the users did not see objects
as a part of tasks but as a way of defining conditions.

From these figures, it can be observed that for the majority of
students, it is natural to define objects in order to complete the
semantics of scheduling operators. As an example, when they de-
signed the task model of the volley-ball marking sheet, all students
defined conditions using objects and conditions to express the end
of a match.
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Fig. 14. View of grammar inconsistency detection.

22 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx
The study of the proportion of definition of K-MADe concepts in
the two sessions shows a difference between the two groups. In the
first evaluation group, 26% of users did not use any entity. Whilst
all participants followed the same lecture, the discrepancy cannot
be explained solely by the teaching. However, these groups do not
have the same background. Figures shown in Table 20 clearly indi-
cate that computable object definitions are easier to be used by
pure computer science students.
5.8. The use of computable aspects to validate task models

The computable aspects in task modelling allow verifications on
task models in order to detect discrepancies, for example, the fact
that a task is composed of only one subtask (in grammar verifica-
tion tool, Fig. 14). K-MADe offers tools that perform this type of
verification prior to allowing the access to the simulation tool.

The last observations of this evaluation concern the use of the
grammar verification tool and the simulation tool. We present
why and when students used these two K-MADe tools in the task
model processes.
5.8.1. Why are correction tools used?
During the task modelling training, these tools may be used so

that the model complies with the model syntax.
When this step was completed (from TM3), 62.5% of student

continued to use at least one correction tool, and 12.5% indicated
that they did not because they did not have enough time. The
coherence verification tool detects one error in 90% of the cases
which indicates that users need this type of tools to design their
models. Moreover this coherence verification tool is the most used
correction tool (87.5% of students stopped the simulation tool as
soon as any coherence error was detected).
5.8.2. When are correction tools used?
The study of user-logs shows that users triggered correction

tools, especially after they decomposed their tasks (between lines
1 and 2 in the schemas of Fig. 13) and when they considered the
task modelling completed. These uses correspond to the errors de-
tected by the coherence verification tool.

Moreover, the computable conditions were systematically
checked (sometimes many times) when they were written in order
to verify their syntax.
6. Summary of results and research avenues

In this section, we first summarize the lessons learned from the
systematic and empirical evaluation of K-MAD/K-MADe. Following
these evaluations, several improvements can be planned. They par-
ticularly concern the definition and use of the computable aspects
and the use of K-MAD task models.
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
6.1. Summary of results

The use of K-MADe to design task models of interactive applica-
tions (for our case studies and the assessments) provided results
that correspond to two main points: results about the definition
of computable entities and results about their use.

K-MADe computable entities are mainly defined after the task
decomposition, to add complementary information. We ob-
served that the computable entities are defined in order to add
semantics to the K-MADe tasks. Task definition is not disjoined
from the definition of entities that are manipulated to perform
the tasks. For example, from the interviews (Sebillote, 1995) per-
formed to design the Genindexe task model, the tasks are described
with their handled objects (‘‘Then, I send the invoice’’). However,
the definition of tasks without any object limits the understanding
semantics to the task name and is thus dependent on the task
model reading. On the contrary, the association of objects (used
in the conditions) precisely describes the task behaviour (execu-
tion conditions and effects). Therefore, the adding of objects to
the tasks improves the understanding and consequently the com-
munication between all the application design actors (one of the
six evaluation points in Balbo et al. (2004)).

In addition to this semantic goal, objects (and so conditions) are
also used in order to complete the schedule. This contribution rap-
idly appears to task model designers during our case studies (this
role of objects is mandatory in 4/5 of case study task models) as
the student usage (all students naturally used computable entities
to define the end of a volley-ball game). Thus, the analysis of the
presented evaluations shows that for designers, the K-MADe fea-
tures are mandatory to design task models.

Finally, the main goal in the use of computable entities is the
capability to compute them in order to perform verification. As
the empirical evaluation showed, the most used entities are the ones
that can be computed and used in the K-MADe verification tools.

K-MADe offers two tools for the design of task models in order to
support interactive application design or validation: the grammar-
checking tool and the simulation tool. During the evaluation study,
the grammar-checking tool was widely used (only one student per-
formed a scenario from the simulation tool). The grammar-checking
tool checks that the designed model complies with the model syn-
tax. This function acts for two roles. First, during the training, it helps
the students to use the task model syntax correctly. And secondly,
during all the other task model designs, it quickly and automatically
detects the syntactic designer mistakes (the grammar-checking
tool is mainly triggered at the end of the task modelling steps).

Even if students did not use the simulation tool, it was an
important tool when, some scenarios needed to be validated by
the application domain experts (for the Genindexe and the ParAd-
min task model). These experts did not have any HCI skills and did
not have any knowledge of task models. In order to explain the de-
signed task models and to verify that it was designed according to
the gathered activities, we used the K-MADe simulation tool and
we generated task execution traces that represent the user activi-
ties. Producing scenarios manually cannot be considered as full test
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

Fig. 15. Calculator of the condition editor.

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 23
coverage. But the simulator could be used to verify that the scenar-
ios described in the requirements are correctly implemented in the
task model. Nevertheless, using scenarios with the K-MADe simu-
lator proved to be usable with domain experts at a validation stage.
During simulation of the designed task models, domain experts
verbally expressed that they were confused. Task model designers
had to to explain the task model simulation. A specific assessment
should be performed in order to evaluate the domain expert use of
the K-MADe evaluation tool from this first observation.

6.2. The K-MAD computable aspects

The usage of the K-MADe tool highlighted the need for complet-
ing the K-MAD model in order to take all concepts required to
model any activity into account. For example, Users are integrated
in the K-MAD model and they can be linked to the tasks specifying
the task actors. This point of view corresponds to the description of
one user activity. However, to design a task model of activities
concerning a whole group of users (as in a company) this definition
of actors is not appropriate. K-MAD will be modified to include the
definition of groups of users as potential actors. Following the wish
to associate a tool closer to the task model, K-MADe needs also to
be extended using the group-actor concept.

The use of the tool highlights also the lack of semantics of some
model entities. For example, using and teaching (Caffiau et al.,
2008) task modelling shows the difficulty to understand the event
entity and furthermore, to use it. All limits in K-MAD components
semantics highlighted in our evaluations must be addressed in the
model prior to be implemented in the tool.

The last point concerning the definition of the K-MADe comput-
able aspects and requiring more specific studies concerns the ob-
ject entity. As the evaluation showed, the main difficulties of
usage concern the definition and the use of objects. Two main rea-
sons can explain that. First, the concepts used to define objects are
not always clear and necessary from the user point of view. For
example, concrete objects are created (and manipulated) only
through a group of abstract objects. However, for the user, the def-
inition of an only-one-element group does not have any meaning.
Secondly, these objects are used to define conditions and some
users do not define objects when the objects are not used to define
any condition. However, the definition of conditions requires the
use of calculators and their use is non-intuitive (see Fig. 15) for
users, which causes difficulties, errors and non-use of computable
conditions. The definition and use of objects will be the topics of
subsequent work.

6.3. The use of K-MAD task model

The K-MADe tool has to be very close to the task model and has
to help the design and the use of its concepts. In order to improve
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
this second point, we selected three groups of tools according to
three kinds of needs: the needs for the design step; the needs for
the task model validation by the domain expert; and the needs
for the K-MADe task model usage.
6.3.1. Needs for the design step
In order to help during the design stage, two tools might be

added to K-MADe. These tools concern the validation of the task
model semantic expression and the querying of the task models.

The K-MAD syntax has to be followed to design task models
using K-MADe. Designers have to observe this semantic expression
to benefit from the validation tools. A tool able to automatically de-
tect the semantic errors is planned. This tool will check the obser-
vation of the constraint coherence (such as a subtask pre-condition
that is incoherent with the parent task pre-condition) and of the
scheduling (such as the fact that all tasks are reachable).

In order to validate the design of task models and to evaluate
the consequences of modification(s), the querying functionality
and the recording of queries should be suitable tools for model val-
idation. These queries allow designers to compare their task mod-
els with their objectives. Euterpe allows querying task models such
as: where the object O is used; or what the tasks with S sub-tasks
are. The results of these queries are displayed but cannot be re-
corded. Future developments of K-MADe will integrate the query
definition and recording.
6.3.2. Needs for domain expert validation
Taking into account state-of-the-world objects in K-MADe al-

lows us to be closer to real-life activities. The closeness between
the real-life world and the model is particularly important for
the validation of task models by domain expert users. This valida-
tion can only be performed using the simulation tool and the sce-
nario recording/replaying. As written above, computable
conditions are automatically computed when the K-MADe simula-
tion tool is used. However, other functionalities require to be
added in order to help the task model validation. For example,
the design of task models requires scheduling tasks. Taking into ac-
count the modification of the scheduling operators directly in the
simulation tool could allow us to see the consequences of the
changes.

Moreover, the use of the K-MADe simulation tool to validate the
task models of our case studies by users (in particular by the
employees of Genindexe) shows that the simulation tool (Fig. 4) is
not easy to use for non-I.T. specialists. While the presentation of
the task model data (schedule, conditions, objects. . .) is of interest
for designers, the user validation focuses on the performed scenar-
ios. The needs for task model validation by expert domain users
will be taken into account by the study of a specific task model
view of the simulation tool.
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://dx.doi.org/10.1016/j.intcom.2010.06.003

24 S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx
6.3.3. Needs for K-MADe task model usage
The task model design is iterative. These models may be modi-

fied and consequently the storage of previous versions is impor-
tant. Moreover, the management of several versions of the
description of activities makes team work easier. Users can thus
compare two versions of the description of the same activity. The
development of tools that allow these actions to be performed
could improve the use of K-MADe thus facilitating its usage and
the description of common activities.
7. Conclusion

Ergonomics and software designers perform task analysis dur-
ing several stages of the software cycle life: analysis, design, devel-
opment, validation. . . The activity description is expressed using
task models. To represent real-life activities, these models must
integrate the concepts of tasks, objects, actors and events. Concur-
rently, some tools associated to these models were developed. Ow-
ing to the lack of semantics and the distance15 between task models
and tools, these tools are not often used (Couix, 2007).

In order to address these issues, the K-MAD model and its asso-
ciated tool K-MADe have been developed. K-MAD includes com-
putable aspects that provide the simulation of the more realistic
models that take into account conditions, events and evolutions
of the state-of-the-world.

To evaluate the impact of these points, case studies and usage
evaluations have been performed. These studies focus on the learn-
ing of the computable aspects; the role that they play in task mod-
elling process and validation; and the expressive power of K-MAD.

The data gathered from these studies show the need for com-
putable attributes to model and validate task models (to design
their first task models, 100% of users needed to define abstract ob-
jects) but also the difficulties to use the tool to define them (the
percentage of users who defined abstract objects declined to 74%
for the same group when users were not helped by instructors).

The analysis of the data also indicates that the definition and
use of computable aspects are easier (using K-MADe) for computer
scientists than for others, pointing out one of the usability
improvement issues. In that respect, several studies are planned
by modifying the interaction techniques and the presentation of
information. In addition to the improvement of tool usability, our
studies showed the need to better define the semantics of several
concepts (for example the events) and to complete the expressive
power of the model.

To complement the studies presented in this paper, several as-
pects of task model use need to be explored. The case studies did
not integrate collaborative work. The expressive power of K-MAD
requires to be tested to check if it allows this type of activities to
be expressed or whether it has to be enhanced (as the CTT notation
(Sinning et al., 2007).

Moreover, the participant’s skills in computer science do not al-
low us to generalize our observations to all users: as we have
shown before, a minor difference of skills considerably modifies
the usage of objects (see Table 20). In order to gain a broader point
of view, the same type of evaluations with other background par-
ticipants should be conducted.

As indicated previously, the use of computable aspects in the
expression of activities allows a more realistic description (the
adding of conditions completes the scheduling which is expressed
by the operators) but their integration in the task model opens
other perspectives. Several studies exploiting the increase of
15 There are often some differences between the theoretical model (as published)
and the implemented model in tools. These differences create a ‘‘distance’’ between
defined models and implemented models.

Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
expressive power are currently underway in order to check the
interactive software dialogue.

This study is exploratory in the sense that it is an overall exam-
ination of potential difficulties encountered during training and
usage of one particular task model and tool, without preconceived
hypotheses or selection of particular experimental variables.

Besides, it is, to our knowledge, the first study of this kind that
reports data on actual use of task modelling with a tool. For future
work, we plan to consider longitudinal studies, which might bring
highlights on task based tools usage during modelling.

And finally, integrating task-oriented design in actual industrial
projects may require to develop further links (pathways, models,
etc.) between the user task level and the business modelling level,
particularly for applications that deal jointly with ‘‘front office’’ and
‘‘back office’’, with different goals and different user types.
References

Abed, M., Tabary, D., Kolski, C., 2004. Using formal specification techniques for the
modeling of tasks and the generation of human–computer user interface
specifications. In: Diaper, D., Stanton, N. (Eds.), The Handbook of Task Analysis
for Human–Computer Interaction. Lawrence Erlbaum Associates, pp. 503–530
(Chapter 25).

AMBOSS, 2008. AMBOSS Electronic Reference. <http://wwwcs.uni-paderborn.de/cs/
ag-szwillus/lehre/ws05_06/PG/PGAMBOSS> (last accessed 27.07.08).

Annett, J., 2004. Hierarchical task analysis. In: Diaper, D., Stanton, N. (Eds.), The
Handbook of Task Analysis for Human–Computer Interaction. Lawrence
Erlbraum Associates, pp. 67–82 (Chapter 3).

Annett, J., Duncan, K., 1967. Task analysis and training design. Occupational
Psychology 41, 211–221.

Balbo, S., Ozkan, N., Paris, C., 2004. Choosing the right task-modeling notation: a
taxonomy. In: Diaper, D., Stanton, N.A. (Eds.), The Handbook of Task Analysis for
Human–Computer Interaction. Lawrence Erlbaum Associates, pp. 445–466
(Chapter 22).

Baron, M., Lucquiaud, V., Autard, D., Scapin, D., 2006. K-MADe: un environnement
pour le noyau du modèle de description de l’activité. In: Proceedings of IHM’06.
(Eds.). Montréal, Canada 18–21 avril 2006. ACM Publishers, pp. 287–288.

Bellatreche, L., Boukhalfa, K., Caffiau, S., 2008. ParAdmin: Un Outil d’Assistance à
l’Administration et Tuning d’un Entrepôt de Données. In: Proceedings of EDA
2008, Toulouse.

Biere, M., Bomsdorf, B., Szwillus, G., 1999. Specification and simulation of task
models with VTMB. In: CHI’99 Extended Abstracts on Human Factors in
Computing Systems (Pittsburg, Pennsylvania, May 15–20, 1999). CHI’99. ACM,
New York, pp. 1–2.

BPMN 2.0, 2010. BPMN 2.0 Electronic Reference. <http://www.bpmn.org/> (last
accessed 25.01.10).

Caffiau, S., 2009. Approche dirigée par les modèles pour la conception et la
validation des applications interactives : une démarche basée sur la
modélisation des tâches. phD thesis. LISI/ENSMA. Poitiers. pp. 240.

Caffiau, S., Girard, P., Scapin, D., Guittet, L., 2007. Generating interactive applications
from task models: a hard challenge. In: Proceedings of TAsk MOdels and
DIAgrams (TAMODIA). Toulouse, France Springer Berlin/Heidelberg, pp. 267–
272.

Caffiau, S., Girard, P., Scapin, D.L., Guittet, L., Sanou, L., 2008. Assessment of object
use for task modeling. In: Proceedings of Engineering Interactive Systems (HCSE
2008 and TAMODIA 2008), Pisa, Italy (LNCS 5247), September 2008. Springer,
pp. 14–28.

Caffiau, S., Scapin, D.L., Sanou, L., 2008. Retour d’Expérience en Enseignement de la
Modélisation de Tâches. In: Proceedings of ERGO’IA. Biarritz, pp. 135–143.

Calvary, G., Coutaz, J., Thevenin, D., 2001. A unifying reference framework for the
development of plastic user interfaces. In: Proceedings of Engineering for
Human–Computer Interaction (8th IFIP International Conference, EHCI’01,
Toronto, Canada, May 2001. Canada Springer, pp. 173–192.

Carroll, J.A., 2000. Making use: scenario-based design of human–computer
interactions. The MIT Press.

Couix, S., 2007. Usages et construction des modèles de tâches dans la pratique de
l’ergonomie: une étude exploratoire. Master thesis report (only in French).
<http://www.biomedicale.univ-paris5.fr/taskmodelsurvey/accueil/
index.php?page=accueil&hl=en_US> (last accessed 29.04.10).

Delouis, I., Pierret, C., 1991. Emad : Manuel de référence Institut National de
Recherche en Informatique et en Automatique.

Diaper, D., 2004. Understanding task analysis for human–computer interaction. In:
Diaper, D., Stanton, N. (Eds.), The Handbook of Task Analysis for
Human–Computer Interaction. Lawrence Erlbaum Associates Inc., pp.
5–48.

Dittmar, A., Forbrig, P., Heftberger, S., Stary, C., 2005. Support for task modeling – a
‘‘Constructive’’ exploration. In: Bastide Remi, Palanque Philippe A., Roth Jörg
(Eds.), Engineering Human Computer Interaction and Interactive Systems, Joint
Working Conferences EHCI-DSVIS July 11–13 2004. Hamburg, Germany, pp. 59–
76.
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://wwwcs.uni-paderborn.de/cs/ag-szwillus/lehre/ws05_06/PG/PGAMBOSS
http://wwwcs.uni-paderborn.de/cs/ag-szwillus/lehre/ws05_06/PG/PGAMBOSS
http://www.bpmn.org/
http://www.biomedicale.univ-paris5.fr/taskmodelsurvey/accueil/index.php?page=accueil&hl=en_US
http://www.biomedicale.univ-paris5.fr/taskmodelsurvey/accueil/index.php?page=accueil&hl=en_US
http://dx.doi.org/10.1016/j.intcom.2010.06.003

S. Caffiau et al. / Interacting with Computers xxx (2010) xxx–xxx 25
Dix, A.J., 1991.Formal Methods for Interactive Systems. Academic Press, p. 384.
ISBN: 0122183150.

Dix, A., 2008. Tasks = Data + Action + Context: Automated Task Assistance through
Data-Oriented Analysis (invited paper). In: Proceedings of Engineering
Interactive Systems 2008 (HCSE 2008 and TAMODIA 2008), Pisa, Italy (LNCS
5247), September 2008. Springer, pp. 1–13.

Gamboa, R.F., 1998. Spécification et implémentation d’ALACIE : Atelier Logiciel
d’Aide à la Conception d4interfaces Ergonomiques (Thesis). Paris XI.

Gamboa, R.F., 1998. ALACIE : Manuel d’Utilisation. INRIA.
Gamboa, R.F., Scapin, D.L., 1997. Editing MAD* task description for specifying user

interfaces, at both semantic and presentation levels. In: Proceedings of
Eurographics Workshop on Design, Specification and Verification of
Interactive Systems (DSV-IS’97), 4–6 June. Springer-Verlag, Granada, Spain,
pp. 193–208.

Giese, M., Mistrzyk, T., Pfau, A., Szwillus, G., Detten, M., 2008. AMBOSS: a task
modeling approach for safety-critical systems. In: Proceedings of Engineering
Interactive Systems (HCSE 2008 and TAMODIA 2008), Pisa, Italy (LNCS 5247),
September 2008. Springer, pp. 98–109.

Hammouche, H., 1995. De la modélisation des tâches utilisateurs à la
spécification conceptuelle d’interfaces Homme-Machine (Thesis). Université
de Paris VI.

Heinrich, M., Winkler, M., Steidelmüller, H., Zabelt, M., Behring, A., Neumerkel, R.,
Strunk, A., 2007. MDA applied: a task-model driven tool chain for multimodal
applications. In: Marco Winckler (Eds.), Task Models and Diagrams for User
Interface Design: 6th International Workshop, proceedings of TAMODIA 2007,
Toulouse, France, November 7–9, 2007. Springer, pp. 15–27.

Hix, D., Hartson, H.R., 1993. Developing User Interfaces: Ensuring Usability through
Product & Process. John Wiley & Sons Inc.

IBM Task Modeler, 2010. IBM Task Modeler Electronic Reference. <http://
developer.tibco.com/business_studio/default.jsp> (last accessed 25.01.10).

ISO EXPRESS, 1994. The EXPRESS Language Reference Manual.
ISO Systems, 1984. I. I. P. Definition of the Temporal Ordering Specification

Language LOTOS.
Jambon, F., Brun, P., Ait-Ameur, Y., 2001. Spécification des systèmes interactifs. In:

Hermès-Lavoisier (Eds.), Analyse et Conception de l’IHM (Chapter 6).
John, B.E., Kieras, D.E., 1996a. Using GOMS for user interface design and evaluation:

Which technique? ACM Transactions on Computer–Human Interaction, 287–
319.

John, B.E., Kieras, D.E., 1996b. The GOMS family of user interface analysis
techniques: comparison and contrast. ACM Transactions on Computer–
Human Interaction, 320–351.

Johnson, H., Johnson, P., 1993. ADEPT-advanced design environment for prototyping
with task models. In: Proceedings of Human Factors in Computing Systems
(InterChi’93), Springer, p. 56.

Kieras, D.E., 2004. GOMS models for task analysis. In: Diaper, D., Stanton, N., (Eds.),
The Handbook of Task Analysis. pp. 83–116 (Chapter 4).

K-MADe, 2006. K-MADe Electronic Reference. <http://kmade.sourceforge.net/> (last
accessed 14.04.09).

Limbourg, Q., Vanderdonckt, J., 2004. Comparing task models for user interface
design. In: Diaper, D., Stanton, N.A. (Eds.), The Handbook of Task Analysis for
Humain–Computer Interaction. pp. 135–154.

Limbourg, Q., Pribeanu, C., Vanderdonckt, J., 2001. Uniformation of Task Models in
Model-Based Approaches. Université catholique de Louvain.

Lucquiaud, V., 2005. Sémantique et Outil pour la Modélisation des Tâches
Utilisateur: N-MDA (Thesis). University of Poitiers. p. 285.

Mahfoudhi, A., Abed, M., Tabary, D., 2001. From the Formal Specifications of User
Tasks to the Automatic Generation of the HCI Specifications.

Minsky, M., 1988. The Society of Mind. First Touchstone Edition. Simon & Schuster,
Inc.

Molina, A.I., Redondo, M.A., Ortega, M., 2005. Analyzing and modeling user task in
DomoSim-TPC system for adapting to mobile devices. In: Navarro, R., Lorés, J.
(Eds.), HCI Related Papers of Interaction 2004. Springer, pp. 221–241.

Mori, G., Paternò, F., Santoro, C., 2003. Tool support for designing nomadic
applications. In: Proceedings of Intelligent User Interfaces (IUI’2003). Miami,
Florida 12–15 January 2003, pp. 141–148.

Mori, G., Paternò, F., Santoro, C., 2004. Design and development of multidevice user
interfaces through multiplelogical descriptions. IEEE Transactions on Software
Engineering, 507–520.
Please cite this article in press as: Caffiau, S., et al. Increasing the expressive po
tool-supported task models. Interact. Comput. (2010), doi:10.1016/j.intcom.20
Nielsen, J., 1993. Usability Engineering. Academic Press, Boston. ISBN: 0-12-
518405-0.

Norman, D.A., Draper, S.W., 1986. User Centered System Design. Lawrence Erlbraum
Associates. ISBN: 0898598729.

Object Management Group, 1997. The Unified Modeling Language.
Palanque, P., Bastide, R., Winckler, M., 2003. Automatic Generation of Interactive

Systems: Why A Task Model is not Enough Human–Computer Interaction.
Design Approaches, Methods and Tools. Lawrence Erlbraum Associates. pp.
198–202.

Paternò, F., 2001. Model-Based and Evaluation of Interactive Applications. Springer.
ISBN: 1-85233-155-0.

Paterno, F., 2004. ConcurTaskTrees: an engineered notation for task models. In:
Diaper, D., Stanton, N.A. (Eds.), The Handbook of Task Analysis for Human–
Computer Interaction. Lawrence Erlbaum Associates, pp. 483–501 (Chapter 24).

Paternò, F., Faconti, G.P., 1992. On the use of LOTOS to describe graphical
interaction. In: Monk, Diaper, Harrison (Eds.), People and Computers VII:
Proceedings of the HCI’92 Conference, Cambridge University Press, pp. 155–
173.

Paternò, F., Santoro, C., 2002. One model, many interfaces. In: Proceedings of
Computer-Aided Design of User Interfaces (CADUI’2002). Valenciennes, France
May 15–17. Kluwer Academics, pp. 143–154.

Paternò, F., Mancini, C., Meniconi, S., 1997. ConcurTaskTrees: a diagrammatic
notation for specifying task models. In: Proceedings of IFIP TC13 Human–
Computer Interaction Conference (INTERACT’97). Sydney, Australia, pp. 362–
369.

Reffye, P.D., Edelin, C., Françon, J., Jaeger, M., Puech, C., 1988. Plant models faithful to
botanical structure and development. In: Proceedings of the 15th Annual
Conference on Computer Graphics and Interactive Techniques. pp. 151–158.

Scapin, D.L., 1988. Vers des outils formels de description des tâches orientés
conception d’interfaces. Institut National de Recherche en Informatique et en
Automatique.

Scapin, D., Bastien, J.-M.C., 2001. Analyse des tâches et aide ergonomique à la
conception: l’approche MAD* (chapitre 3). Analyse et conception de l’I.H.M./
Interaction Homme-Machine pour les S.I. vol.1. C. Kolski (Eds.). Hermès Science.

Scapin, D.L., Pierret-Golbreich, C., 1989a. MAD : Une méthode analytique de
description des tâches. Proceedings of Colloque sur l’Ingénierie des Interfaces
Homme-Machine (IHM’89). Sophia-Antipolis, France, pp. 131–148.

Scapin, D.L., Pierret-Golbreich, C., 1989b. Towards a method for task description:
MAD. Working with display units.

Sebillote, S., 1995. Methodology guide to task analysis with the goal of extracting
relevant characteristics for human–computer interfaces. International Journal
of Human–Computer Interaction 7 (4), 341–363.

Sebillotte, S., 1991. Décrire des tâches selon les objectifs des opérateurs, de
l’interview à la formalisation. Le Travail Humain 54 (3), 193–223.

Sebillotte, S., 1994. Méthodologie pratique d’analyse de la tâche en vue d’extraction
de caractéristiques pertinentes pour la conception d’interfaces.

Sebillotte, S., Scapin, D.L., 1994. From users’ task knowledge to high-level interface
specification. International Journal of Human–Computer Interaction 6 (1), 1–15.

Shepherd, A., 1989. Analysis and training in information technology tasks. In:
Diaper, D. (Eds.), Task Analysis for Human–Computer Interaction. pp. 15–55.

Shepherd, A., 1995. Task analysis in HCI tasks. In: Monk, A.F., Gilbert, N. (Eds.),
Perspectives in HCI. Academic Press.

Shneiderman, B., Plaisant, C., 2009. Designing the User Interface, fifth ed. Pearson.
580.

Sinning, D., Wurdel, M., Forbrig, P., Chalin, P., Khendek, F., 2007. Practical extensions
for task models. In: Proceedings of TAMODIA 2007. Toulouse, pp. 42–55.

Tarby, J.C., Barthet, M.F., 2001. Analyse et modélisation des tâches dans la
conception des systèmes d’information: la méthode Diane+. Analyse et
conception de l’IHM, interaction pour les Systèmes d’Information. HERMES.
(Chapter 4).

TaskArchitect, 2010. TaskArchitect Electronic Reference. <http://www.taskarchitect.
com/> (last accessed 25.01.10).

Tibco Business Studio, 2010. Tibco Business Studio Electronic Reference. <http://
developer.tibco.com/business_studio/default.jsp> (last accessed 25.01.10).

TKS, 2010. TKS Electronic Reference. <http://www.cs.bath.ac.uk/~hci/TKS/
publications.html> (last accessed 25.01.10).

Van der Veer, G.C., 1996. GTA: groupware task analysis – modeling complexity. Acta
Psychologica, 297–322.
wer of task analysis: Systematic comparison and empirical assessment of
10.06.003

http://developer.tibco.com/business_studio/default.jsp
http://developer.tibco.com/business_studio/default.jsp
http://www.kmade.sourceforge.net/
http://www.taskarchitect.com/
http://www.taskarchitect.com/
http://www.developer.tibco.com/business_studio/default.jsp
http://www.developer.tibco.com/business_studio/default.jsp
http://www.cs.bath.ac.uk/~hci/TKS/publications.html
http://www.cs.bath.ac.uk/~hci/TKS/publications.html
http://dx.doi.org/10.1016/j.intcom.2010.06.003

	Increasing the expressive power of task analysis: Systematic comparison and empirical assessment of tool-supported task models
	Introduction
	Comparative study of tool-supported task models
	Rapid description of tool-supported task models
	CTT (CTTE)
	Diane+ (TAMOT)
	GTA (EUTERPE)
	IBM task modeler (IAWB)
	AMBOSS
	Discussion about models and tools

	Comparing expressiveness and querying of task model through their tools
	Expressive power
	Expressive power of tasks
	Task information and characteristics
	Discussion: the expressive power of task information and characteristics

	Local scheduling
	Discussion: expressive power of local task scheduling

	Global scheduling
	Discussion: expressive power of global task scheduling

	Expressive power of objects
	CTTE
	TAMOT4
	EUTERPE
	IAWB
	AMBOSS
	Discussion: the expressive power of objects

	Model querying
	Verification
	Simulation process

	Main issues from model comparison

	Presentation of K-MAD and K-MADe
	The K-MAD model
	Main characteristics of the model
	Components
	Scheduling characteristics

	The tool: K-MADe
	Technical characteristics
	The K-MADe components

	Evaluation of the K-MAD/K-MADe expressive power
	Coverage of the kernel
	Task characteristics
	Scheduling
	Objects
	Querying power
	Verification
	Simulation

	Case studies evaluation
	Case study description
	Webmail
	ParAdmin
	Volley-ball game marking sheet
	Mastermind
	Genindexe

	What are the main K-MADe benefits?
	K-MADe answers to issues from the comparison of models
	Lessons learned from case studies
	K-MAD compensates for limitations of other task models
	Unsuccessful termination of tasks

	Empirical evaluation of K-MADe usage in designing applications
	Subjects
	The study schedule
	Lecture
	Training course
	Usage sessions

	Evaluation method
	Global observation
	Individual observation
	Observers’ notes
	User-logs
	Questionnaires

	Data
	Collected data
	Modelling process
	Computable entity usage and difficulties

	Selection of data

	Learning of the use of computable aspects
	Modelling process
	Definition of computable entities (after learning)
	What computable entities are used?
	Why are computable entities used?

	The use of computable aspects to validate task models
	Why are correction tools used?
	When are correction tools used?

	Summary of results and research avenues
	Summary of results
	The K-MAD computable aspects
	The use of K-MAD task model
	Needs for the design step
	Needs for domain expert validation
	Needs for K-MADe task model usage

	Conclusion
	References

