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1 Introduction

Clustering methods organize a set of items into clusters such that items within
a given cluster have a high degree of similarity, whereas those of different
clusters have a high degree of dissimilarity. These methods have been widely
applied in fields such as taxonomy, image processing, information retrieval
and data mining. The most popular clustering techniques are hierarchical and
partitioning methods [1,2].

Hierarchical methods yield complete hierarchy, i.e., a nested sequence of par-
titions of the input data. Hierarchical methods can be agglomerative [3–7] or
divisive [8–12]. Agglomerative methods yield a sequence of nested partitions
starting with trivial clustering in which each item is in a unique cluster and
ending with clustering in which all items are in the same cluster. A divisive
method starts with all items in a single cluster and performs a splitting pro-
cedure until a stopping criterion is met (usually upon obtaining a partition of
singleton clusters).

Partitioning methods seek to obtain a single partition of the input data into
a fixed number of clusters. These methods often look for a partition that
optimizes (usually locally) an objective function. To improve cluster quality,
the algorithm is run multiple times with different starting points and the best
configuration obtained from the total runs is used as the output clustering.
Partitioning methods can be divided into hard clustering [13–17] and fuzzy
clustering [18–22]. Hard clustering furnishes a partition in which each object of
the data set is assigned to one and only one cluster. Fuzzy clustering generates
a fuzzy partition that furnishes a degree of membership of each pattern in a
given cluster. This gives the flexibility to express that objects belong to more
than one cluster at the same time.

There are two common representations of the objects upon which clustering
can be based : feature data and relational data. When each object is described
by a vector of quantitative or qualitative values, the set of vectors describing
the objects is called a feature data. Alternatively, when each pair of objects is
represented by a relationship, then it is called relational data. The most com-
mon case of relational data is when one has (a matrix of) dissimilarity data,
say R = [rkl], where rkl is the pairwise dissimilarity (often a distance) between
objects k and l. Clustering of relational data is very useful when the objects
cannot be described by a vector of feature values, when the distance measure
does not have a closed form, etc [10], [23–26]. Recently, Frigui et al [27] pro-
posed CARD, a relational fuzzy clustering algorithm that is able to partition
objects taking into account multiple dissimilarity matrices and that learns a
relevance weight for each dissimilarity matrix in each cluster. CARD is mainly
based on the well-known fuzzy clustering algorithms for relational data NERF

2



[26] and FANNY [10]. As remarked by [27], several applications can benefit
from relational clustering algorithms based on multiple dissimilarity matrices.
In image data base categorization, the relationship among the objects may be
described by multiple dissimilarity matrices and the most effective dissimilar-
ity measures do not have a closed form or are not differentiable with respect
to prototype parameters.

This paper extends the dynamic hard clustering algorithm for relational data
[23], [24], into hard clustering algorithms that are able to partition objects tak-
ing into account simultaneously their relational descriptions given by multiple
dissimilarity matrices. The main idea is to obtain a collaborative role of the
different dissimilarity matrices [28] to obtain a final partition. These dissimi-
larity matrices could have been generated using different sets of variables and
a fixed dissimilarity function (in this case, the final partition is given accord-
ing to different views (i.e., different sets of variables) describing the objects),
or using a fixed set of variables and different dissimilarity functions (in this
case, the final partition is given according to different dissimilarity functions)
or using different sets of variables and dissimilarity functions. As pointed out
by [27], the influence of the different dissimilarity matrices can not be equally
important in the definition of the clusters in the final partition. Thus, to ob-
tain a meaningful partition from all dissimilarity matrices, the relational hard
clustering algorithms given in this paper are designed to give a partition and
a prototype for each cluster as well as to learn a relevance weight for each
dissimilarity matrix by optimizing an adequacy criterion that measures the
fitting between the clusters and their representatives. These relevance weights
change at each algorithm’s iteration and can either be the same for all clusters
or different from one cluster to another.

This paper is organized as follows. Section 2 first reviews a partitioning dy-
namic hard clustering algorithm based on a single dissimilarity matrix (sec-
tion 2.1) and then introduces partitioning dynamic hard clustering algorithms
based on multiple dissimilarity matrices with relevance weight for each dis-
similarity matrix either estimated locally (section 2.2.1) or estimated globally
(section 2.2.2). Section 3 gives empirical results to show the usefulness of
these relational clustering algorithms. Finally, section 4 gives final remarks
and comments.

2 Partitioning Hard Clustering Algorithms based on Multiple Dis-

similarity Matrices

This section introduces partitioning dynamic hard clustering algorithm for
relational data that are able to partition objects taking into account simulta-
neously their relational descriptions given by multiple dissimilarity matrices.
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2.1 Dynamic Hard Clustering Algorithm based on a Single Dissimilarity Ma-

trix

There are several relational clustering algorithms based on a single dissimilar-
ity matrix in the literature like SAHN (sequential agglomerative hierarchical
non-overlapping) [1] and PAM (partitioning around medoids) [10] but the pa-
per starts with a brief description of the partitioning dynamic hard clustering
algorithm for relational data based on a single dissimilarity matrix [23,24]
(denote here SRDCA) because the algorithms here are based on it.

Let E = {e1, . . . , en} be a set of n objects and let a dissimilarity matrix D

= [d(ei, el)], where d(ei, el) measures the dissimilarity between objects ei and
el (i, l = 1, . . . , n). A particularity of this method is that it assumes that the
prototype Gk of cluster Ck is a subset of fixed cardinality 1 ≤ q << n of the
set of objects E (even if, for a matter of simplicity, very often q = 1), i.e.,
Gk ∈ E(q) = {A ⊂ E : |A| = q}. It looks for a partition P = (C1, . . . , CK) of E
into K clusters and the corresponding prototypes G1, . . . , GK representing the
clusters in P such that it is (locally) optimized an adequacy criterion (objective
function) measuring the fit between the clusters and their prototypes.

The adequacy criterion measures the homogeneity of the partition P as the
sum of the homogeneities in each cluster. It is defined as

J =
K∑

k=1

∑

ei∈Ck

D(ei, Gk) =
K∑

k=1

∑

ei∈Ck

∑

e∈Gk

d(ei, e) (1)

where Jk =
∑

ei∈Ck
D(ei, Gk) is the homogeneity in cluster Ck (k = 1, . . . , K)

and

D(ei, Gk) =
∑

e∈Gk

d(ei, e) (2)

measures the matching between an example ei ∈ Ck and the cluster prototype
Gk ∈ E(q).

The SRDCA relational clustering algorithm sets an initial partition and al-
ternates two steps until convergence, when the criterion J reaches a stationary
value representing a local minimum. This algorithm is summarized as follows.

Dynamic Hard Clustering Algorithm for Relational Data

(1) Initialization.
Fix the number K of clusters;
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Fix the cardinality 1 ≤ q << n of the prototypes Gk (k = 1, . . . , K);
Set t = 0;
Randomly select K distinct prototypes G

(0)
k ∈ E(q) (k = 1, . . . , K);

Assign each object ei to the closest prototype to obtain the partition
P (0) = (C

(0)
1 , . . . , C

(0)
K ) with C

(0)
k = {ei ∈ E : D(ei, G

(0)
k ) ≤ D(ei, G

(0)
h ), (h =

1, . . . , K)}.
(2) Step 1: computation of the best prototypes.

Set t = t + 1;
The partition P (t−1) = (C

(t−1)
1 , . . . , C

(t−1)
K ) is fixed.

Compute the prototype G
(t)
k = G∗ ∈ E(q) of cluster C

(t−1)
k ( k = 1, . . . , K)

according to: G∗ = argminG∈E(q)

∑

ei∈C
(t−1)
k

D(ei, G) = argminG∈E(q)

∑

ei∈C
(t−1)
k

∑

e∈G d(ei, e)

(3) Step 2: definition of the best partition.

The prototypes G
(t)
k ∈ E(q) (k = 1, . . . , K) are fixed.

test← 0
P (t) ← P (t−1)

for i = 1 to n do
find the cluster C(t)

m to which ei belongs

find the winning cluster C
(t)
k such that

k = argmin1≤h≤K D(ei, G
(t)
h ) = argmin1≤h≤K

∑

e∈Gh
d(ei, e)

if k 6= m
test← 1

C
(t)
k ← C

(t)
k ∪ {ei}

C(t)
m ← C(t)

m \ {ei}

(4) Stopping criterion. If test = 0 then STOP; otherwise go to 2 (Step 1).

Let E = {e1, . . . , en} be the set of n objects and let p dissimilarity matrices
Dj = [dj(ei, el)] (j = 1, . . . , p), where dj(ei, el) gives the dissimilarity between
objects ei and el (i, l = 1, . . . , n) on dissimilarity matrix Dj.

The SRDCA relational clustering algorithm can be changed into the “dynamic
hard clustering algorithm based on multiple dissimilarity matrices” (denoted
here MRDCA) to take into account simultaneously these p dissimilarity ma-
trices Dj. For that, the adequacy criterion of the SRDCA relational clustering
algorithm is modified into

J =
K∑

k=1

∑

ei∈Ck

D(ei, Gk) =
K∑

k=1

∑

ei∈Ck

p
∑

j=1

Dj(ei, Gk) =
K∑

k=1

∑

ei∈Ck

p
∑

j=1

∑

e∈Gk

dj(ei, e)

(3)
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in which

D(ei, Gk) =
p

∑

j=1

Dj(ei, Gk) =
p

∑

j=1

∑

e∈Gk

dj(ei, e) (4)

measures the global matching between an example ei ∈ Ck and the cluster
prototype Gk ∈ E(q) and Dj(ei, Gk) measures the local matching between an
example ei ∈ Ck and the cluster prototype Gk ∈ E(q) on dissimilarity matrix
Dj (j = 1, . . . , p).

In this case, this algorithm is modified so as in the Step 1 the prototype
Gk ∈ E(q) of cluster Ck ( k = 1, . . . , K) is computed according to G∗ =
argminG∈E(q)

∑

ei∈Ck

∑p
j=1 Dj(ei, G) = argminG∈E(q)

∑

ei∈Ck

∑p
j=1

∑

e∈G dj(ei, e)
whereas in the Step 2 the winning cluster Ck is such that k = argmin1≤h≤K

∑p
j=1

Dj(ei, Gh) = argmin1≤h≤K
∑p

j=1

∑

e∈Gh
dj(ei, e).

This approach is equivalent to cluster the set of objects E based on a global dis-
similarity matrix D= [d(ei, el)], with D=

∑p
j=1 Dj and d(ei, el) =

∑p
j=1 dj(ei, el)

(i, l = 1, . . . , n), that gives the same weight to the p partial dissimilarity matri-
ces. However, as pointed out by [27], this approach may not be effective as the
influence of each partial dissimilarity matrices may be not equally important
to define the cluster to which similar objects belong.

2.2 Dynamic Hard Clustering Algorithms with Relevance Weight for each

Dissimilarity Matrix

This section presents dynamic hard clustering algorithms based on multiple
dissimilarity matrices. These algorithms extend the dynamic hard clustering
algorithm for relational data [23,24]. The computation of the relevance weight
of each dissimilarity matrix in these algorithms is inspired from the approach
used to compute a relevance weight for each variable in each cluster in the
dynamic clustering algorithm based on adaptive distances [29].

2.2.1 Dynamic Hard Clustering Algorithm with Relevance Weight for each

Dissimilarity Matrix Estimated Locally

This algorithm is designed to give a partition and a prototype for each cluster
as well as to learn a relevance weight for each dissimilarity matrix that changes
at each algorithm’s iteration and it is different from one cluster to another.

The dynamic hard clustering algorithm with relevance weight for each dissim-
ilarity matrix estimated locally (denoted here MRDCA − RWL) looks for a
partition P = (C1, . . . , CK) of E into K clusters and the corresponding pro-
totypes G1, . . . , GK representing the clusters in the partition P such that it
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(locally) optimizes an adequacy criterion (objective function) measuring the
fit between the clusters and their prototypes. The adequacy criterion is defined
as

J =
K∑

k=1

∑

ei∈Ck

Dλk
(ei, Gk) (5)

=
K∑

k=1

∑

ei∈Ck

p
∑

j=1

λkj Dj(ei, Gk) =
K∑

k=1

∑

ei∈Ck

p
∑

j=1

λkj

∑

e∈Gk

dj(ei, e)

in which

Dλk
(ei, Gk) =

p
∑

j=1

λkj Dj(ei, Gk) =
p

∑

j=1

λkj

∑

e∈Gk

dj(ei, e) (6)

is the global matching between an example ei ∈ Ck and the cluster prototype
Gk ∈ E(q), parameterized by the relevance weight vector λk = (λk1, . . . , λkp)
of the dissimilarity matrices Dj into cluster Ck (k = 1, . . . , K), and Dj(ei, Gk)
is the local dissimilarity between an example ei ∈ Ck and the cluster prototype
Gk ∈ E(q) on dissimilarity matrix Dj (j = 1, . . . , p).

Note that this clustering algorithm assumes that the prototype of each cluster
is a subset (of fixed cardinality) of the set of objects. Moreover, the relevance
weight vectors λk (k = 1, . . . , K) are estimated locally, change at each itera-
tion, i.e., they are not determined absolutely, and are different from one cluster
to another.

This clustering algorithm starts with an initial partition and alternates three
steps until convergence, when the adequacy criterion J reaches a stationary
value representing a local minimum.

Step 1: Computation of the Best Prototypes

In this step, the partition P = (C1, . . . , CK) of E into K clusters and the
relevance weight vectors λk (k = 1, . . . , K) are fixed.

Proposition 2.1 The prototype Gk = G∗ ∈ E(q) of cluster Ck (k = 1, . . . , K),
which minimizes the clustering criterion J , is computed according to:

G∗ = argminG∈E(q)

∑

ei∈Ck

p
∑

j=1

λkj Dj(ei, G) (7)

= argminG∈E(q)

∑

ei∈Ck

p
∑

j=1

λkj

∑

e∈G

dj(ei, e)
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Step 2: Computation of the Best Relevance Weight Vector

In this step, the partition P = (C1, . . . , CK) of E into K clusters and the
prototypes G1, . . . , GK are fixed.

Proposition 2.2 The vectors of relevance weights λk = (λk1, . . . , λkp) (k =
1, . . . , K), which minimizes the clustering criterion J under λkj > 0 and
∏p

j=1 λkj = 1, have their relevance weights λkj (j = 1, . . . , p) calculated ac-

cording to the following expression:

λkj =

{
∏p

h=1

[
∑

ei∈Ck
Dh(ei, Gk)

]} 1
p

[
∑

ei∈Ck
Dj(ei, Gk)

] =

{
∏p

h=1

[
∑

ei∈Ck

∑

e∈Gk
dh(ei, e)

]} 1
p

[
∑

ei∈Ck

∑

e∈Gk
dj(ei, e)

] (8)

Proof. As the partition P = (C1, . . . , CK) of E into K clusters and the proto-
types G1, . . . , GK are fixed, one can rewrite the criterion J as:

J(λ1, . . . , λK) =
K∑

k=1

Jk(λk)

with

Jk(λk) = Jk(λk1, . . . , λkp) =
p

∑

j=1

λkj Jkj where Jkj =
∑

i∈Ck

Dj(ei, Gk)

Let g(λk1, . . . , λkp) = λk1 × . . .× λkp − 1. One can determine the extremes of
Jk(λk1, . . . , λkp) with the restriction g(λk1, . . . , λkp) = 0. From the Lagranje
multiplier method, and after some algebra, it follows that (for j = 1, . . . , p)

λkj =
(Πp

h=1Jkh)
1/p

Jkj
=

{
∏p

h=1

(
∑

ei∈Ck
Dh(ei, Gk)

)} 1
p

∑

ei∈Ck
Dj(ei, Gk)

Thus, an extreme value of Jk is reached when Jk(λk1, . . . , λkp) = p{Jk1 ×
. . . × Jkp}

1/p. As Jk(1, . . . , 1) =
∑p

j=1 Jkj = Jk1 + . . . + Jkp and as it is well
known that the arithmetic mean is greater than the geometric mean, i.e.,
1
p
(Jk1 + . . . + Jkp) > {Jk1 × . . .× Jkp}

1/p (the equality holds only if Jk1 =

. . . = Jkp), one can conclude that this extreme is a minimum value.

Remark. Note that the closer to the prototype Gk of a given cluster Ck are
the objects of a dissimilarity matrix Dj the higher is the relevance weight of
this dissimilarity matrix Dj on the cluster Ck.
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Step 3: Definition of the Best Partition

In this step, the prototypes G1, . . . , GK and the relevance weight vectors
λ1, . . . , λk are fixed.

Proposition 2.3 The clusters Ck (k = 1, . . . , K), which minimize the crite-

rion J , are updated according to the following allocation rule:

Ck = {ei ∈ E : Dλk
(ei, Gk) =

p
∑

j=1

λkj Dj(ei, Gk) =
p

∑

j=1

λkj

∑

e∈Gk

dj(ei, e)

≤Dλh
(ei, Gh) =

p
∑

j=1

λhj Dj(ei, Gh) =
p

∑

j=1

λhj

∑

e∈Gh

dj(ei, e) (9)

and when Dλk
(ei, Gk) = Dλh

(ei, Gh) then i ∈ Ck if k < h,

∀h 6= k (h = 1, . . . , K)}

Proof. The proof of Proposition 2.3 is straightforward.

Algorithm

The MRDCA−RWL relational clustering algorithm is summarized as follows.

Dynamic Hard Clustering Algorithm with Relevance Weight for

each Dissimilarity Matrix Estimated Locally

(1) Initialization.
Fix the number K of clusters;
Fix the cardinality 1 ≤ q << n of the prototypes Gk (k = 1, . . . , K);
Set t = 0;
Set λ

(0)
k = (λ

(0)
k1 , . . . , λ

(0)
kp ) = (1, . . . , 1) (k = 1, . . . , K);

Randomly select K distinct prototypes G
(0)
k ∈ E(q) (k = 1, . . . , K);

Assign each object ei to the closest prototype to obtain the partition
P (0) = (C

(0)
1 , . . . , C

(0)
K ) with C

(0)
k = {ei ∈ E :

∑p
j=1 λ

(0)
kj Dj(ei, G

(0)
k ) ≤

∑p
j=1 λ

(0)
hj Dj(ei, G

(0)
h ), (h = 1, . . . , K)}.

(2) Step 1: computation of the best prototypes.
Set t = t + 1;
The partition P (t−1) = (C

(t−1)
1 , . . . , C

(t−1)
K ) and the relevance weight vec-

tors λ
(t−1)
k = (λ

(t−1)
k1 , . . . , λ

(t−1)
kp ), k = 1, . . . , K are fixed.

Compute the prototype G
(t)
k = G∗ ∈ E(q) of cluster C

(t−1)
k ( k = 1, . . . , K)

according to: G∗ = argminG∈E(q)

∑

ei∈C
(t−1)
k

∑p
j=1 λ

(t−1)
kj Dj(ei, G)

= argminG∈E(q)

∑

ei∈C
(t−1)
k

∑p
j=1 λ

(t−1)
kj

∑

e∈G dj(ei, e)

(3) Step 2: computation of the best relevance weight vector.

The prototypes G
(t)
k ∈ E(q) (k = 1, . . . , K) and the partition P (t−1) =

9



(C
(t−1)
1 , . . . , C

(t−1)
K ) are fixed.

Compute the components λ
(t)
kj (j = 1, . . . , p) of the relevance weight vector

λ
(t)
k (k = 1 . . . , K) according to

λ
(t)
kj =

{
∏p

h=1

[
∑

ei∈C
(t−1)
k

Dh(ei,G
(t)
k

)

]} 1
p

[
∑

ei∈C
(t−1)
k

Dj(ei,G
(t)
k

)

] =

{
∏p

h=1

[
∑

ei∈C
(t−1)
k

∑

e∈G
(t)
k

dh(ei,e)

]} 1
p

[
∑

ei∈C
(t−1)
k

∑

e∈G
(t)
k

dj(ei,e)

]

(4) Step 3: definition of the best partition.

The prototypes G
(t)
k ∈ E(q) (k = 1, . . . , K) and the relevance weight vec-

tors λ
(t)
k = (λ

(t)
k1 , . . . , λ

(t)
kp), k = 1, . . . , K, are fixed.

test← 0
P (t) ← P (t−1)

for i = 1 to n do
find the cluster C(t)

m to which ei belongs

find the winning cluster C
(t)
k such that

k = argmin1≤h≤K
∑p

j=1 λ
(t)
hj Dj(ei, G

(t)
h )

= argmin1≤h≤K
∑p

j=1 λ
(t)
hj

∑

e∈G
(t)
h

dj(ei, e)

if k 6= m
test← 1

C
(t)
k ← C

(t)
k ∪ {ei}

C(t)
m ← C(t)

m \ {ei}

(5) Stopping criterion. If test = 0 then STOP; otherwise go to 2 (Step 1).

2.2.2 Dynamic Hard Clustering Algorithm with Relevance Weight of each

Dissimilarity Matrix Estimated Globally

The clustering algorithm presented in section 2.2.1 presents numerical insta-
bilities (division by zero) in the computation of the relevance weight of each
dissimilarity matrix in each cluster when the algorithm produces single clusters
or clusters with some objects that have dissimilarity zero between each other.
To decreases significantly the probability of this kind of numerical instability,
the authors present in this section an algorithm designed to give a partition
and a prototype for each cluster as well as to learn a relevance weight for each
dissimilarity matrix that changes at each algorithm’s iteration but that is the
same for all clusters.

The dynamic hard clustering algorithm with relevance weight for each dis-
similarity matrix estimated globally (denoted here MRDCA − RWG) looks
for a partition P = (C1, . . . , CK) of E into K clusters and the corresponding
prototypes G1, . . . , GK representing the clusters in the partition P such that
it (locally) optimizes an adequacy criterion (objective function) measuring the
fit between the clusters and their prototypes. The adequacy criterion is defined
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as

J =
K∑

k=1

∑

ei∈Ck

Dλ(ei, Gk) (10)

=
K∑

k=1

∑

ei∈Ck

p
∑

j=1

λjDj(ei, Gk) =
K∑

k=1

∑

ei∈Ck

p
∑

j=1

λj

∑

e∈Gk

dj(ei, e)

in which

Dλ(ei, Gk) =
p

∑

j=1

λjDj(ei, Gk) =
p

∑

j=1

λj

∑

e∈Gk

dj(ei, e) (11)

is the global matching between an example ei ∈ Ck and the cluster prototype
Gk ∈ E(q) parameterized by the relevance weight vector λ = (λ1, . . . , λp) of
the dissimilarity matrices Dj and Dj(ei, Gk) is the local matching between an
example ei ∈ Ck and the cluster prototype Gk ∈ E(q) on dissimilarity matrix
Dj (j = 1, . . . , p).

Note that this clustering algorithm also assumes that the prototype of each
cluster is a subset (of fixed cardinality) of the set of objects. Moreover, the
relevance weight vector λ is estimated globally, changes at each iteration but
is the same for all clusters.

From an initial partition, this clustering algorithm alternates three steps and
stops when the criterion J reaches a stationary value representing a local
minimum.

Step 1: Computation of the Best Prototypes

In this step, the partition P = (C1, . . . , CK) of E into K clusters and the
relevance weight vector λ are fixed.

Proposition 2.4 The prototype Gk = G∗ ∈ E(q) of cluster Ck (k = 1, . . . , K),
which minimizes the clustering criterion J , is computed according to:

G∗ = argminG∈E(q)

∑

ei∈Ck

p
∑

j=1

λj Dj(ei, G) (12)

= argminG∈E(q)

∑

ei∈Ck

p
∑

j=1

λj

∑

e∈G

dj(ei, e)

Step 2: Computation of the Best Relevance Weight Vector

11



In this step, the partition P = (C1, . . . , CK) of E into K clusters and the
prototypes G1, . . . , GK are fixed.

Proposition 2.5 The vector of relevance weights λ= (λ1, . . . , λp), which min-

imizes the clustering criterion J under λj > 0 and
∏p

j=1 λj = 1, has its rele-

vance weights λj (j = 1, . . . , p) calculated according to the following expression:

λj =

{
∏p

h=1

(
∑K

k=1

[
∑

ei∈Ck
Dh(ei, Gk)

])} 1
p

∑K
k=1

[
∑

ei∈Ck
Dj(ei, Gk)

] (13)

=

{
∏p

h=1

(
∑K

k=1

[
∑

ei∈Ck

∑

e∈Gk
dh(ei, e)

])} 1
p

∑K
k=1

[
∑

ei∈Ck

∑

e∈Gk
dj(ei, e)

]

Proof. The Proof proceeds in a similar way as presented in Proposition 2.2.

Remark. Note that the closer to the prototypes G1, . . . , GK of the correspond-
ing clusters C1, . . . , CK are the objects of a dissimilarity matrix Dj the higher
is the relevance weight of this dissimilarity matrix Dj .

Step 3: Definition of the Best Partition

In this step, the prototypes G1, . . . , GK and the relevance weight vector λ are
fixed.

Proposition 2.6 The clusters Ck (k = 1, . . . , K), which minimize the crite-

rion J , are updated according to the following allocation rule:

Ck = {ei ∈ E : Dλ(ei, Gk) =
p

∑

j=1

λj Dj(ei, Gk) =
p

∑

j=1

λj

∑

e∈Gk

dj(ei, e)

≤Dλ(ei, Gh) =
p

∑

j=1

λj Dj(ei, Gh) =
p

∑

j=1

λj

∑

e∈Gh

dj(ei, e) (14)

and when Dλ(ei, Gk) = Dλ(ei, Gh) then i ∈ Ck if k < h,

∀h 6= k (h = 1, . . . , K)}

Proof. The proof of Proposition 2.6 is straightforward.

Algorithm

The MRDCA − RWG relational clustering algorithm is summarized as fol-
lows.

12



Dynamic Hard Clustering Algorithm with Relevance Weight for

each Dissimilarity Matrix Estimated Globally

(1) Initialization.
Fix the number K of clusters;
Fix the cardinality 1 ≤ q << n of the prototypes Gk (k = 1, . . . , K);
Set t = 0;
Set λ(0) = (λ

(0)
1 , . . . , λ(0)

p ) = (1, . . . , 1);

Randomly select K distinct prototypes G
(0)
k ∈ E(q) (k = 1, . . . , K);

Assign each object ei to the closest prototype to obtain the partition
P (0) = (C

(0)
1 , . . . , C

(0)
K ) with C

(0)
k = {ei ∈ E :

∑p
j=1 λ

(0)
j Dj(ei, G

(0)
k ) ≤

∑p
j=1 λj Dj(ei, G

(0)
h ), (h = 1, . . . , K)}.

(2) Step 1: computation of the best prototypes.
Set t = t + 1;
The partition P (t−1) = (C

(t−1)
1 , . . . , C

(t−1)
K ) and the relevance weight vec-

tor λ(t−1) = (λ
(t−1)
1 , . . . , λ(t−1)

p ) are fixed.

Compute the prototype G
(t)
k = G∗ ∈ E(q) of cluster C

(t−1)
k ( k = 1, . . . , K)

according to: G∗ = argminG∈E(q)

∑

ei∈C
(t−1)
k

∑p
j=1 λ

(t−1)
j Dj(ei, G)

= argminG∈E(q)

∑

ei∈C
(t−1)
k

∑p
j=1 λ

(t−1)
j

∑

e∈G dj(ei, e)

(3) Step 2: computation of the best relevance weight vector.

The prototypes G
(t)
k ∈ E(q) (k = 1, . . . , K) and the partition P (t−1) =

(C
(t−1)
1 , . . . , C

(t−1)
K ) are fixed.

Compute the relevance weight vector according to

λ
(t)
j =

{
∏p

h=1

(
∑K

k=1

[
∑

ei∈C
(t−1)
k

Dh(ei,G
(t)
k

)

])} 1
p

∑K

k=1

[
∑

ei∈C
(t−1)
k

Dj(ei,G
(t)
k

)

] =

{
∏p

h=1

(
∑K

k=1

[
∑

ei∈C
(t−1)
k

∑

e∈G
(t)
k

dh(ei,e)

])} 1
p

∑K

k=1

[
∑

ei∈C
(t−1)
k

∑

e∈G
(t)
k

dj(ei,e)

]

(4) Step 3: definition of the best partition.

The prototypes G
(t)
k ∈ E(q) (k = 1, . . . , K) and the relevance weight vector

λ(t) = (λ
(t)
1 , . . . , λ(t)

p ) are fixed.
test← 0
P (t) ← P (t−1)

for i = 1 to n do
find the cluster C(t)

m to which ei belongs

find the winning cluster C
(t)
k such that

k = argmin1≤h≤K
∑p

j=1 λ
(t)
j Dj(ei, G

(t)
h )

= argmin1≤h≤K
∑p

j=1 λ
(t)
j

∑

e∈G
(t)
h

dj(ei, e)

if k 6= m
test← 1

C
(t)
k ← C

(t)
k ∪ {ei}

C(t)
m ← C(t)

m \ {ei}

(5) Stopping criterion. If test = 0 then STOP, otherwise go to 2 (Step 1).

13



2.3 Properties of the algorithms

This section illustrates the convergence properties of the presented algorithms
by giving the proof of the convergence of the MRDCA−RWL clustering al-
gorithm introduced in section 2.2.1. Then, the complexity of both MRDCA−
RWL and MRDCA− RWG clustering algorithms are given.

According to the general schema of the dynamic clustering algorithm [30],
this clustering method looks for the partition P ∗ = {C∗

1 , . . . , C
∗
K} of E into K

clusters, the corresponding K prototypes G∗ = (G∗
1, . . . , G

∗
K) representing the

clusters in P ∗ and K squared adaptive Euclidean distances parameterized by
K vectors of weights D∗ = (λ∗

1, . . . , λ
∗
K) such that

W (G∗,D∗, P ∗) = min
{

W (G,D, P ) : G ∈ ILK ,D ∈ ΛK , P ∈ IPK

}

(15)

where

- IPK is the set of all the possible partitions of E in K classes such that
Ck ∈ P(E) (the set of subsets of E) and P ∈ IPK ;

- IL is the representation space of prototypes such that Gk ∈ IL (k = 1, . . . , K)
and G ∈ ILK = IL× . . .× IL. In this paper, IL = E(q) = {A ⊂ E : |A| = q}.

- Λ is the space of vectors of weights that parameterize the adaptive Eu-
clidean distances such that λk ∈Λ(k = 1, . . . , K). Here, Λ= {λ = (λ1, . . . , λp) ∈
IRp : λj > 0 and

∏p
j=1 λj = 1} and D ∈ΛK = Λ× . . .× Λ.

According to [30], the properties of convergence of this kind of algorithm can
be studied from two series: vt = (Gt,Dt, P t) ∈ ILK× ΛK × IPK and ut =
J(vt) = J(Gt,Dt, P t), t = 0, 1, . . .. From an initial term v0 = (G0,D0, P 0),
the algorithm computes the different terms of the series vt until the conver-
gence (to be shown) when the criterion J achieves a stationary value.

Proposition 2.7 The series ut = J(vt) decreases at each iteration and con-

verges.

Proof.

Following [30], first the authors of this study show that the inequalities (I),
(II) and (III)

J(Gt,Dt, P t)
︸ ︷︷ ︸

ut

(I)
︷︸︸︷

≥ J(Gt+1,Dt, P t)

(II)
︷︸︸︷

≥ J(Gt+1,Dt+1, P t)

(III)
︷︸︸︷

≥ J(Gt+1,Dt+1, P t+1)
︸ ︷︷ ︸

ut+1

14



hold (i.e., the series decreases at each iteration).

The inequality (I) holds because

J(Gt,Dt, P t) =
∑K

k=1

∑

ei∈C
(t)
k

D
λ

(t)
k

(ei, G
(t)
k ),

J(Gt+1,Dt, P t) =
∑K

k=1

∑

ei∈C
(t)
k

D
λ

(t)
k

(ei, G
(t+1)
k ),

and according to proposition (2.1),

G(t+1) = (G
(t+1)
1 , . . . , G

(t+1)
K ) = argmin

︸ ︷︷ ︸

G=(G1,...,GK)∈ILK

∑K
k=1

∑

ei∈C
(t)
k

D
λ

(t)
k

(ei, Gk).

Moreover, inequality (II) also holds because

J(Gt+1,D(t+1), P t) =
∑K

k=1

∑

ei∈C
(t)
k

D
λ

(t+1)
k

(ei, G
(t+1)
k ),

and according to proposition (2.2),

Dt+1 = (λ
(t+1)
1 , . . . , λ

(t+1)
K ) = argmin

︸ ︷︷ ︸

D=(λ
,

1...,λK)∈Λ
K

∑K
k=1

∑

ei∈C
(t)
k

Dλk
(ei, G

(t+1)
k )

The inequality (III) also holds because

J(Gt+1,Dt+1, P t+1) =
∑

ei∈C
(t+1)
k

D
λ

(t+1)
k

(ei, G
(t+1)
k ),

and according to proposition (2.3),

P t+1 = {Ct+1
1 , . . . , Ct+1

K } = argmin
︸ ︷︷ ︸

P={C1,...,CK}∈IPK

∑K
k=1

∑

ei∈Ck
D

λ
(t+1)
k

(ei, G
(t+1)
k ).

Finally, because the series ut decreases and it is bounded (J(vt) ≥ 0), it
converges.

Proposition 2.8 The series vt = (Gt,Dt, P t) converges.

Proof. Assume that the stationarity of the series ut is achieved in the iteration
t = T . Then, it is seen that uT = uT+1 and then J(vT ) = J(vT+1).

From J(vT ) = J(vT+1), one has J(Gt,Dt, P t) = J(GT+1,DT+1, P T+1) and
this equality, according to proposition 2.7, can be rewritten as equalities (I),
(II) and (III):
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J(Gt,Dt, P t)
I

︷︸︸︷
= J(GT+1,DT , P T )

II
︷︸︸︷
= J(GT+1,DT+1, P T )

III
︷︸︸︷
=

J(GT+1,DT+1, P T+1)

From the first equality (I), one can understand that GT = GT+1 because G

is unique in minimizing J when the partition P T and the vector of vectors of
weights DT are fixed. From the second equality (II), DT = DT+1 because D

is unique in minimizing J when the partition P T and the vector of prototypes
GT+1 are fixed. Moreover, from the third equality (III), P T = P T+1 because P
is unique in minimizing J (because if the minimum is not unique, ei is assigned
to the cluster having the smallest index) when the vector of prototypes GT+1

and the vector vectors of weights DT are fixed.

Finally, one can conclude that vT = vT+1. This conclusion holds for all t ≥ T
and vt = vT , ∀t ≥ T , and it follows that the series vt converges.

The time complexity of MRDCA − RWL can be analyzed considering the
complexity of each single step. Let n be the number of objects, K << n be
the number of clusters, q << n be the cardinality of each prototype and p be
the number of dissimilarity matrices.

- Initialization. In this step, the initialization of the relevance weight vector
costs O(K × p). The random selection of K distinct prototypes (i.e., the
selection of K × q distinct objects) can be done using random functions
and a red-black tree to check for repetitions. The time complexity is then
O(K×q×log(K×q)). The assignment of each object to the closest prototype
corresponds to the step 3. The complexity is O(n×K × q × p). Thus, the
initialization costs O(n×K × q × p).

- Step1: computation of the best prototypes. For each cluster using each table
of dissimilarity the authors test each individual as a candidate prototype.
This needs the computation of the distance between an individual i (i =
1, ...n) and all elements of each cluster using all p dissimilarity matrices
and it costs O(n2 ∗ p). The selection of the prototype of cardinality q for
each cluster needs to sort the vector of individual for each cluster (it costs
O(K × n× log n)) and to select the best q individuals as the prototype (it
costs O(K × q)). Thus, the step 1 costs O(n2 ∗ p).

- Step 2: computation of the best relevance weight vectors. According to equa-
tion (8), this step needs the computation of K denominators, the computa-
tion of the numerator just once, and to repeat that for each component of
the vector of relevance weights. Thus, the step 2 costs O(n× q×p+K×p).

- Step 3: definition of the best partition. This step needs the computation of
the dissimilarity between an individual i (i = 1, . . . , n) and the prototype of
cardinality q of each cluster using the p dissimilarity matrices and it costs
O(n× q ×K × p).
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So, globally these steps cost O(n2 ∗ p). Thus, if the clustering process needs t
iterations to converge, the total time complexity of this algorithm is O(n2 ×
p × t). Following a similar reasoning, one can conclude that the total time
complexity of MRDCA−RWG is also O(n2 × p× t).

3 Empirical results

To evaluate the performance of these partitioning relational hard clustering
algorithms in comparison with NERF and SRDCA (relational clustering al-
gorithms that perform on a single dissimilarity matrix) as well as MRDCA
(relational hard clustering algorithm that performs on multiple dissimilarity
matrices) and CARD−R (relational fuzzy clustering algorithm that performs
on multiple dissimilarity matrices and learns a relevance weight for each dis-
similarity matrix in each cluster), applications with synthetic and real data
sets (available at the UCI Repository http://www.ics.uci.edu/mlearn/ ML-
Repository.html) described by real-valued variables as well as time trajecto-
ries data sets (available at http://www.math.univ-toulouse.fr/staph/npfda/
npfda-datasets.html) are considered.

The relational hard clustering algorithms SRDCA, MRDCA, MRDCA −
RWL and MRDCA − RWG will be applied to these data sets to obtain a
partition Q = (Q1, ..., QK). NERF and CARD − R will be also applied to
these data sets to obtain first a fuzzy partition into K fuzzy clusters. Then,
a hard partition Q = (Q1, . . . , QK) is obtained from this fuzzy partition by
defining the hard cluster Qk(k = 1, . . . , K) as: Qk = {ei : uik ≥ uim ∀m ∈
{1, . . . , K}}. The quantity uik is the membership degree of object ei (i =
1, . . . , n) in fuzzy cluster k (k = 1, . . . , K).

To compare the clustering results furnished by the clustering methods, an
external index – the corrected Rand index (CR) [31] – as well as the F −
measure [32] and the overall error rate of classification (OERC) [33] will be
considered.

Let P = {P1, . . . , Pi, . . . , Pm} be the a priori partition into m classes and
Q = {Q1, . . . , Qj, . . . , QK} be the hard partition into K clusters given by a
clustering algorithm. Let the confusion matrix be as below:

The corrected Rand index is:

CR =

∑m
i=1

∑K
j=1

(
nij

2

)

−
(

n
2

)−1 ∑m
i=1

(
ni•

2

)
∑K

j=1

(
n•j

2

)

1
2
[
∑m

i=1

(
ni•

2

)

+
∑K

j=1

(
n•j

2

)

]−
(

n
2

)−1 ∑m
i=1

(
ni•

2

)
∑K

j=1

(
n•j

2

) (16)
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Table 1
Confusion matrix

Clusters

Classes Q1 . . . Qj . . . QK

∑

P1 n11 . . . n1j . . . n1K n1• =
∑K

j=1
n1j

.

..
.
.. . . .

.

.. . . .
.
..

.

..

Pi ni1 . . . nij . . . niK ni• =
∑K

j=1
nij

...
... . . .

... . . .
...

Pm nm1 . . . nmj . . . nmK nm• =
∑K

j=1
nmj

∑
n•1 =

∑m

i=1
ni1 . . . n•j =

∑m

i=1
nij . . . n•K =

∑m

i=1
niK n =

∑m

i=1

∑K

j=1
nij

where
(

n
2

)

= n(n−1)
2

and nij represents the number of objects that are in class
Pi and cluster Qj ; ni• indicates the number of objects in class Pi; n•j indicates
the number of objects in cluster Qj ; and n is the total number of objects in
the data set.

CR index assesses the degree of agreement (similarity) between an a priori
partition and a partition furnished by the clustering algorithm. Moreover, the
CR index is not sensitive to the number of classes in the partitions or the
distribution of the items in the clusters. Finally, CR index takes its values
from the interval [-1,1], in which the value 1 indicates perfect agreement be-
tween partitions, whereas values near 0 (or negatives) correspond to cluster
agreement found by chance [34].

The traditional F − measure between class Pi (i = 1, . . . , m) and cluster
Qj (j = 1, . . . , K) is the harmonic mean of precision and recall:

F −measure(Pi, Qj) = 2
Precision(Pi, Qj) Recall(Pi, Qj)

Precision(Pi, Qj) + Recall(Pi, Qj)
(17)

The Precision between class Pi (i = 1, . . . , m) and cluster Qj (j = 1, . . . , K)
is defined as the ratio between the number of objects that are in class Pi and
cluster Qj and the number of objects in cluster Qj :

Precision(Pi, Qj) =
nij

n•j
=

nij
∑m

i=1 nij
(18)

The Recall between class Pi (i = 1, . . . , m) and cluster Qj (j = 1, . . . , K) is
defined as the ratio between the number of objects that are in class Pi and
cluster Qj and the number of objects in class Pi:

Recall(Pi, Qj) =
nij

ni•

=
nij

∑K
j=1 nij

(19)
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The F − measure between the a priori partition P = {P1, . . . , Pi, . . . , Pm}
and the hard partition Q = {Q1, . . . , Qj, . . . , QK} given by a cluster algorithm
is defined as:

F −measure(P, Q) =
1

n

m∑

i=1

ni• max 1≤j≤K F −measure(Pi, Qj) (20)

The F −measure index takes its values from the interval [0,1], in which the
value 1 indicates perfect agreement between partitions.

In classification problems, each cluster Qj is assigned to an a priori class Pi

and this assignment must be interpreted as if the true a priori class is Pi.
Once this decision is taken, for a given object of the cluster Qj the decision is
correct if the a priori class of this object is Pi and is an error if the a priori

class is not Pi. To have a minimum error rate of classification ERC, one needs
to seek a decision rule that minimizes the probability of error.

Let p(Pi/Qj) be the posterior probability that an object belongs to the class
Pi when it is assigned to the cluster Qj . Let p(Qj) the probability that the
object belongs to the cluster Qj. The function p is known as the likelihood
function.

The maximum a posteriori probability (MAP) estimate is the mode of the
posteriori probability p(Pi/Qj) and the index of the a priori class associated
to this mode is given by:

MAP (Qj) = arg max
1≤i≤m

p(Pi/Qj) (21)

The Bayes decision rule to minimize the average probability of error is to select
the a priori class that maximizes the posterior probability. The error rate of
classification ERC(Qj) of the cluster Qj is equal to 1− p(PMAP (Qj)/Qj) and
the overall error rate of classification OERC is equal to :

OERC =
K∑

j=1

p(Qj)(1− p(PMAP (Qj)/Qj)) (22)

For a sample,

p(PMAP (Qj)/Qj) = max
1≤i≤m

nij

n•j
. (23)

The OERC index aims to measure the ability of a clustering algorithm to find
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out the a priori classes present in a data set and it is computed by :

OERC =
K∑

j=1

n•j

n
(1− max

1≤i≤m
nij/n•j) = 1−

∑K
j=1 max1≤i≤m nij

n
(24)

3.1 Synthetic real valued data sets

This paper considers data sets described by two real-valued variables. Each
data set has 450 points scattered among four classes of unequal sizes and
elliptical shapes: two classes of size 150 each and two classes of sizes 50 and 100.
Each class in these quantitative data sets was drawn according to a bivariate
normal distribution.

Four different configurations of real-valued data drawn from bivariate normal
distributions according to each class are considered. These distributions have
the same mean vector (see Table 2), but different covariance matrices (see
Table 3): 1) the variance are different between the variables and from one
class to another (synthetic data set 1); 2) the variance are different between
the variables but they are almost the same from one class to another (synthetic
data set 2); 3) the variance are almost the same between the variables and
different from one class to another (synthetic data set 3). 4) the variance are
almost the same between the variables and from one class to another (synthetic
data set 3).

Table 2
Configurations of quantitative data sets: mean vectors of the bivariate normal dis-
tributions of the classes.

µ Class 1 Class 2 Class 3 Class 4

µ1 45 70 45 42

µ2 30 38 35 20

Several dissimilarity matrices are obtained from these data sets. One of these
dissimilarity matrices has the cells that are the dissimilarities between pairs
of objects computed taking into account simultaneously the two real-valued
attributes. All the others dissimilarity matrices have the cells that are the
dissimilarities between pairs of objects computed taking into account only a
single real-valued attribute. Because all the attributes are real-valued, dis-
tance functions belonging to the family of Minkowsky distance (Manhattan
or “city-block” distance, Euclidean distance, Chebyshev distance, etc.) are
suitable to compute dissimilarities between the objects. In this paper, the dis-
similarity between pairs of objects were computed according to the Euclidean
(L2) distance.

For these data sets, NERF and SRDCA are performed on the dissimilarity
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Table 3
Configurations of quantitative data sets: covariance matrices of the bivariate normal
distributions of the classes.

Σ Synthetic data set 1 Synthetic data set 2

Class 1 Class 2 Class 3 Class 4 Class 1 Class 2 Class 3 Class 4

σ1 100 20 50 1 15 15 15 15

σ2 1 70 40 10 5 5 5 5

ρ12 0.88 0.87 0.90 0.89 0.88 0.87 0.90 0.89

Σ Synthetic data set 3 Synthetic data set 4

Class 1 Class 2 Class 3 Class 4 Class 1 Class 2 Class 3 Class 4

σ1 16 10 2 6 8 8 8 8

σ2 15 11 1 5 7 7 7 7

ρ12 0.78 0.77 0.773 0.777 0.78 0.77 0.773 0.777

matrix that has the cells that are the dissimilarities between pairs of objects
computed taking into account simultaneously the two real-valued attributes.
CARD−R, MRDCA, MRDCA−RWL and MRDCA−RWG are performed
simultaneously on all dissimilarity matrices which have the cells that are the
dissimilarities between pairs of objects computed taking into account only a
single real-valued attribute.

All dissimilarity matrices were normalized according to their overall disper-
sion [37] to have the same dynamic range. This means that each dissimilarity

d(ek, ek′) in a given dissimilarity matrix has been normalized as d(ek ,ek′)
T

where
T =

∑n
k=1 d(ek, g) is the overall dispersion and g = el ∈ E = {e1, . . . , en}is

the overall prototype, which is computed according to l = argmin1≤h≤n
∑n

k=1

d(ek, eh).

The relational fuzzy clustering algorithms NERF and CARD − R were ap-
plied to the dissimilarity matrices obtained from this data set to obtain a four-
cluster fuzzy partition. The hard clustering algorithms SRDCA, MRDCA,
MRDCA−RWL and MRDCA−RWG were applied to the dissimilarity ma-
trices obtained from this data set to obtain a four-cluster hard partition. The
hard cluster partitions (obtained from the fuzzy partitions given by NERF or
CARD−R or obtained directly from SRDCA, MRDCA, MRDCA−RWL
and MRDCA−RWG) were compared with the known a priori class partition.
For the synthetic data sets, the CR, F −measure and OERC indexes were
estimated in the framework of a Monte Carlo simulation with 100 replications.
The average and the standard deviation of these indexes between these 100
replications were calculated. In each replication, a relational clustering algo-
rithm was run (until the convergence to a stationary value of the adequacy
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criterion) 100 times and the best result was selected according to the adequacy
criterion. The CR, F −measure and OERC indexes were calculated for the
best result.

Table 4 shows the performance of the NERF and the CARD−R algorithms
as well as the performance of SRDCA, MRDCA, MRDCA − RWL and
MRDCA − RWG algorithms (with prototypes of cardinality |Gk| = 1, k =
1, . . . , 4) on the synthetic data sets according to the average and the standard
deviation of the CR, F − measure and OERC indexes. Table 5 shows the
95% confidence interval for the average of the CR, F −measure and OERC
indexes.

The performance of the algorithms MRDCA − RWL and CARD − R was
clearly superior when the variance was different between the variables and from
one class to another (synthetic data set 1), in comparison with all the other
algorithms. MRDCA−RWL, CARD−R and MRDCA−RWG algorithms
were also superior when the variance was different between the variables but
almost the same from one class to another (synthetic data set 2) especially in
comparison with the algorithms that perform on a single dissimilarity matrix
(NERF and SRDCA). Moreover, except CARD − R, which presented its
worst performance, all the other algorithms had a similar performance when
the variance was almost the same between the variables and different from
one class to another (synthetic data set 3). Finally, the algorithms NERF
and SRDCA were superior in comparison with all the other algorithms when
the variance was almost the same between the variables and from one class
to another (synthetic data set 4). In conclusion, in comparison with the algo-
rithms that perform on a single dissimilarity matrix, MRDCA − RWL was
clearly superior in the synthetic data sets where the variance was different
between the variables whereas MRDCA−RWG was clearly superior only in
the synthetic data sets where the variance was different between the variables
but almost the same from one class to another.

3.2 UCI machine learning repository data sets

This paper considers abalone, image, iris plants, thyroid gland, and wine data
sets. These data sets are found in http://www.ics.uci.edu/mlearn/ MLRepos-
itory.html.

All these data sets are described by a data matrix of “objects × real-valued
attributes”. Several dissimilarity matrices are obtained from these data matri-
ces. One of these dissimilarity matrices has the cells that are the dissimilarities
between pairs of objects computed taking into account simultaneously all the
real-valued attributes. All the other dissimilarity matrices have the cells which
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Table 4
Performance of the algorithms on the synthetic data sets: average and standard
deviation (in parenthesis) of the CR, F −measure, and OERC indexes

Algorithms Synthetic data set 1

CR F − measure OERC

NERF 0.1334 (0.0206) 0.4942 (0.0187) 42.98% (1.88%)

SRDCA 0.1118 (0.0221) 0.4861 (0.0207) 44.57% (2,19%)

MRDCA 0.1008 (0.0236) 0.4645 (0.0257) 46.14% (2.50%)

MRDCA − RWG 0.1137 (0.0250) 0.4790 (0.0239) 44.98% (2.44%)

MRDCA − RWL 0.5327 (0.0281) 0.7080 (0.0262) 23.76% (2.54%)

CARD − R 0.4810 (0.0296) 0.6947 (0.0217) 25.69% (2.35%)

Algorithms Synthetic data set 2

CR F − measure OERC

NERF 0.1416 (0.0173) 0.4730 (0.0186) 46.26% (1.72%)

SRDCA 0.1415 (0.0178) 0.4728 (0.0212) 46.13% (1.79%)

MRDCA 0.2066 (0.0264) 0.5486 (0.0291) 39.82% (2.87%)

MRDCA − RWG 0.2384 (0.0327) 0.5763 (0.0309) 37.54% (2.90%)

MRDCA − RWL 0.2343 (0.0414) 0.5672 (0.0423) 38.26% (3.96%)

CARD − R 0.2571 (0.0214) 0.5828 (0.0212) 36.88% (1.89%)

Algorithms Synthetic data set 3

CR F − measure OERC

NERF 0.2381 (0.0279) 0.5294 ( 0.0244) 41.75% (2.41%)

SRDCA 0.2172 (0.0446) 0.5189 (0.0383) 43.20% (3.36%)

MRDCA 0.2353 (0.0439) 0.5448 (0.0284) 41.93% (3.20%)

MRDCA − RWG 0.2133 (0.0368) 0.5123 (0.0312) 43.07% (3.15%)

MRDCA − RWL 0.2208 (0.0296) 0,5180 (0.0301) 43.44% (2.66%)

CARD − R 0.1285 (0.0130) 0.4395 (0.0200) 51.73% (1.76%)

Algorithms Synthetic data set 4

CR F − measure OERC

NERF 0.2942 (0.0285) 0.6013 (0.0267) 34.79% (2.48%)

SRDCA 0.3014 (0.0307) 0.6034 (0.0214) 34.54% (2.49%)

MRDCA 0.2741 (0.0312) 0,5910 (0.0250) 35.83% (2.79%)

MRDCA − RWG 0.2888 (0.0276) 0.5885 (0.0244) 35.55% (2.08%)

MRDCA − RWL 0.2873 (0.0313) 0.5826 (0.0316) 35.96% (2.91%)

CARD − R 0.1625 (0.0190) 0.5026 (0.0207) 43.56% (2.24%)

are the dissimilarities between pairs of objects computed taking into account
only a single real-valued attribute. In this paper, the dissimilarity between
pairs of objects were computed according to the Euclidean (L2) distance.

For these data sets, NERF and SRDCA were performed on the dissimilarity
matrix which has the cells that are the dissimilarities between pairs of objects
computed taking into account simultaneously all the real-valued attributes.
CARD − R, MRDCA, MRDCA − RWL and MRDCA − RWG were per-
formed simultaneously on all dissimilarity matrices which have the cells that
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Table 5
Performance of the algorithms on the synthetic data sets: 95% confidence interval
for the average of the CR, F −measure, and OERC indexes

Algorithms Synthetic data set 1

CR F − measure OERC

NERF 0.1293—0.1374 0.4905—0.4978 42.61%—43.35%

SRDCA 0.1074—0.1161 0.4820—0.4901 44.14%—45.00%

MRDCA 0.0961—0.1054 0.4594—0.4695 45.65%—46.63%

MRDCA − RWG 0.1088—0.1186 0.4743—0.4836 44,50%—45.45%

MRDCA − RWL 0.5271—0.5382 0.7028—0.7131 23.26%—24.25%

CARD − R 0.4751—0.4868 0.6904—0.6989 25.23%—26.15%

Algorithms Synthetic data set 2

CR F − measure OERC

NERF 0.1382—0.1449 0.4693—0.4766 45.92%—46.60%

SRDCA 0.1380—0.1449 0.4686—0.4769 45.78%—46.48%

MRDCA 0.2014—0.2117 0.5428—0.5543 39.26%—40.39%

MRDCA − RWG 0.2319—0.2448 0.5702—0.5823 36.97%—38.11%

MRDCA − RWL 0.2261—0.2424 0.5589—0.5754 37.48%—39.04%

CARD − R 0.2529—0.2612 0.5786—0.5869 36.51%—37.25%

Algorithms Synthetic data set 3

CR F − measure OERC

NERF 0.2326—0.2435 0.5246—0.5341 41.27%—42.22%

SRDCA 0.2084—0.2259 0.5113—0.5264 42.54%—43.86%

MRDCA 0.2266—0.2439 0.5392—0.5503 41.30%—42.56%

MRDCA − RWG 0.2060—0.2205 0.5061—0.5184 42.45%—43.69%

MRDCA − RWL 0.2149—0.2266 0.5121—0.5238 42.92%—43.96%

CARD − R 0.1259—0.1310 0.4355—0.4434 51.38%—52.07%

Algorithms Synthetic data set 4

CR F − measure OERC

NERF 0.2886—0.2997 0.5960—0.6065 34.30%—35.27%

SRDCA 0.2953—0.3074 0.5992—0.6075 34.05%—35.03%

MRDCA 0.2679—0.2802 0.5861—0.5959 35.28%—36.38%

MRDCA − RWG 0.2833—0.2942 0.5837—0.5932 35.14%—35.96%

MRDCA − RWL 0.2811—0.2934 0.5764—0.5887 35.38%—36.53%

CARD − R 0.1587—0.1662 0.4985—0.5066 43.12%—44.00%

are the dissimilarities between pairs of objects computed taking into account
only a single real-valued attribute. All dissimilarity matrices were normalized
according to their overall dispersion [37] to have the same dynamic range.

Each relational clustering algorithm was run (until the convergence to a sta-
tionary value of the adequacy criterion) 100 times and the best result was
selected according to the adequacy criterion. The hard cluster partitions (ob-
tained from the fuzzy partitions given by NERF or CARD − R or obtained
directly from SRDCA, MRDCA, MRDCA−RWL and MRDCA−RWG)
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were compared with the known a priori class partition. The comparison criteria
used were the corrected Rand index (CR), the F − measure and the over-
all error rate of classification (OERC). The CR, F −measure, and OERC
indexes were calculated for the best result.

3.2.1 Abalone data set

This data set consists of 4177 abalones described by 8 real-valued attributes
and 1 nominal attribute. In this application, the 8 real-valued attributes were
considered for clustering purposes. They are: (1) Length, (2) Diameter, (3)
Height, (4) Whole weight, (5) Shucked weight, (6) Viscera weight, (7) Shell
weight and (8) Rings. The nominal attribute “Sex” with three classes (Male,
Female and Infant) was used as an a priori classification. The classes (Male,
Female and Infant) have 1528, 1307 and 1342 instances, respectively.

The fuzzy clustering algorithms NERF and CARD − R were applied to the
dissimilarity matrices obtained from this data set to obtain a three-cluster
fuzzy partition. The three-cluster hard partitions obtained from the fuzzy
partition were compared with the known a priori three-class partition. NERF
had 0.0851, 0.4566 and 51.98% for CR, F − measure, and OERC indexes,
respectively, whereas CARD−R had 0.0935, 0.5021 and 52.09%, respectively,
for these indexes.

The hard clustering algorithms were applied to the dissimilarity matrices ob-
tained from this data set to obtain a three-cluster hard partition. Table 6
shows the performance of the SRDCA, MRDCA, MRDCA − RWL and
MRDCA − RWG algorithms on the abalone data set according to CR,
F −measure and OERC indexes, considering prototypes of cardinality |Gk|
=1, 2, 3, 5 and 10 (k = 1, 2, 3).

For this data set, globally, the best performance was presented by MRDCA−
RWG, MRDCA − RWL, MRDCA and CARD − R, in this order. The
worst performance was presented by NERF and SRDCA, in this order. Note
that the performance was stable for SRDCA and worsened for MRDCA,
MRDCA−RWL and MRDCA−RWG, with the increase of the cardinality
of the prototypes.

Table 7 gives the vector of relevance weights, globally for all dissimilarity
matrices (according to the best result given by MRDCA − RWG algorithm
with prototypes of cardinality 1) and locally for each cluster and dissimilarity
matrix (according to the best result given by MRDCA − RWL algorithm
with prototypes of cardinality 1). Table 8 gives the confusion matrix of the
three-cluster hard partition given by the MRDCA − RWL algorithm with
prototypes of cardinality 1.
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Table 6
Abalone data set: CR, F −measure, and OERC indexes

Indexes |Gk| SRDCA MRDCA MRDCA−RWL MRDCA−RWG

1 0.0855 0.1440 0.1555 0.1847

2 0.0853 0.1438 0.1531 0.1809

CR 3 0.0855 0.1436 0.1531 0.1827

5 0.0855 0.1419 0.1535 0.1809

10 0.0855 0.1409 0.1531 0.1799

1 0.4572 0.5398 0.5503 0.6025

2 0.4570 0.5416 0.5500 0.6005

F −measure 3 0.4572 0.5422 0.5500 0.6018

5 0.4572 0.5402 0.5502 0.6005

10 0.4572 0.5397 0.5498 0.6010

1 51.92% 46.89% 46.58% 47.11%

2 51.92% 46.82% 46.66% 47.28%

OERC 3 51.92% 46.89% 46.66% 47.16%

5 51.92% 47.04% 46.66% 47.33%

10 51.92% 47.11% 46.68% 47.28%

Table 7
Abalone data set: vectors of relevance weights

Data Matrix MRDCA − RWG MRDCA − RWL

Cluster 1 Cluster 2 Cluster 3

Length 1.0915 0.2281 5.8765 1.7714

Diameter 1.1227 0.2361 5.4532 1.6567

Height 0.7615 0.1584 1.6357 0.7500

Whole weight 5.8800 84.1655 0.1887 0.2504

Shucked weight 0.3895 12.7859 0.1137 13.6994

Viscera weight 0.9774 0.7795 1.1872 0.8345

Shell weight 0.9745 0.6773 0.9422 0.8894

Rings 0.4910 0.2061 0.7943 0.1783

Table 8
Abalone data set: confusion matrix

Classes

Clusters 1-Male 2-Female 3-Infant

1 372 256 1068

2 339 346 24

3 817 705 250
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Concerning the three-cluster partition given by MRDCA − RWG, dissimi-
larity matrices were computed taking into account only “ (4) Whole weight”
and “(5) Shucked weight” attributes which had the highest (5.8800) and the
lowest (0.3895) relevance weight in the definition of the clusters, respectively.

For the three-cluster hard partition given by the MRDCA−RWL algorithm,
Table 7 shows (in bold) the dissimilarity matrices of the most relevance weights
in the definition of each cluster. For example, dissimilarity matrices computed
taking into account only “(5) Shucked weight,” “(1) Length” and “(2) Di-
ameter” (in this order) are the most relevant in the definition of cluster 3
(Infant).

3.2.2 Image data set

This data set consists of images that were drawn randomly from a database
of seven outdoor images. The images were segmented by hand to create the
seven class labels: sky, cement, window, brick, grass, foliage and path. Each
class has 330 instances. Each object is described by 16 real-valued attributes.
These attributes are: (1) region-centroidcol; (2) region-centroid-row; (3) vedge-
mean; (4) vegde-sd; (5) hedge-mean; (6) hedge-sd; (7) intensity-mean; (8)
rawred-mean; (9) rawblue-mean; (10) rawgreen-mean; (11) exred-mean; (12)
exblue-mean; (13) exgreen-mean; (14) value-mean; (15) saturation-mean and
(16) hue-mean.

The fuzzy clustering algorithms NERF and CARD − R were applied to the
dissimilarity matrices obtained from this data set to obtain a seven-cluster
fuzzy partition. The seven-cluster hard partitions obtained from the fuzzy
partition were compared with the known a priori seven-class partition. NERF
had 0.2822, 0.5014 and 47.09% for CR, F − measure, and OERC indexes,
respectively, whereas CARD − R had 0.0528, 0.3051, and 71.47% for these
indexes, respectively.

The hard clustering algorithms were applied to the dissimilarity matrices
obtained from this data set to obtain a seven-cluster hard partition. Ta-
ble 9 shows the performance of the SRDCA, MRDCA, MRDCA − RWL
and MRDCA − RWG algorithms on the image data set according to CR,
F −measure and OERC indexes, considering prototypes of cardinality |Gk|
=1, 2, 3, 5 and 10 (k = 1, . . . , 7).

For this data set, globally, the best performance was presented by MRDCA−
RWL, MRDCA, MRDCA − RWG and SRDCA, in this order. The worst
performance was presented by CARD − R and NERF , in this order. In
particular, MDCA − RWL with prototypes of cardinality 3 had the best
and CARD − R had the worst performance, concerning these indexes. Note
that the performance was improved for SRDCA and worsened for MRDCA,
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MRDCA−RWL and MRDCA−RWG, with the increase of the cardinality
of the prototypes.

Table 9
Image data set: CR, F −measure, and OERC indexes

Indexes |Gk| SRDCA MRDCA MRDCA−RWL MRDCA−RWG

1 0.3116 0.4756 0.4962 0.4382

2 0.3909 0.4698 0.4947 0.4397

CR 3 0.3919 0.4603 0.4974 0.4371

5 0.3223 0.4587 0.4948 0.4123

10 0.4100 0.4568 0.4949 0.4128

1 0.5310 0.6342 0.6490 0.6187

2 0.6116 0.6300 0.6496 0.6101

F −measure 3 0.5869 0.6253 0.6527 0.6097

5 0.5469 0.6237 0.6533 0.5817

10 0.6193 0.6225 0.6528 0.5841

1 49.48% 38.70% 38.00% 40.12%

2 44.80% 38.96% 38.05% 37.09%

OERC 3 44.80% 39.61% 37.96% 37.14%

5 50.04% 39.61% 38.81% 39.69%

10 41.21% 39.61% 38.26% 39.69%

Table 10 gives the vector of relevance weights, globally for all dissimilarity
matrices (according to the best result given by MRDCA − RWG algorithm
with prototypes of cardinality 3) and locally for each cluster and dissimilarity
matrix (according to the best result given by MRDCA − RWL algorithm
with prototypes of cardinality 3). Table 11 gives the confusion matrix of the
seven-cluster hard partition given by the MRDCA − RWL algorithm with
prototypes of cardinality 3.

Concerning the seven-cluster partition given by MRDCA − RWG, dissim-
ilarity matrices computed taking into account only “ (16) hue-mean” and
“(1) region-centroidcol” attributes, had the highest (6.3530) and the lowest
(0.1392) relevance weight in the definition of the clusters, respectively.

For the seven-cluster hard partition given by MRDCA − RWL algorithm,
Table 10 shows (in bold) the dissimilarity matrices of most relevance weights
in the definition of each cluster. For example, dissimilarity matrices computed
taking into account only “(4) vegde-sd,” “(6) hegde-sd,” “(16) hue-mean,”
and “(3) vegde-mean” (in this order) are the most relevant in the definition
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Table 10
Image data set: vectors of relevance weights

Data Matrix MRDCA − RWG MRDCA − RWL

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

region-centroidcol 0.1392 0.0329 0.0433 0.5251 0.0449 0.0764 0.0381 0.1138

region-centroid-row 0.2895 0.1435 0.0309 5.9588 0.2166 0.5125 0.1667 0.1974

vedge-mean 0.2570 0.4840 0.1364 0.0867 2.9086 0.0699 0.4695 0.0756

vegde-sd 0.6346 22.1196 48.4827 0.0124 565.5961 0.0847 135.0916 15.1192

hedge-mean 0.2146 0.3846 0.1625 0.0289 0.9601 0.0884 1.0664 0.0424

hedge-sd 0.2884 21.7621 69.8531 0.0067 208.6723 0.1796 207.1898 0.2895

intensity-mean 3.9574 2.1687 1.3030 3.8936 0.3634 7.1007 1.7675 3.4010

rawred-mean 3.0212 2.5154 1.3864 3.5434 0.2303 8.3460 1.5910 2.8607

rawblue-mean 4.9499 2.5363 1.0718 4.1286 0.8258 5.7401 1.3864 4.0582

rawgreen-mean 3.4086 1.4650 1.4573 3.8519 0.2640 7.2421 2.4677 2.9034

exred-mean 0.6573 0.3574 0.2632 2.3650 0.0949 1.0620 0.2845 0.5664

exblue-mean 1.1291 1.1280 0.3342 3.9761 0.1189 1.7735 0.4035 1.4148

exgreen-mean 1.2551 0.3515 0.7094 1.7040 0.1769 2.4896 0.3493 1.5726

value-mean 4.7500 2.0473 1.0422 4.0145 0.8030 5.5291 1.3557 3.9385

saturation-mean 0.4329 0.2982 2.1785 3.7801 0.6078 0.2884 0.0501 0.8251

hue-mean 6.3530 1.3434 24.8247 28.2962 17.4598 14.6969 0.4270 6.7460

Table 11
Image data set: confusion matrix

Classes

Clusters 1-sky 2-cement 3-window 4-brick 5-grass 6-foliage 7-path

1 0 0 22 37 1 63 0

2 0 0 1 215 0 252 0

3 146 0 200 13 198 0 1

4 0 330 0 0 0 0 0

5 184 0 30 64 103 13 2

6 0 0 77 1 28 2 0

7 0 0 0 0 0 0 327

of cluster 4 (cement).

3.2.3 Iris plant data set

This data set consists of three types (classes) of iris plants: iris setosa, iris ver-
sicolour and iris virginica. The three classes each have 50 instances (objects).
One class is linearly separable from the other two; the latter two are not lin-
early separable from each other. Each object is described by four real-valued
attributes: (1) sepal length, (2) sepal width, (3) petal length and (4) petal
width.

The fuzzy clustering algorithms NERF and CARD − R were applied to the
dissimilarity matrices obtained from this data set to obtain a three-cluster
fuzzy partition. The three-cluster hard partitions obtained from the fuzzy
partition were compared with the known a priori three-class partition. NERF
had 0.7294, 0.8922 and 10.67% for CR, F − measure, and OERC indexes,
respectively, whereas CARD − R had 0.8856, 0.9599 and 4.00% for these
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indexes, respectively.

The hard clustering algorithms were applied to the dissimilarity matrices
obtained from this data set to obtain a three-cluster hard partition. Table
12 shows the performance of the SRDCA, MRDCA, MRDCA − RWL
and MRDCA − RWG algorithms on the iris data set according to CR,
F −measure and OERC indexes, considering prototypes of cardinality |Gk|
=1, 2, 3, 5 and 10 (k = 1, 2, 3).

For this data set, globally, the best performance was presented by CARD−R,
MRDCA−RWG, MRDCA−RWL and SRDCA, in this order. The worst
performance was presented by MRDCA and NERF , in this order. Note that
the performance was improved for MRDCA and worsened for SRDCA and
MRDCA−RWL, with the increase of the cardinality of the prototypes. The
performance of MRDCA − RWL was not affected by the cardinality of the
prototypes.

Table 12
Iris data set: CR, F −measure, and OERC indexes

Indexes |Gk| SRDCA MRDCA MRDCA−RWL MRDCA−RWG

1 0.7455 0.6412 0.8680 0.8856

2 0.7037 0.6412 0.8680 0.8856

CR 3 0.7302 0.6575 0.8507 0.8856

5 0.7294 0.6575 0.8342 0.8856

10 0.7436 0.6451 0.8681 0.8856

1 0.8976 0.8465 0.9533 0.9599

2 0.8782 0.8465 0.9533 0.9599

F −measure 3 0.8917 0.8600 0.9466 0.9599

5 0.8922 0.8600 0.9398 0.9599

10 0.8987 0.8535 0.9532 0.9599

1 10.00% 15.33% 4.67% 4.00%

2 12.00% 15.33% 4.67% 4.00%

OERC 3 10.67% 14.00% 5.33% 4.00%

5 10.67% 14.00% 6.00% 4.00%

10 10.00% 14.67% 4.67% 4.00%

Table 13 gives the vector of relevance weights, globally for all dissimilarity
matrices (according to the best result given by MRDCA − RWG algorithm
with prototypes of cardinality 1) and locally for each cluster and dissimilarity
matrix (according to the best result given by MRDCA − RWL algorithm
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with prototypes of cardinality 1). Table 14 gives the confusion matrix of the
three-cluster hard partition given by the MRDCA − RWL algorithm with
prototypes of cardinality 1.

Table 13
Iris data set: vectors of relevance weights

Data Matrix MRDCA − RWG MRDCA − RWL

Cluster 1 Cluster 2 Cluster 3

Sepal length 0.5523 0.4215 0.4423 0.4145

Sepal width 0.2971 0.5146 0.3555 0.0994

Petal length 2.9820 2.3212 2.0378 7.3868

Petal width 2.0428 1.9861 3.1202 3.2822

Table 14
Iris data set: confusion matrix

Classes

Clusters 1-Iris setosa 2-Iris versicolour 3-Iris virginica

1 50 0 0

2 0 3 46

3 0 47 4

Concerning the three-cluster partition given by MRDCA − RWG, dissimi-
larity matrices computed taking into account only “(3) petal length” or only
“(4) petal width” attributes have the highest relevant weight. Thus the objects
described by these dissimilarity matrices are closer to the prototypes of the
clusters than are those described by dissimilarity matrices computed taking
into account only “(1) sepal length” or “(2) sepal width” attributes.

For the three-cluster hard partition given by MRDCA − RWL algorithm,
Table 13 shows (in bold) the dissimilarity matrices of most relevance weights
in the definition of each cluster. For example, dissimilarity matrices computed
taking into account only “(3) Petal length” and “(4) Petal width” (in this
order) are the most relevant in the definition of cluster 3 (Iris setosa), whereas
dissimilarity matrices computed taking into account only “(4) Petal width”
and “(3) Petal length” are the most relevant in the definition of cluster 2 (Iris
versicolour).

3.2.4 Thyroid gland data set

This data set consists of three classes concerning the state of the thyroid gland:
normal, hyperthyroidism and hypothyroidism. The classes (1, 2 and 3) have
150, 35 and 30 instances, respectively. Each object is described by five real-
valued attributes: (1) T3-resin uptake test, (2) total serum thyroxin, (3) total
serum triiodothyronine, (4) basal thyroid-stimulating hormone (TSH) and (5)
maximal absolute difference in TSH value.

The fuzzy clustering algorithms NERF and CARD − R were applied to the
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dissimilarity matrices obtained from this data set to obtain a three-cluster
fuzzy partition. The three-cluster hard partitions obtained from the fuzzy
partition were compared with the known a priori three-class partition. NERF
had 0.4413, 0.7993 and 20.93% for CR, F − measure, and OERC indexes,
respectively, whereas CARD − R had 0.2297, 0.7160 and 21.86% for these
indexes, respectively.

The hard clustering algorithms were applied to the dissimilarity matrices
obtained from this data set to obtain a three-cluster hard partition. Table
15 shows the performance of the SRDCA, MRDCA, MRDCA − RWL
and MRDCA − RWG algorithms on the thyroid data set according to CR,
F −measure and OERC indexes, considering prototypes of cardinality |Gk|
=1, 2, 3, 5 and 10 (k = 1, 2, 3).

For this data set, globally, the best performance was presented by MRDCA−
RWL, MRDCA − RWG, and MRDCA, in this order. The worst perfor-
mance was presented by CARD − R, NERF and SRDCA, in this order.
In particular, MRDCA − RWL with prototypes of cardinality 1 had the
best and SRDCA with prototypes of cardinality 10 had the worst perfor-
mance, concerning these indexes. Note that the performance was stable for
MRDCA−RWG and was worsened for MRDCA−RWL, with the increase
of the cardinality of the prototypes. Performance of SRDCA was better with
prototypes of cardinality 2, 3 and 5 and worst with prototypes of cardinal-
ity 10. Finally, the performance of MRDCA was worst with prototypes of
cardinality 2 and better with prototypes of cardinality 3, 5 and 10.

Table 16 gives the vector of relevance weights globally for all dissimilarity
matrices (according to the best result given by MRDCA − RWG algorithm
with prototypes of cardinality 1) and locally for each cluster and dissimilarity
matrix (according to the best result given by MRDCA − RWL algorithm
with prototypes of cardinality 1). Table 17 gives the confusion matrix of the
three-cluster hard partition given by the MRDCA − RWL algorithm with
prototypes of cardinality 1.

Concerning the three-cluster partition given by MRDCA−RWG, dissimilar-
ity matrices computed taking into account only “ (2) Total serum thyroxin”
and “(1) T3-resin uptake test” attributes, had the highest (1.3982) and the
lowest (0.6546) relevance weight in the definition of the clusters, respectively.

For the three-cluster hard partition given by MRDCA − RWL algorithm,
Table 16 shows (in bold) the dissimilarity matrices of most relevance weights
in the definition of each cluster. For example, dissimilarity matrices computed
taking into account only “(5) Maximal absolute difference in TSH value”
and“(4) Basal thyroid-stimulating hormone (TSH)” (in this order) are the
most relevant in the definition of cluster 2 (Hyperthyroidism), whereas dis-
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Table 15
Thyroid data set: CR, F −measure, and OERC indexes

Indexes |Gk| SRDCA MRDCA MRDCA−RWL MRDCA−RWG

1 0.3577 0.5665 0.8776 0.5809

2 0.5217 0.5484 0.8475 0.5484

CR 3 0.5217 0.5809 0.8328 0.5809

5 0.6285 0.5974 0.8182 0.5809

10 0.2014 0.5831 0.8185 0.5831

1 0.7709 0.8551 0.9616 0.8614

2 0.8408 0.8508 0.9525 0.8508

F −measure 3 0.8408 0.8614 0.9481 0.8614

5 0.8820 0.8665 0.9437 0.8614

10 0.6764 0.8602 0.9429 0.8602

1 24.65% 13.02% 3.72% 12.55%

2 15.81% 13.48% 4.65% 13.48%

OERC 3 15.81% 12.55% 5.11% 12.55%

5 11.62% 12.09% 5.58% 12.55%

10 35.34% 12.55% 5.58% 12.55%

Table 16
Thyroid data set: vectors of relevance weights

Data Matrix MRDCA − RWG MRDCA − RWL

Cluster 1 Cluster 2 Cluster 3

T3-resin uptake test 0.6546 0.2437 0.0599 1.7284

Total serum thyroxin 1.3982 0.4086 0.0933 4.9804

Total serum triiodothyronine 0.9716 0.8272 0.0488 5.2643

Basal thyroidstimulating hormone (TSH) 1.1822 12.93 29.3203 0.1350

Maximal absolute difference in TSH value 0.9509 0.9136 124.6778 0.1633

Table 17
Thyroid data set: confusion matrix

Classes

Clusters 1-Normal 2-Hyperthyroidism 3-Hypothyroidism

1 148 0 6

2 2 35 0

3 0 0 24

similarity matrices computed taking into account only “(3) Total serum tri-
iodothyronine,” “(2) Total serum thyroxin,” and “(1) T3-resin uptake test”
are the most relevant in the definition of cluster 3 (Hypothyroidism).
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3.2.5 Wine data set

This data set consists of three types (classes) of wines grown in the same region
in Italy, but derived from three different cultivars. The classes (1, 2, and 3)
have 59, 71 and 48 instances, respectively. Each wine is described by 13 real-
valued attributes representing the quantities of 13 components found in each
of the three types of wines. These attributes are: (1) alcohol; (2) malic acid;
(3) ash; (4) alkalinity of ash; (5) magnesium; (6) total phenols; (7) flavonoids;
(8) non-flavonoid phenols; (9) proanthocyanins; (10) color intensity; (11) hue;
(12) OD280/OD315 of diluted wines; and (13) proline.

The fuzzy clustering algorithms NERF and CARD − R were applied to the
dissimilarity matrices obtained from this data set to obtain a three-cluster
fuzzy partition. The three-cluster hard partitions obtained from the fuzzy
partition were compared with the known a priori three-class partition. NERF
had 0.3539, 0.6986 and 31.46% for CR, F − measure, and OERC indexes,
respectively, whereas CARD − R had 0.3808, 0.7227 and 26.97% for these
indexes, respectively.

The hard clustering algorithms were applied to the dissimilarity matrices
obtained from this data set to obtain a three-cluster hard partition. Table
18 shows the performance of the SRDCA, MRDCA, MRDCA − RWL
and MRDCA − RWG algorithms on the wine data set according to CR,
F −measure and OERC indexes, considering prototypes of cardinality |Gk|
=1, 2, 3, 5 and 10 (k = 1, 2, 3).

For this data set, globally, the best performance was presented by MRDCA,
MRDCA − RWG, MRDCA − RWL, and CARD − R, in this order. The
worst performance was presented by NERF and SRDCA, in this order. In
particular, MRDCA with prototypes of cardinality 5 or 10 had the best
and NERF had the worst performances, concerning these indexes. Note that
the performance was worsened for SRDCA and was improved for MRDCA,
MRDCA−RWL, and MRDCA−RWG, with the increase of the cardinality
of the prototypes.

Table 19 gives the vector of relevance weights globally for all dissimilarity
matrices (according to the best result given by MRDCA − RWG algorithm
with prototypes of cardinality 10) and locally for each cluster and dissimilarity
matrix (according to the best result given by MRDCA − RWL algorithm
with prototypes of cardinality 5). Table 20 gives the confusion matrix of the
three-cluster hard partition given by the MRDCA − RWL algorithm with
prototypes of cardinality 5.

Concerning the three-cluster hard partition given by MRDCA− RWG, dis-
similarity matrices computed taking into account only “ (7) Flavonoids” and
“(3) Ash” attributes, had the highest and the lowest relevance weight in the
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Table 18
Wine data set: CR, F −measure, and OERC indexes

Indexes |Gk| SRDCA MRDCA MRDCA−RWL MRDCA−RWG

1 0.3749 0.7263 0.7407 0.7548

2 0.3711 0.8297 0.7702 0.8150

CR 3 0.3749 0.8319 0.7553 0.8319

5 0.3711 0.8804 0.7712 0.8185

10 0.3711 0.8804 0.7702 0.8348

1 0.7204 0.9024 0.9077 0.9138

2 0.7147 0.9435 0.9195 0.9372

F −measure 3 0.7204 0.9429 0.9136 0.9429

5 0.7147 0.9603 0.9194 0.9371

10 0.7147 0.9603 0.9195 0.9430

1 29.21% 9.55% 8.98% 8.42%

2 29.77% 5.61% 7.86% 6.17%

OERC 3 29.21% 5.61% 8.42% 5.61%

5 29.77% 3.93% 7.86% 6.17%

10 29.77% 3.93% 7.86% 5.61%

Table 19
Wine data set: vectors of relevance weights

Data Matrix MRDCA − RWG MRDCA − RWL

Cluster 1 Cluster 2 Cluster 3

Alcohol 1.1425 0.8661 0.6262 1.4453

Malic acid 0.7764 0.4632 1.6446 0.5761

Ash 0.5881 0.8849 0.4594 0.4902

Alkalinity of ash 0.6648 0.6879 0.5142 0.5693

Magnesium 0.5914 0.6026 0.4912 0.4559

Total phenols 1.2453 1.0469 1.5799 1.0290

Flavonoids 2.5725 4.4077 2.5278 2.5297

Non-flavonoid phenols 0.7232 0.5121 1.6356 0.6200

Proanthocyanins 0.7954 0.8521 0.8685 0.6673

Color intensity 0.9707 0.2827 1.5606 4.6254

Hue 0.9462 1.3060 1.2557 0.5543

OD280/OD315 of diluted wines 1.7677 3.3920 1.4217 0.9359

Proline 1.6284 2.6922 0.5292 3.6505

definition of the clusters, respectively.

For the three-cluster hard partition given by MRDCA − RWL algorithm,
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Table 20
Wine data set: confusion matrix

Classes

Clusters Wine type 1 Wine type 2 Wine type 3

1 59 8 0

2 0 57 0

3 0 6 48

Table 19 shows (in bold) the dissimilarity matrices of most relevance weights
in the definition of each cluster. For example, dissimilarity matrices computed
taking into account only “(7) Flavonoids,” “(12) OD280/OD315 of diluted
wines,” “(13) Proline,” “(11) Hue,” and “(6) Total phenols” (in this order)
are the most relevant in the definition of cluster 1 (Wine type 1).

In conclusion, for these UCI machine learning data sets, the best perfor-
mance was presented by MRDCA − RWL, MRDCA − RWG, MRDCA,
and CARD−R, in this order, according to CR, F −measure, and OERC in-
dexes. The worst performance was presented by NERF and SRDCA, in this
order. Moreover, when the cardinality of the prototypes was increased, in the
majority of the data sets, the performance was worsened for MRDCA−RWL,
was worsened or stable for MRDCA−RWG and SRDCA, and was improved
for MRDCA.

3.3 Time trajectories data sets

The authors consider phoneme and satellite time trajectories data sets. These
data sets are available at http://www.math.univ-toulouse.fr/staph/npfda/npfda-
datasets.html. To compare time trajectories, a “cross sectional-longitudinal”
dissimilarity function proposed by D’Urso and Vichi was considered [35] [36].
The authors propose a compromise dissimilarity that is a combination of a
cross-sectional dissimilarity, which compares the instantaneous position (trend)
of each pair of trajectories, and two longitudinal dissimilarities, based on the
concepts of velocity and acceleration of a time trajectory.

Let xi = (xi(t1), . . . , xi(tp)) (i = 1, . . . , n) the i-th time trajectory. The velocity
of the i-th time trajectory is defined as vi = (vi(t2), . . . , vi(tp)) (i = 1, . . . , n),

where vi(tj) =
xi(tj )−xi(tj−1)

tj−tj−1
(j = 2 . . . , p) is the velocity in the interval [tj−1, tj)

which measures the variation of the i-th time trajectory in [tj−1, tj). The ac-
celeration of the i-th time trajectory is defined as ai = (ai(t3), . . . , ai(tp)) (i =

1, . . . , n), where ai(tj) =
vi(tj)−vi(tj−1)

tj−tj−2
(j = 3 . . . , p) is the acceleration in the

interval [tj−2, tj).

The compromise dissimilarity between the i-th and the l-th time trajectories
is defined as
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d2(i, l) = α1‖xi − xl‖
2 + α2‖vi − vl‖

2 + α3‖ai − al‖
2 (25)

where ‖xi − xl‖ =
∑p

j=1(xi(tj) − xl(tj))
2, ‖vi − vl‖ =

∑p
j=2(vi(tj) − vl(tj))

2

and ‖ai − al‖ =
∑p

j=3(ai(tj)− al(tj))
2.

In [35], the weights α of each dissimilarity-component are determined by con-
sidering a global objective criterion based on the maximization of the variance
of the compromise dissimilarity. In this paper, they will be determined accord-
ing to the relational clustering algorithm presented in sections 2.2.1 and 2.2.2.

Note that because they are based on a single dissimilarity matrix, neither
NERF nor SRDCA can be used to cluster time trajectories data sets com-
pared to the “cross sectional-longitudinal” dissimilarity function proposed by
D’Urso and Vichi [35] [36].

3.4 Phoneme data set

This data set is a part of the original one that can be found at http://www-
stat.stanford.edu/ tibs/ElemStatLearn/. It consists of five phonemes (classes):
“sh,” “iy,” “dcl,” “aa,” and “ao”. The five classes each have 400 instances (ob-
jects). Each object (time trajectory) is described as (xi, yi) (i = 1 . . . , n), where
yi gives the class membership (phonemes) whereas xi = (xi(t1), . . . , xi(t150))
is the i-th discretized functional data corresponding to the discretized log-
periodograms.

From the original phoneme data set the authors had obtained initially two
additional data sets corresponding to the velocity and acceleration of the dis-
cretized log-periodograms. Then, three relational data tables are obtained
from these three satellite data sets (position, velocity and acceleration of
the discretized log-periodograms) through the application of the squared Eu-
clidean distance. All dissimilarity matrices were normalized according to their
overall dispersion [37] to have the same dynamic range.

The fuzzy clustering algorithm CARD − R was performed simultaneously
on these 3 relational data tables (position , velocity, and acceleration of the
discretized log-periodograms) to obtain a five-cluster fuzzy partition. The five-
cluster hard partitions obtained from the fuzzy partition were compared with
the known a priori five-class partition. CARD − R had 0.1922, 0.4853 and
60.40% for the CR, F −measure, and OERC indexes, respectively.

The hard clustering algorithms MRDCA, MRDCA−RWL and MRDCA−
RWG were applied simultaneously on these 3 relational data tables to obtain
a five-cluster hard partition. Table 21 shows the performance of the MRDCA,
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MRDCA−RWL and MRDCA−RWG algorithms on the phoneme data set
according to the CR, F−measure and OERC indexes, considering prototypes
of cardinality |Gk| =1, 2, 3, 5 and 10 (k = 1, . . . , 5).

For this data set, globally, the best performance was presented by MRDCA−
RWL, MRDCA−RWG and MRDCA, in this order. The worst performance
was presented by CARD−R. In particular, MRDCA−RWG with prototypes
of cardinality 10 had the best performance, concerning these indexes. Note
that the performance was improved for MRDCA, MRDCA − RWL and
MRDCA−RWG, with the increase of the cardinality of the prototypes.

Table 21
Phoneme data set: CR, F −measure, and OERC indexes

Indexes |Gk| MRDCA MRDCA−RWL MRDCA−RWG

1 0.4366 0.5418 0.5216

2 0.4284 0.5835 0.5964

CR 3 0.5317 0.6972 0.6937

5 0.4812 0.7270 0.7225

10 0.4698 0.7264 0.7277

1 0.6496 0.7435 0.7441

2 0.6714 0.7675 0.7708

F −measure 3 0.7331 0.8448 0.8433

5 0.6501 0.8550 0.8525

10 0.6484 0.8495 0.8492

1 38.65% 27.10 % 28.55%

2 34.50% 26.30% 25.45%

OERC 3 30.15 % 15.70% 16.00%

5 36.25% 14.70% 14.95%

10 39.15% 15.10% 15.15%

Table 22 gives the vector of relevance weights globally for all dissimilarity
matrices (according to the best result given by MRDCA − RWG algorithm
with prototypes of cardinality 10) and locally for each cluster and dissimilarity
matrix (according to the best result given by MRDCA − RWL algorithm
with prototypes of cardinality 5). Table 23 gives the confusion matrix of the
five-cluster hard partition given by the MRDCA − RWL algorithm with
prototypes of cardinality 5.

Concerning the five-cluster hard partition given by MRDCA−RWG, dissim-
ilarity matrices computed taking into account only “ (1) Position” attribute
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Table 22
Phoneme data set: vectors of relevance weights

Data Matrix MRDCA − RWG MRDCA − RWL

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Position 2.1888 2.5936 1.5062 2.3235 2.1424 2.0930

Velocity 0.6900 0.6458 0.8203 0.6451 0.7102 0.7091

Acceleration 0.6621 0.5969 0.8093 0.6670 0.6571 0.6736

Table 23
Phoneme data set: confusion matrix

Classes

Clusters 1-sh 2-iy 3-dcl 4-aa 5-ao

1 0 1 387 0 1

2 396 9 1 0 0

3 0 0 0 271 115

4 0 21 9 129 283

5 4 369 3 0 1

had the highest relevance weight in the definition of the clusters. Thus, the
objects described by this dissimilarity matrix are closer to the prototypes of
the clusters than are those described by velocity or acceleration dissimilarity
matrix.

For the five-cluster hard partition given by MRDCA−RWL algorithm, Table
19 shows (in bold) the dissimilarity matrices of the most relevance weights in
the definition of each cluster. For all clusters, position dissimilarity matrix has
the highest relevant weight, thus the objects described by this dissimilarity
matrix are closer to the respective prototypes of these clusters than are those
described by velocity or acceleration dissimilarity matrices.

3.5 Satellite data set

This data set concerns n = 472 radar waveforms. The data were registered by
the Topex/Poseidon satellite upon the Amazon River. Each object (time tra-
jectory) is represented by its discretized wave version xi = (xi(t1), . . . , xi(t70))
(i = 1, . . . , 472). Each wave is linked with the kind of ground treated by the
satellite, and the aim is to use these waveforms for altimetric and hydrological
purpose on the Amazonian basin.

From the original satellite data set, the authors obtained initially 2 additional
data sets corresponding to the velocity and acceleration of the radar wave-
forms. Then, 3 relational data tables are obtained from these 3 satellite data
sets (position, velocity and acceleration of the radar waveforms) through the
application of the squared Euclidean distance. All dissimilarity matrices were
normalized according to their overall dispersion [37] to have the same dynamic
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range.

The clustering algorithm has been performed simultaneously on these 3 rela-
tional data tables (position, velocity and acceleration of the radar waveforms)
to obtain a partition in K = {1, . . . , 10}. For a fixed number of clusters K,
the clustering algorithm is run 100 times and the best result according to the
adequacy criterion is selected.

To determine the number of cluster, the authors used the approach described
by [38], which consists of the choice of the peaks on the graph of the “second-
oder differences” of the clustering criterion (equation (5)): J (K−1) + J (K+1) −
2J (K), K = 2, . . . , 9. According to this approach, the number of clusters was
fixed as 7. Algorithm MRDCA−RWG gives 7 clusters with cardinality of 49,
55, 45, 79, 32, 149 and 63, while algorithm MRDCA−RWL gives 7 clusters
with cardinality of 38, 84, 61, 97, 62, 92 and 38. For both algorithms, the
prototypes have cardinality 5.

Table 24 gives the vector of relevance weights globally for each dissimilar-
ity matrix (according to the algorithm MRDCA − RWG) and locally for
each cluster and dissimilarity matrix (according to the algorithm MRDCA−
RWL). Concerning the seven-cluster partition given by MRDCA − RWG,
position dissimilarity matrix has the highest relevant weight.

Table 24
Satellite data set: vectors of relevance weights

Data Matrix MRDCA − RWG MRDCA − RWL

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Position 1.4309 3.4372 0.7862 1.6756 2.3028 2.6052 2.1688 0.7543

Velocity 0.8447 0.5974 1.1387 0.7634 0.6757 0.6460 0.6997 1.0608

Acceleration 0.8272 0.4869 1.1168 0.7817 0.6425 0.5940 0.6588 1.2496

For clusters 1, 3, 4, 5 and 6 of the seven-cluster partition given by MRDCA−
RWL, position dissimilarity matrix had the highest relevant weight, while for
cluster 2, velocity and acceleration dissimilarity matrices, in this order, had
the highest relevant weights. Finally, for cluster 7, acceleration and velocity
dissimilarity matrices, in this order, had the highest relevant weights.

Figure 1 shows selected curves from the original satellite data set (position)
belonging to each of the seven clusters. The 5 curves in the prototype of each
cluster (1 and 7) are drawn in bold. This figure shows clearly the difference
between the clusters.

Figures 2-4 show selected curves from the original satellite data set (position)
as well as from the additional data sets (velocity and acceleration) belonging to
clusters 1 (where position dissimilarity matrix had the highest relevant weight
among the seven clusters) and 7 (where acceleration and velocity dissimilarity
matrices were more relevant than position dissimilarity matrix). These figures
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Fig. 1. Selected curves of the clusters: original satellite data set (position)

illustrate clearly why position is the most relevant dissimilarity matrix for
cluster 1 whereas acceleration and velocity are the most relevant dissimilarity
matrix for cluster 7. In these figures, the 5 curves in the prototype of each
cluster (1 and 7) were also drawn in bold.
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Fig. 2. Selected curves of Clusters 1 and 7: Position
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Fig. 3. Selected curves of Clusters 1 and 7: Velocity
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Fig. 4. Selected curves of Clusters 1 and 7: Acceleration

4 Concluding remarks

This paper extended the dynamic clustering algorithm for relational data
(SRDCA) into hard clustering algorithms (MRDCA−RWL and MRDCA−
RWG) that are able to partition objects taking into account simultaneously
their relational descriptions given by multiple dissimilarity matrices. These
matrices have been generated using different sets of variables and dissimi-
larity functions. These algorithms are designed to furnish a partition and a
prototype for each cluster as well as a relevance weight for each dissimilarity
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matrix by optimizing an adequacy criterion that measures the fitting between
clusters and their representatives. As a particularity of these clustering algo-
rithms, they assume that the prototype of each cluster is a subset (of fixed
cardinality) of the set of objects.

For each algorithm, the paper gives the solution for the best prototype of
each cluster, the best relevance weight of each dissimilarity matrix as well
as the best partition, according to the clustering criterion. Moreover, the
time complexity and the convergence properties of MRDCA − RWL and
MRDCA−RWG are also presented. Concerning the relevance weights, they
change at each algorithm iteration and can either be the same for all clusters
or different from one cluster to another. Moreover, they are determined auto-
matically in such a way that the closer to the prototype the objects of a given
dissimilarity matrix of a given cluster are, the higher is the relevance weight
of this dissimilarity matrix on this cluster.

The usefulness of these partitioning relational hard clustering algorithms was
shown with data sets (synthetic and from UCI machine learning repository)
described by real-valued variables as well as with time trajectory data sets. The
accuracy of the results furnished by MRDCA−RWL and MRDCA−RWG
algorithms on these data sets was assessed by the corrected Rand index, the
F-measure and the overall error rate of classification.

Concerning the synthetic data sets, the performance of MRDCA−RWL and
MRDCA − RWG depends on the dispersion of the variables that describes
the objects. In comparison with the algorithms NERF and SRDCA, which
perform on a single dissimilarity matrix, MRDCA−RWL was clearly supe-
rior in the synthetic data sets where the variance was different between the
variables whereas MRDCA−RWG was clearly superior only in the synthetic
data sets where the variance was different between the variables but almost
the same from one class to another.

Moreover, for the UCI machine learning data sets, the best performance was
presented by MRDCA−RWL, MRDCA−RWG, MRDCA and CARD−R,
in this order. The worst performance was presented by NERF and SRDCA
(algorithms that perfoms on a single dissimilarity matrix). Moreover, when
the cardinality of the prototypes was increased, in the majority of these data
sets, the performance was worsened for MRDCA − RWL, was worsened or
stable for MRDCA− RWG and SRDCA and was improved for MRDCA.

Phoneme and satellite time trajectory data sets compared through a “cross
sectional-longitudinal” dissimilarity function also have been considered. Be-
cause this dissimilarity function, when applied to a data set, produces three
dissimilarity matrices corresponding to the comparison of the trajectories ac-
cording to the their trend, velocity and acceleration, only relational clustering
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algorithms that are able to manage multiple dissimilarity matrices can be con-
sidered. Thus, for the phoneme time trajectory data set, the best performance
was presented by MRDCA − RWL, MRDCA − RWG and MRDCA, in
this order. The worst performance was presented by CARD − R. Moreover,
the performance of MRDCA, MRDCA−RWL and MRDCA−RWG was
improved with the increase of the cardinality of the prototypes. Finally, the
usefulness of the algorithms MRDCA − RWL and MRDCA − RWG have
also been illustrated with the study of the satellite time trajectory data set.
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