functional genomics

Astrid Lægreid

Department of Cancer Research and Molecular Medicine Norwegian University of Science and Technology

> Microarray Core Facility Norwegian Microarray Consortium

outline

Functional genomics

gene expression

Predicting gene function

challenges

genome sequencing

human genome

- 3 x 10⁹ basepairs
- ➤ 35.000 genes
- > 100.000 splice variants

genome-wide screening

- how? high-throughput HTP
- what? gene expression, gene-dosage, gene-variation (SNP), protein
- with? microarray, mass spectrometry, 2D-gel electrophoresis

chromosome 21

- 127 known genes
- 98 unknown genes

Coxsackie and adenovirus receptor Amyloidosis, cerebroarterial, Dutch type Alzheimer disease, APP-related Schizophrenia, chronic Usher syndrome, autosomal recessive Amytrophic lateral sclerosis Oligomycin sensitivity Jervell and Lange-Nielsen syndrome Long QT syndrome Down syndrome cell adhesion molecule Homocystinuria Cataract, congenital, autosomal dominant Deafness, autosomal recessive Myxovirus (influenza) resistance Leukemia, acute myeloid

Myeloproliferative syndrome, transient Leukemia, transient, of Down syndrome Enterokinase deficiency Multiple carboxylase deficiency T-cell lymphoma invasion and metastasis Mycobacterial infection, atypical Down syndrome (critical region) Autoimmune polyglandular disease, type I Bethlem myopathy Epilepsy, progressive myoclonic Holoprosencephaly, alobar Knobloch syndrome Hemolytic anemia Breast cancer Platelet disorder, with myeloid malignancy

Short stature, idiopathic familial Lei-Weil dyschondrosteosis Lanow mesometic displasia Leukemia, acute myeloid, M2 type Chondrodysplasia punctata Kalmann syndrome Ocular albinism, Nettleship-Falls type Oral-facial-digital syndrome Nance-Hoxan catalact-dental synchrome Heterocellular hereditary persistence of fetal hereoglobin Pyruvate dehydrogenase deficiency Gycogen storage disease Coffin Lowry syndrome Mental retardation Spondyloepiphyseal dysplasia tarda Paraxysmal nocturnal hemoglobinuria Infantile spasm syndrome Alcard syndrome Deafness, sensorineural Simpson-Golabi-Behmel syndrome, type 2 Adrenal hypoplasia, congenital Dosage-sensitive sex reversal Deafness, congenital sensorineural Retinitis pigmentosa Wisan-Turner syndrome Cone dystrophy Aland island eye disease (ooular albinism) Optic atrophy Naht blindness, concentral stationary, type 1 Erythroid-potentiating activity Arthrogryposis multiplex congenital Night blindness, congenital stationary, type 2 Brunner syndrome Wskott-Aldrich syndrome Thrombocytopenia Dent disasse Nephrolithiasis, type I Hypophosphatemia, type III Proteinuria Anemia, sideroblastic/hypochromic Cerebellar ataxia Renal cell carcinoma, papillary Diabetes mellitus, insulin-dependent Sutherland-Haan syndrome Cognitive function, social Mental retardation, nonspecific Menkes disease Occipital horn syndrome Cutis laxa, neonatal FG syndrome immunodeficiency, moderate and severe Miles-Carpenter syndrome Charcot-Marie-Tooth neuropathy, dominant Mental retardation X-inactivation creter Premature ovarian failure Arts sindrome Cleft palate and/or ankyloglossia Megalocomea Epleosy (Juberg-Heilman syndrome) Pelizaeus-Merzbacher disease Spastic paraplegia Alcort sundrome Cowchook syndrome Hypertrichosis, congenital generalized Prosis, hereditary congenital Acontosis inhibitor Panh.cocihutarism Thoracoabdominal syndrome Simpson-Golabi-Behmel syndrome, type 1 Solit hand foot malformation, type 2 Hypoparathyroidism Mental retardation, Shashi type Lesch-Whan syndrome HPRT-related gout Lowe syndrome Bodeson-Forsiman-Lehmann sundrome Testicular geim cell tumor Hemophilia B Warfarin sensitivity Osseous dysplasia (male lethal), digital Adrenoleukod, strophy Adienomyeloneuropathy Colorbindness blue monorhyperatic Cardiac velvular dysplasia Emery-Dreifuss muscular dystrophy Heterotopia, periventricular Envir Henchtic anemia Colorbindness, green cone pigment Incontinentia pigmenti, type II Hydroceohalus MASA syndrome Spastic paraplegia Rett syndrome Mature T-cell proliferation Myopia (Bomholm eye disease) Mental relaidation with psychosis Endocardal Ebroelastosis

164 million bases Hodgkin disease susceptibility, pseudsoutmonal ichthyosis. Mcrophthalmia, demal aplasia, and scheocorrea Episodic muscle weakness Mental retardation Coular albinism and sensorineural dealness Arrelogenesis imperfecta Charcot-Marie-Tooth disease, recessive Keratosis folieularis spinulosa decalvans Hypophosphatemia, hereditary Particution syndrome Retinoschisis Gonadal dysgenesis, XY female type Mental retardation, non-dysmorphic Agammaglobulinemia, tupe 2 Craniofrontonasal dysplasia Opitz G syndrome, type I Pigment disorder, reticulate Melanoma Duchenne muscular dystrophy Becker muscular dystrophy Cardiomyopathy, dilated Chepric granulomatous disease Snyder Robinson mental retordation Nonie disease **Faudative** vitrecentinopath Coats disease Respensing syndrome Retinitis pigmentosa, recessive Mental resarctation, nonspecific and sundromic Dyserythropoletic anemia with thrombocytopenia Chondrodysplasia punctata, dominant Autoimmunity-immunodeliciency syndrome Renal cell carcinoma, papillary Faciogenital dysplasia (Aarskog-Scott syndrome) Choricathetosis with mental retardation Sarroma cuncilial Prieto syndrome Spinal muscular atrophy, lethal infantile Moraine, familial typical Androgen insensitivity Spinal and bulbar muscular atrophy Prostate cancer Perineal hypospadias Breast cancer, make, with Reifenstein synchrome odermal dysplasia, anhidroti Alpha-thalassemialmental retardation lubero-Marsidi serdiorre Sutherland-Haan syndrome Smith-Fineman-Myers syndrome Hemolytic anomia Modobinuria/hemolusie Weacker Wolff syndrome Tassian distania-paskinsonism, Filipino tupe Leukemia, myeloid/tymphoid or mixed-lineage Aremia, sideroblastic, with ataxia Allan-Hendon syndrome Desfness Choroideremia Agammaglobuline Fabry disease Mohi-Tranebiaerg syndrom Jensen syndrome Lissencephaly Bares tundrome Mental retardation with growth hormone deficiency Mental retardation, South African type Lymphoproliferative syndrome X inactivation, familial skewed Pettigrew syndrome Gustavison mental retardation syndrome Immunodeficiency, with hyper-light Retinitis plamentosa SRY (sex determining region) Wood neuroimmunologic syndrome Heterotary viscent Albinism-dealness syndrome Cone dystrophy, progressive Proctate cancer ousceptibility Fragile X mental retardation Epidermolysis bullosa, macular type Diabetes insipidus, nephrogenic Cances/testis antiger Dyskecatosis Herrophilia A Hurter syndrome Mucopolysaccharidosis Intestinal oseudoobstruction, neuronal Melanoma antigens Mental retardation-skeletal dysplatia Michibular microathy Otopalatodigital syndrome, type I Colorblindness, red core pigment Goeminne TKCR syndrome Waisman parkinsonism mental retardation Barth syndrome Cardiomyopathy, dilated Noncompaction of left ventricular myocardium Von Hippel-Lindau binding protein

7

from genome to organism

from genome to organism

from genome to organism

all cell types contain the same genome ...but differ in gene expression patterns....

gene expression determines what you are....

to live is to interact with the environment

we can learn more by measuring expression of all genes

gene expression depends on cell type and cell state

by measuring changes in gene expression we can discover genes participating in a given biological response

measure thousands of genes and proteins in high throughput analyses

mRNA profiling

microarray

protein profiling

2D gel electrophoresis mass spectrometry

why measure mRNA?

because DNA microarray is the most high throughput method that can measure gene expression with high sensitivity and specificity

DNA microarray

microscopic slide

5.000 - 80.000 probes pr. array

microarray formats

- ▶ cDNA (500-1500 bp)
- Iong oligonuleotides (40-70-mers)
- short oligonucleotides (20-25-mers)

microarray analysis

microarray analysis

Bowtell, Nature Genetics, Supplement, 21:25, 1999

23

microarray analysis

- ¥ epidemiology
- ¥ CGH
- ¥ molecular pathology

pattern recognition

Problems in anaysis

Bowtell, Nature Genetics, Supplement, 21:25, 1999

functional classification of genes from time profiles

Astrid Lægreid¹ and Jan Komorowski² ¹Department of Cancer Research and Molecular Medicine Norwegian University of Science and Technology ²The Linnaeus Centre for Bioinformatics, Uppsala

The Transcriptional Program in the Response of Human Fibroblasts to Serum

Iyer et al, Science, 283: 83, 1999

8 hours serum treatment

- 1, protein disulfide isomerase-related protein
- 2, IL-8 precursor
- 3, EST AA057170
- 4, vascular endothelial growth factor

fibroblast - 24 h serum response

dynamic processes

molecular mechanisms of transcriptional response

upstream factors

upstream factors

upstream factors

co-regulation of genes coding for proteins in a network in fibroblast serum-response

fibroblast serum-response transcriptional program

517 gen-probes differential gene expression

497 unique genes

284 known genes

213 unknown genes

Iyer's analysis of transcriptional fibroblast serum response

Expression clusters

Functional clusters

functional classification from time profiles

our aim

find relationship between

gene function - gene expression profile

selected challenges in gene-expression analysis

- function similarity corresponds to expression similarity but:
 - functionally correlated genes may be expression-wise dissimilar (e.g. anti-coregulated)
 - genes usually have multiple function
 - measurements may be *approximate* and *contradictory*
- can we obtain clusters of biologically related genes?
- can we build models that classify unknown genes to functional classes, that are human legible, and that handle approximate and often contradictory data?
- how can we re-use biological knowledge?

nethodology						Ontology Process								
		Tr	ansport		[Defens respons	e se		Positive of c prolife	control cell tration		Cel	1. Mining function classes from an	nal
Gene	OHR	92 15MIN	2) 30MIN	1HR	2HR	g₂ . 4HR	 6HR	8HR	9₄ 12HR	(g	5) 20HR	(g₃ 24HR	Process	
g ₁	0.00	-0.47	-3.32	-0.81	0.11	-0.60	-1.36	-1.03	-1.84	-1.00	-0.60	-0.94	Unknown	
g ₂	0.00	0.66	0.07	0.20	0.29	-0.89	-0.45	-0.29	-0.29	-0.15	-0.45	-0.42	Transport and defense response	
g₃	0.00	0.14	-0.04	0.00	-0.15	-0.58	-0.30	-0.18	-0.38	-0.49	-0.81	-1.12	Cell cycle control	
g₄	0.00	-0.04	0.00	-0.23	-0.25	-0.47	-0.60	-0.56	-1.09	-0.71	-0.76	-0.62	Positive control of cell proliferation	
g₅	0.00	0.28	0.37	0.11	-0.17	-0.18	-0.60	-0.23	-0.58	-0.79	-0.29	-0.74	Positive control of cell proliferation	

2. Extracting features for learning

3. Inducing minimal decision rules using rough sets

0 - 4 (Increasing) AND 6 - 10 (Decreasing) AND 14 - 18 (Constant) => GO (cell proliferation)

Lægreid A, Hvidsten T, Midelfart H, Komorowski J, Sandvik AK.

4. The function of unknown genes is predicted using the rules

Genome Research. 13: 965-979, 2003

Gene Ontology

* The homepage of Ashburner's Gene Ontology: http://genome-www.standford.edu/GO/

annotations

Annotation of Known Genes

GENE SYMBOL	GENE NAME	GENEBANK ACCESSION NUMBER	ANNOTATIONS AT THE MOST SPECIFIC LEVEL OF GO	ANNOTATIONS TO THE 23 BROAD CELLULAR PROCESSES USED FOR LEARNING
SEPP1	selenoprotein P, plasma, 1	AA045003	oxidative stress response(GO:0006979), metal ion transport(GO:0006823)	stress response(GO:0006950), transport(GO:0006810)
EPB41L2	erythrocyte membrane protein band 4.1-like 2	W88572	positive control of cell proliferation(GO:0008284)	cell proliferation(GO:0008283)
OA48-18	acid-inducible phosphoprotein	AA029909	cell proliferation(GO:0008283)	cell proliferation(GO:0008283)
CTSK	cathepsin K (pycnodysostosis)	AA044619	proteolysis and peptidolysis(GO:0006508)	protein metabolism and modification(GO:0006411)
CPT1B	carnitine palmitoyltransferase I, muscle	W89012	fatty acid beta-oxidation(GO:0006635)	lipid metabolism(GO:0006629)
CLDN11	claudin 11 (oligodendrocyte transmembrane protein)	N22392	cell adhesion(GO:0007155), substrate-bound cell migration(GO:0006929), cell proliferation(GO:0008283), developmental processes(GO:0007275)	cell adhesion(GO:0007155), cell motility(GO:0006928), cell proliferation(GO:0008283), developmental processes(GO:0007275)
RPL5	ribosomal protein L5	AA027277	protein biosynthesis(GO:0006412), ribosomal large subunit assembly and maintenance(GO:0000027)	protein metabolism and modification(GO:0006411), cell organization and biogenesis(GO:0006996)
	Homo sapiens clone 23785 mRNA sequence	N32247	calcium-independent cell-cell matrix adhesion(GO:0007161)	cell adhesion(GO:0007155)

time profiles of selected processes

Cell surface receptor linked signal transduction

Intracellular signaling cascade

Blood coagulation

Circulation

Cell organization and biogenesis

Gene Ontology vs. clusters

template-based feature synthesis

12 measurement points, 55 possible intervals of length >2

cross validation estimates

PROCESS	AUC	SE
Ion homeostasis	1.00	0.00
Protein targeting	0.99	0.03
Blood coagulation	0.96	0.08
DNA metabolism	0.94	0.09
Intracellular signaling cascade	0.94	0.06
Energy pathways	0.93	0.12
Cell cycle	0.93	0.04
Oncogenesis	0.92	0.11
Circulation	0.91	0.11
Cell death	0.90	0.10
Developmental processes	0.90	0.07
Transcription	0.88	0.11
Defense (immune) response	0.88	0.05
Cell adhesion	0.87	0.09
Stress response	0.86	0.15
Protein metabolism and modification	0.85	0.10
Cell motility	0.84	0.11
Cell surface rec linked signal transd	0.82	0.15
Lipid metabolism	0.81	0.14
Transport	0.79	0.17
Cell organization and biogenesis	0.79	0.11
Cell proliferation	0.79	0.06
Amino acid and derivative metabolism	0.69	0.06
AVERAGE	0.88	0.09

A: Coverage: 84% Precision: 50%

B:

Coverage: 71% Precision: 60%

C:

Coverage: 39% Precision: 90%

Coverage = TP/(TP+FN) Precision = TP/(TP+FP)

the model

Annotations, Rules and Classifications

Annotated genes within the 23 broad classes of GO biological process	273
Gene probes associated with the 273 genes within the 23 broad biological process classes	284 s
Training examples annotations associated with the genes in the 23 broad biological process cla co-annotations associated with the genes in the 23 broad biological process	sses 549 classes 444
Rules generated from the training examples	18064
Es timated quality of classifications of unknown genes (cross-validation estimate Sensitivity Specificity Fraction of classifications that are correct	es) 84% 91% 49%
classifications were obtained for 211 of the 213 unknown genes	340
(Re-)Classifications for training examples519True positive classifications356True positive co-classifications219False positive classifications30	728

For 272 of the 273 training examples at least one correct (re-)classification was obtained

conclusions

- our methodology
 - incorporates background biological knowledge
 - handles well the noise and incompleteness in the microarray data
 - can be objectively evaluated
 - predicts multiple functions per gene
 - can re-classify known genes and provide possible new functions of the known genes
 - can provide hypotheses about the function of unknown genes
- experimental work needs to be done to confirm our predictions

Lægreid A, Hvidsten T, Midelfart H, Komorowski J, Sandvik AK. Predicting Gene Ontology Biological Process from Temporal Gene Expression Patterns. *Genome Research*. 13: 965-979, 2003

Hvidsten TR, Lægreid A, Komorowski J. Learning rule-based models from gene expression time profiles annotated using Gene Ontology. *Bioinformatics*, 19:1116-23, 2003

Genomic ROSETTA:

http://www.idi.ntnu.no/~aleks/rosetta

🞯 Rosetta - fibroblast23+.txt	
<u>File Edit View Window Help</u>	
Structures D fibroblast serum response data Cv-estimates.txt F rules.txt Classification.txt	
Tules.txt	=> Annotation(transport)
8 Supp. (LHS) = [4 object (s)] 9 Supp. (RHS) = [3 object classification.txt 10 Acc. (RHS) = [0.75, 0. classification.txt 11 Cov. (LHS) = [0.054794 prediction.txt 12 Cov. (RHS) = [0.166667 2 13 Stab. (LHS) = [0] 3 GENE ANNOTATION 14 Stab. (RHS) = [1, 1] 5 RAMEP1 transport 15 0MIN - 1H(Constant) ANT 6 FKEP1A transport 16 OMIN - 1H(Constant) ANT 6 NR2F2 transport 18 Supp. (RHS) = [3 object NR2F2 transport 19 Acc. (RHS) = [0.054796 4	Classification.txt LABELLED DATA Algorithm for Functional Genomics Classification Weight on false positives: File with classifications: classifications.txt Browse
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	File with rules: Number of cross validation iterations: 10 rules.txt Browse Seed to RNG: 5
16 SEPP1 t: 4 5	INCREASE/DECREASE TEMPLATES: The increase/decrease required: 0.6 INCREASE / IDG file
	Required increase/decrease during the first and last 0.1 sub-intervals: 2 Length of templates in terms of sub-intervals: 2 Maximum change in the "wrong" direction allowed: 0.2 CONSTANT TEMPLATE: 0.2 Maximum allowed variation from average: 0.2 Length of templates in terms of sub-intervals: 3

how to improve models for prediction of biological roles of genes/proteins?

- improved computational methods
- more training examples
 - more genes/proteins
 - more measurements per gene/protein (time points, cell types, tissues, states,...)
 - more annotations

(GO, sequence, protein structure, cell biology, physiology, pathology,...)

many levels of information

high complexity

~35.000 genes

- > 100.000 gene (splice) products
- > 100.000 proteins
- > 200.000 protein states

each cell expresses 5.- 15.000 genes 40.-60.000 proteins

several hundred cell types

many different states per cell

tissues and organs are composed of many different cell types **UNTN**

molecular networks within cells

molecular networks within cells

different cell types interact within organs and tissues different cell types interact during gastric acid secretion

stomach mucosa

interconnection within organism

hormones regulate interactions between organs and tissues

expression profiling in biology

determine molecular mechanisms underlying

- cell function related to cell type and state
- physiological functions of organims

expression profiling in disease managment

- dicover disease subtypes
- improve disease diagnostics
- improve prognostics/choice of treatment
- discover new drug targets

Molecular Medicine, NTNU

gastrointestinal physiology and pathophysiology

- gastric acid secretion

- molecular mechanisms?
- regulators, effectors?

gastrointestinal physiology and pathophysiology

- hypergatrinemia
 - gastrin
 - proliferation gastric mucosa
 - **ECL-cells**
 - ↑ cancer

- molecular mechanisms?
- regulators, effectors?

gastrointestinal physiology and pathophysiology

- gastric cancer
- classification & prediction subtype diagnostics prognostics optimal treatment early diagnostics

- molecular mechanisms?
- regulators, effectors?

challenges....

Information Bases/Derived-Data Databases

Experimental/Clinical Data
challenges....

Information Bases/Derived-Data Databases

Experimental/Clinical Data

link information from various sources in a relevant way

relational database & tools at NTNU

challenges....

Information Bases/Derived-Data Databases

Experimental/Clinical Data

mine information from unstructured information sources

mining the literature

Tor-Kristian Jenssen, Astrid Lægreid, Jan Komorowski, Eivind Hovig. A literature network of human genes for high throughput gene-expression analysis. *Nature Genetics*, 28: 21-28

mining the literature

(at NTNU)

statistical methods machine learning natural language processing

challenges....

Information Bases/Derived-Data Databases

Experimental/Clinical Data

develop improved methods for modeling

modeling

data driven first principles

Arne K. Sandvik Helge L. Waldum

Fekadu Yadetie Kristin Nørsett Vidar Beisvåg Berit Doseth Eitrem Hallgeir Bergum Frode Jünge Torunn Bruland Ola Ween Liv Thommesen Kristine Misund Tonje Strømmen

Mette Langaas

Raymond Dingledine

Agnar Aamodt Waclaw Kusnierczyk **Pauline Haddow Gunnar Tufte** Kjell Bratbergsengen Heri Ramampiaro **Tore Amble** Rune Sætre **Bjørn Alsberg Arnar Flatberg** Lars Giskehaug **Torulf Mollestad Henrik Tveit**

Jan Komorowski Torgeir Hvidsten Herman Midelfart Vladimir Yankovski

Norwegian Microarray Consortium: www.mikromatrise.no