Online and adaptive detection of web attacks

Wei Wang, Thomas Guyet, René Quiniou, Marie-Odile Cordier, Florent Masseglia, Brigitte Trousse

> INRIA Sophia Antipolis et IRISA

Motivation

- A web attacks is one of major threat in current computer networks
 - With over 70% of attacks now carried out over the web application level
- Online detection
 - Unsupervised: no need of labeled data
 - Adaptive: automatically labeled data
- Adaptive detection
 - Deal with concept drift problem
 - Continually update the model

Key Components of Anomaly Intrusion Detection Model

Data

What kind of data used – target to protect
Network behaviors - Network traffic, ...
User behaviors – command history; keystroke; http logs, ...
Program behaviors – system calls, ...
What kind of features extracted from the data -How to do data preparation
Methods (statistic, machine learning, data mining,...)
Supervised: precise labeled data is required
Unsupervised: low detection accuracy

Data

- Http log data from INRIA Sophia Antipolis
 - Original size: 1.536GB
 - ✤ N. of request: 5,700,949
 - Duration: 10 days and 21 hours 26 mins
 - From 01/01/2007 00:00:14
 - To 11/02/2007 21:26:44
- Data filtering
 - ✤ Filtered the search robot (e.g., google, msn,...)
 - Filtered most of static request
 - File htm, jpg, gif, pdf, doc, ppt, ico,...
 - ✤ Size after filtering:
 - > N. of request: 265,717
 - Only remain 4.66% of the original requests

Data Preprocessing

Original data form

60.50.99.87 - - [02/Jan/2007:07:47:03 +0100] "GET /acacia/project/edccaeteras/wakka.php?wiki=ActionOrphanedPages/ref errers HTTP/1.0" 200 10753 "http://a.js1.bosja.com/index1.htm" "-"

- Computer the character distribution of the request path source
 - Only consider the request source
 - Only compute the distribution of ASCII 33-127
 - Each request is thus represented by a vector with 95 dimensions

 - Online Classification is based on the vectors

Classification (traditional methods)

Anomaly detection (k-NN)

- Select the first 800 requests as references (base)
 - Only used normal data (labeled data)
- Compute distances between each coming request and all the first 800 requests
- Select the minimal distance as the *anomaly index*

Classification results (Anomaly Detection with anomaly index k-NN)

Classification results(kNN)

Supervised	Threshold	Detection Rate (%)	False position rate (%)
 Static model Results 	0.200	14/36=38.8	3510/264916=1. 3
 Detection rates and False positive rates 	0.160	80	3.8
	0.119	97.2	14.5

Use AP for adaptive online and unsupervised detection AP (Affinity Propagation) Output No need to define how many clusters K-means, k-clusters need to define Can find some representative vectors to represent the cluster center Reference data becomes smaller Suitable for IDS No need to have labeled data

Labeled data is very difficult to get

ONE Assumption and THREE states Three state of the data points

- Normal
- Uncertain
- Attack
- One assumption: normal data is very large while attack data is rare in practice
 - Identify small size of clusters as uncertain
 - Re-cluster after if a change is detected
 - If the uncertain events remains then uncertain is changed as Attacks
 - Otherwise the uncertain events changed as normal
 - Data streaming environments

Detection Model (detection stage)

time

Clustering

Initial model

(e_i,n_i,ui

Initial clustering

Current point X

f=min ({
$$d^2(e_i, x)$$
 })

 $e^* = \arg\min(d^2(e_i, x))$

If f < threshold, upgrade the model with weight Else uncertain detected and put f into a temporary buffer

Detection Model (second stage) Change point detection

- If # of coming uncertain events exceeds a threshold (e.g., 200)
- Or if a time period passed (e.g., 2000 points)
- Rebuild the model if a change point is detected

	Pseudo code of AODIS
	Audit data stream e_1, e_2, L , e_t, L ; fit threshold $N_{cluster}, D_{cluster}, \varepsilon$, $N_{outlier}$.
	Clustering $(e_1, e_2, L_1, e_t, L_{e_T})$ with AP
	Reservoir={}
	If $n_i \leq N_{cluster}$ or $\mu_i \geq D_{cluster}$
Reservoir $\leftarrow e_i$	
	$r = 0; t_r = T$
For $t \ge T$ do	
Flow:	Compute $e_i =$ nearest exemplar to e_i
	If $d(e_t, e_i) < \varepsilon$
	Update the model
	Else
	Reservoir $\leftarrow e_t$
	End if
	If Restart criterion then
	Rebuild the model
	$r = r+1; t_r = t;$
	Consider Reservoir
	For $t \leq t_{r-1}$
	If e_t is a exemplar
	If $n_i \leq N_{cluster}$ or $\mu_i \geq D_{cluster}$ then
	e, is an attack
	Else Reservoir $\leftarrow e_t$
	End for

Results with AP Results (comparison)			
Threshold	Detection Rate (%)	False position rate (%)	
0.200	14/36=38.8	3510/264916=1 .3	
0.160	80	3.8	
0.119	97.2	14.5	

Detection Rate (%)	False position rate (%)
44.4	0.47
86.11	2.86
100	5.62
Paramètres for d Clustersize=1,n Uncertain=3	letection rate 100% neandis=0.06974, 00. time=2000.

forget=2000, p0=0,05*

Work in progress

- \ominus In the following week
 - Paper to PAKDD'2009 (deadline is approaching...)
- \ominus In the following month
 - General framework for adaptive intrusion detection
 - Other clustering methods
 - Solve frequent attacks detection?
 - Paper to SDM' 2009?
- ↔ In the following year?
 - Generally improve the data preprocessing methods
 - Character distribution is effective but not enough
 - LCS distance?
 - The data?

- Parameters?
- Practical use?

