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Résumé: Cette thèse se concentre sur les méthodes numériques utilisées dans l’amélioration de l’absorption lumineuse
des capteurs d’images SPAD. En particulier, nous étudions trois aspects méthodologiques, à propos des matériaux utilisés,
à propos des solveurs optiques et à propos d’une méthode de design inverse en vue d’obtenir le capteur d’image optimal.

Le premier chapitre étudie l’usage de matériaux innovants, avec une focalisation sur le Silicium, Germanium et leurs
alliages (SiGe). Les données expérimentales étant lacunaires, nous proposons un modèle semi-empirique pour la permittivité
du SiGe, dépendant de la température et de la concentration de Ge. Une attention spéciale a été apportée à la comparaison
avec la méthodologie usuelle, l’interpolation linéaire. Le modèle proposé repose sur des modèles disponibles dans la
littérature, pour lesquels certains paramètres spécifiques, les bandes interdites, directes et indirectes, sont extraits par la
méthode de Tight-Binding, d’où le nom de semi-empirique. Cette méthodologie a été publiée dans la 51ème European
Solid-State Device Research Conference (ESSDERC 2021).

Dans le second chapitre, nous comparons la méthode numérique de référence pour résoudre les équations de Maxwell,
la méthode FDTD, et deux méthodes alternatives, DGTD et RCWA, pour simuler la réponse optique dans les SPADs
fabriqués à STMicroelectronics. Les performances de chacunes de ces méthodes ont été comparées sur des structures
d’une complexité croissante. Les profils d’absorption résultant sont ainsi comparés, ainsi que les temps d’exécutions.
La contribution principale de ce chapitre est l’écriture, pour les ingénieurs de STMicroelectronics, d’un solveur RCWA
entièrement fonctionnel et versatil. Les performances de ce solveur sont comparées au solveur commercial de référence,
Lumerical, et le solveur DGTD écrit par l’équipe Atlantis de l’Inria Sophia-Antipolis. Cette comparaison confirme le status
de référence de Lumerical. Toutefois cela n’implique pas nécessairement une supériorité intrinsèque à la méthode numérique
sous-jacente, la FDTD, comme indiqué en conclusion de ce chapitre.

Dans le troisième, nous proposons une méthodologie de design inverse qui combine un solveur optique avec une méthode
statistique d’optimisation pour la découverte efficace des paramètres optimaux maximisant l’absorption lumineuse. En
particulier, la structuration est étudiée, vu que celle-ci a apporté les gains d’absorption les plus important récemment. Une
structure optimale atteignant une absorption de 83% a été trouvée, dépassant ainsi toutes valeurs analogues présentes dans
la littérature. Cette méthodologie a été présentée à la conférence SISPAD 2023.

Mots-clefs Méthodes numériques, RCWA, INRIA, STMicroelectronics, Imageurs, Modélisation.

Summary: This thesis focuses on the numerical methodology for the optical improvement of SPADs devices through
the increase of the light absorption. In particular, we study three methodological aspects: about materials, about solvers,
and about the process to obtain the best performing device.

The first chapter investigates the usage of innovative material, with a focus on Silicion, Germanium and their alloys
(SiGe). In the absence of permittivity data from the literature, we provide a semi-empirical model for the permittivity
of SiGe as a function of both temperature and Ge content. A specific attention has been paid on the comparison with
the usual methodology applied when facing a lack of measured data, the linear interpolation method. The permittivity
model provided relies on usual permittivity models found in litterature. However, specific parameters of these models, both
direct and indirect bandgaps, are extracted from band structure computation by Tight-Binding, hence our model is said
semi-empirical. This methodology was published in the 51st European Solid-State Device Research Conference (ESSDERC
2021) [1].

In the second chapter, we compare the reference numerical method for solving the Maxwell’s equations, the FDTD, and
two alternatives, the DGTD and the RCWA, to simulate the optical response of SPADs device fabricated by STMicroelec-
tronics. A benchmark on the structure of increasing complexity is performed. The resulting absorption spectra of the three
numerical methods are compared, as well as their time execution. The main contribution of this chapter is the delivery to
STMicroelectronics engineers of a fully functionnal and versatile 2D and 3D RCWA solver. The performance of this solver
were then compared to the reference FDTD solver, Lumerical, and the Inria DGTD solver, Diogenes. The conclusion of
this benchmark confirms the leading position of the Lumerical solver. However, this does not necessary imply a superiority
of the underlying numerical method, the FDTD, as discussed in the conclusion of this chapter.

In the third chapter, we propose a inverse-design methodology that combines optical solvers with a statistical learning-
based optimization for goal-oriented discovery of the optimal parameters for maximizing light absorption. In particular,
the diffractive gratings are studied, since they recently provided an important performance increase. An optimal structure
reaching 83% absorption has been found, outclassing all previous absorption level found in litterature. This methodology
was presented in the 2023 International Conference on Simulation of Semicondutor Processes and Devices (SISPAD 2023).

Keywords Numerical method, RCWA, INRIA, STMicroelectronics, Imageurs, Modelling.
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Introduction

In 1865, James Maxwell laid the foundations of modern electromagnetism. Its main
contribution are the well-known MaxwellŠs equations, that formally link electric and mag-
netic Ąelds. This theoretical breakthrough is nowaday more than 158 years old and
numerous studies of these equations have been performed since. Electromagnetism ap-
plications are found everywhere and everyday: from wireless communication, including
radio transmitter and smartphone, to optical Ąber and medical imaging, or even magnetic
lift train.

Among the most astonishing applications are the metasurfaces, which are thin etched
surfaces that allow modulating in phase the reĆected or transmitted wave [2]. With such
property, a spherical lense, that concentrate light on a focal point, can be replaced by a
single patterned layer, a metasurface, enhancing the miniaturization of CMOS imagers.
Also, thanks to optothermal heating [3], nanoparticles are used in medicine to target and
kill speciĄcally cancer cells. Optical lidar, used in autonomous cars [4], allows a real time
space mapping around the car.

This thesis is concerned with Nanophotonics, the physical science that studies the in-
teractions of light with matter at the nanoscale, and which can be modelled by MaxwellŠs
equations. When the studied structure size is approaching the wavelength of light, speciĄc
phenomena occur: geometrical optics, such as raytracing methodology, is no longer rele-
vant and solving MaxwellŠs equations is mandatory. The well-known diffraction of light
passing through a hole, illustrated with Fig. 1, is one example of physical phenomena
that is modeled by Nanophotonics.

Motivations of an industrial thesis are economic, and our work does not deviate from
the rule: it takes place within the context of continuous improvement of devices fabricated
by STMicroelectronics, and in particular of Complementary Metal Oxide Semiconduc-
tors (CMOS) imagers. In 2020, the total market-cap is estimated at 20 billions, and
STMicroelectronics, which funded this thesis 1, is positioned in fourth place, after Sony,
Samsung and Omnivision (see Fig. 2). This market-cap indicates the various applications
of CMOS imagers: smartphone, informatic, security, automobile and self-driving cars.

Among the CMOS imagers, our work focuses on the Single Photon Avalanche Diode
(SPAD). The main applications are in small range lidar, used in the autofocus for smart-
phone camera. The latest Iphone, commercialized by Apple, include the SPADs fabricated
at STMicroelectronics Crolles. This diode is used as a photodetector for the Near Infrared
(NIR) light, in time-of-light device: from the time interval between the emission of an

1This thesis was also funded with a subsidy from ANRT (French National Association of Research and
Technology) with the CIFRE (Industrial Convention of Training by Research) convention n°2019/1772.
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Figure 1: A diffractive pattern of a red laser beam passing through a small circular
aperture. Figure taken from [5].

infrared signal, its reĆection on the target, and its reception by the SPADs, the distance
between the target and the device can be known. Thus, this proximity sensor provides,
in real time, the distance between the nearest object to the camera of the smartphone,
adjusts automatically the lens of the camera, ensuring that selĄes are vivid and clear.
Infrared light is mainly used because it is not visible to human eyes. And such device
typically uses a signal of wavelength equals to 940 nm.

SPADs, according to their name, are able to detect a single photon, namely to convert
a single photon into a current pulse. More precisely, photogenerated electrons are col-
lected and drift toward the avalanche region, where the exponentially increasing impact
ionizations generate more carriers, leading to an avalanche of carriers, and then to a cur-
rent pulse (see Fig 3). For more details on the electrical modeling of SPAD, we advise
the recent paper [6], which modeled both the carrier trajectory and the multiple impact
ionizations on SPADs device. Our work focuses on the optical modeling of SPADs, and
it can be seen as a preliminary step of such electrical modeling. From the optical point of
view, the SPADs performances are judged not on the carrierŠs transport and generation,
but only on the percentage of the incident light that is absorbed.

In order to reduce both the development time and cost, numerical methods are manda-
tory. They make it possible to quickly validate a corrective action, solve complex prob-
lems by splitting them into subproblems, optimize the sizing of installations, access non-
measurable quantities, better understand the physical phenomena involved, but above
all, reduce costs by solving problems before they occur.

In the early 2000s, SPADs were 10 µm to 40 µm wide [8]. The next decades had
improved their performance by shrinking their size, up to 4 µm wide [9]. This increase of
performance by downscaling semiconductors is famously known as the Moore Law, which
predicts that the number of transistors in an integrated circuit doubles every two years.

For predicting SPADs optical performance, this downscaling has a major consequence:
the size of the device is now approaching Ąve times the wavelength of interest (940 nm),
and some of its parts are even smaller, to the scale of half the wavelength of interest.
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Figure 2: CMOS imagers companies, classiĄed according to their market shares, in 2020.
Figure taken from [7].

Figure 3: 2D Illustration of a multi-particle simulation of a SPAD. The background
represents the strength of the electric Ąeld, the red region corresponds to the SPAD main
junction. An electron is injected in the volume of the SPAD (yellow cross), it drifts and
diffuses towards the junction and triggers several impact ionization events, leading to a
self-sustained avalanche. The color of the trajectoriesŠ dot represents the intrinsic time of
the particles. A zoomed view of the avalanche is shown in the inset. Figure taken from
[6].

11



This means that the numerical methods used to predict the optical response cannot rely
on geometrical optics and must solve exactly the Maxwell equations.

When the SPADs were 10 to 40 µm wide, the usual numerical method used was the
Transfer-Matrix Method (TMM), which predicts the reĆection, transmission and absorp-
tion of light within a stack of layers, see [10] for details. Such a numerical method relies
on two assumptions: the layers interfaces are smooth, and only the thickness of every
layer (only the z dimension) is of interest. The TMM is based on the fact that, according
to MaxwellŠs equations, there are simple continuity conditions for the electric Ąeld across
boundaries from one medium to the next. If the Ąeld is known at the beginning of a
layer, the Ąeld at the end of the layer can be derived from a simple matrix operation. A
stack of layers can then be represented as a system matrix, which is the product of the
individual layer matrices. The Ąnal step of the method involves converting the system
matrix back into reĆection and transmission coefficients.

When the SPADs size has approached the wavelength of interest (940 nm), predict-
ing optical performance required numerical methods solving MaxwellŠs equations. The
reference method for many years has been the Finite Difference Time-Domain (FDTD)
method or YeeŠs method [11]. The main reasons for its popularity are its ease of implemen-
tation and its computational efficiency. It relies on a cartesian structured discretization
of the simulated structure, enhancing the well-known staircasing effect, that can become
a signiĄcant limitation when the local rounded details must be taken into account. To
overcome such limitations, various methods have been proposed, among them the Discon-
tinuous Galerkin Time-Domain (DGTD) method [12]. It is a discontinuous Ąnite element
type method that relies on a high-order interpolation of the electromagnetic Ąelds within
each cell of an unstructured mesh. Time integration can be achieved using an explicit
scheme and no global mass matrix inversion is required to advance the solution at each
time-step. This means that this method is well-suited to massively parallel comput-
ing. Apart from the time-domain numerical method, we ought to mention the mainly
used in frequency-domain, the fourier method named the Right Coupling Wave Analysis
(RCWA). The Ąelds are represented as a sum of spatial harmonics [13], and the simulated
structure is discretized into uniform layers along the light propagation axis.

All those numerical methods rely on the optical properties of the matter used: the
permittivity. From the point of view of an optical engineer, the permittivity is seen as an
input for the optical simulations. The precision and prediction of such simulations are
intrinsically dependent on the accuracy of such quantities. The vast majority of SPADs
are made of Silicon (Si), and thus the permittivity of Silicon must be measured with high
precision in order to provide reliable optical simulation. Alternative materials, such as
Germanium (Ge), are promising [14], but the permittivity data available in literature
are often lacking, especially when measured at various temperatures. In case of lacking
data, optical engineers tend to linearly interpolate the permittivity to perform optical
simulation.

This thesis focuses on the numerical methodology for the optical improvement of SPADs
devices through the increase of the light absorption. In particular, we study three method-
ological aspects: about materials, about solvers, and about the process to obtain the best
performing device.

The Ąrst chapter investigates the usage of innovative material, with a focus on Silicion,
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Germanium and their alloys (SiGe). In the absence of permittivity data from the liter-
ature, we provide a semi-empirical model for the permittivity of SiGe as a function of
both temperature and Ge content. A speciĄc attention has been paid on the comparison
with the usual methodology applied when facing a lack of measured data, the linear in-
terpolation method. The permittivity model provided relies on usual permittivity models
found in litterature. However, speciĄc parameters of these models, both direct and indi-
rect bandgaps, are extracted from band structure computation by Tight-Binding, hence
our model is said semi-empirical. This methodology was published in the 51st European
Solid-State Device Research Conference (ESSDERC 2021) [1].

In the second chapter, we compare the reference numerical method for solving the
MaxwellŠs equations, the FDTD, and two alternatives, the DGTD and the RCWA, to
simulate the optical response of SPADs device fabricated by STMicroelectronics. A
benchmark on the structure of increasing complexity is performed. The resulting ab-
sorption spectra of the three numerical methods are compared, as well as their time
execution. The main contribution of this chapter is the delivery to STMicroelectronics
engineers of a fully functionnal and versatile 2D and 3D RCWA solver. The performance
of this solver were then compared to the reference FDTD solver, Lumerical, and the Inria
DGTD solver, Diogenes. The conclusion of this benchmark conĄrms the leading position
of the Lumerical solver. However, this does not necessary imply a superiority of the
underlying numerical method, the FDTD, as discussed in the conclusion of this chapter.

In the third chapter, we propose a inverse-design methodology that combines optical
solvers with a statistical learning-based optimization for goal-oriented discovery of the
optimal parameters for maximizing light absorption. In particular, the diffractive gratings
are studied, since they recently provided an important performance increase. An optimal
structure reaching 83% absorption has been found, outclassing all previous absorption
level found in litterature. This methodology was presented in the 2023 International
Conference on Simulation of Semicondutor Processes and Devices (SISPAD 2023).
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Permittivity of SiGe accounting for
strain and temperature
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I.1 Introduction

SiGe alloys are becoming widely used in optoelectronics, for applications such as imag-
ing devices, photodetectors and Single-Photon Avalanche Diodes (SPAD). Their small
and tunable bandgap make them candidates for application in Short-Wavelength In-
fraRed (SWIR) or Near-InfraRed (NIR) range. For instance in [14], one can Ąnd electrical
simulations and measurements on a Ge-on-Si planar SPAD demonstrating single-photon
detection efficiency (PDE) of 38% at 125 K at a wavelength of 1310 nm. The PDE is
the overall conversion factor from photons to the number of detectable photoelectrons.
In order to deepen the modelling process of these devices, simulating the optical propa-
gation and investigating the inĆuence of temperature or strain on optical absorption are
essential.

One example of such study, focusing only on light propagation, can be found in [15]
where the authors improved SPAD sensitivity by designing diffractive microlens with
FDTD simulations. These optical simulations intrinsically require optical properties as
input, such as the complex refractive index N = n + ik or the complex permittivity
ε = εr + iεi. However the lack of parametric optical constants data for Si, Ge and their
alloys is the main obstacle for performing optical simulations of SiGe SPADs and for
improving their design on a realistic set of temperature or strain values. Indeed, usually
only electrical simulations are performed, see for instance [14].

On the one hand, measurement data obtained with ellipsometry are usually only avail-
able for a discrete set of conditions (temperature, Ge concentration and strain). They are
usually reachable with handbooks of optical constants such as [16], or online databases
such as [17], where the most precise and up-to-date measurements are compiled with
discussion on experimental conditions.

On the other hand, quantum mechanical-based physical models [18, 19, 20, 21] can
provide useful information on the optical absorption in semiconductors but they require
heavy computations (such as Time-Dependent Density Functional Theory (TDDFT) or
Bethe-Salpeter equation) and lack accuracy so far when compared to measurements, in
particular when the variation in temperature is considered. This is even more critical for
indirect optical transitions where both phonons and bandgap temperature effects must
be accurately accounted for in the calculation. Recent works along this line [22] introduce
for example extra empirical temperature-dependent bandshift to the rigorous ab initio
calculation in order to match experimental Silicon optical absorption in the NIR.

A large variety of pragmatic and empirical models exists in the literature and are widely
used in domains such as ellipsometry and optical simulations. Such models rely on the
oscillators, i.e. complex valued functions that respect the Kramers Kronig relations (see
Eq. I.6). For instance, various absorption measurement data for Si are compared in [23],
leading to an analysis of measurement uncertainties and providing an empirical model
of the absorption coefficient of Si for a wavelength range starting from 250 nm up to
1450 nm. It consists of Ąve Tauc-Lorentz oscillators and two gaussian shaped oscillators
(see I.2.3). A complete description of these models including Sellmeier, Cauchy, Lorentz,
Drude, Gaussian, Tauc-Lorentz or Cody-Lorentz can be found in [24]. Their success in
accurately predicting the full spectrum of the dielectric response (being compliant with
Kramers-Kronig relations) is well-established. However they require the Ątting of sev-
eral parameters for each condition: material, strain and temperature. To the best of our
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knowledge, there is not a general set of parameters and models capable of handling all the
above-mentioned conditions in SiGe. Along this line of generalization, we ought to high-
light the aforementioned paper of Schinke et al.[23] which models the full spectrum of Si
absorption coefficient, and Emminger et al. [25] which provides a temperature-dependent
model of the complex permittivity of Ge well-aligned with ellipsometry measurements.

In this chapter, we propose a generalized model that can reproduce (strained) SiGe
temperature-dependent optical properties in the NIR and visible spectrum (0-5 eV) and
satisĄes Kramers-Kronig relations. Extending the empirical approach of Schinke [23] and
Emminger [25] with the optical gaps at critical points determined with the Tight-Binding
(TB) band structure model [26], the model accurately accounts for SiGe with arbitrary
strain.

I.2 Theory

In this section we present the theoretical background of the proposed semi-empirical
model for the permittivity of SiGe. In the Ąrst subsection, basic deĄnitions are outlined.
Then, we introduce the modelling of permittivity from quantum theory, its advantages
and its drawbacks. Next, the area of research in physics that focuses on measurements
of the optical constants, the ellipsometry, is presented, as well as the concept of critical
points of permittivity. Finally we summarize and present all the experimental data
available for the permittivity of Si, Ge and their alloys.

I.2.1 Preliminaries

In this subsection are presented the basics deĄnitions of optical constants.

I.2.1.1 Optical constants

Light passing through a material is altered by optical properties of this material.
Firstly, each medium is characterized by its capacity to slow down light, which is mod-

elled by its index of refraction, denoted as n and deĄned as n =
c

v
, where c denotes the

speed of light in vacuum and v the speed of light in the medium. Secondly, each medium
is characterized by its capacity to absorb light, which is modelled by its extinction
coefficient, denoted as k, which is equal to zero for vacuum.

These two quantities lead to the deĄnition of the complex valued refractive index
as N = n + ik. With the refractive index, one can deĄne, as done in [27], the complex
valued permittivity, ε and the absorption coefficient, denoted as α.

If one considers, in frequency-domain, a linear, isotropic, homogeneous and non-dispersive
material, then N , ε and α are real constants. If one considers a dispersive-material then
N , ε and α are complex valued frequency-dependent functions.

In the literature, four variables are commonly used as input variables for the permit-
tivity of dispersive media: the wavelength noted λ, the frequency, f , the pulsation ω and
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the energy E. All these variables are linked by the following relations in a vacuum:

E = h̄ω = hf =
hc

λ
, and ω = 2πf, h̄ =

h

2π
, (I.1)

where h is the plank constant and c is the speed of light in a vacuum. In the relations
Eq. I.1, λ is in m, f in s−1, ω in rad·s−1 and E in J, since h is in J·s and c is in
m·s−1. Another unit for E is commonly used, the electronvolt, noted eV, where one has
1eV = 1.601e−19J. Throughout the rest of this chapter, the energy, in eV, is chosen in
order to be consistent with the quantum physics notations.

The permittivity is deĄned as:

ε(E) = N(E)2. (I.2)

If εr, resp. εi, designates the real, resp. imaginary, part of ε, then one has:

εr(E) = n(E)2 − k(E)2 and εi = 2n(E)k(E). (I.3)

The absorption coefficient is then given by:

α(E) =
4π

hc
Ek(E). (I.4)

The relative permittivity is the permittivity of a material expressed as a ratio with the
electric permittivity of a vacuum, ε0:

εr =
ε

ε0

. (I.5)

The notation εr is now ambiguous. In Eq. I.5 it stands for the relative permittivity while
in Eq. I.3, it refers to the real part of the permittivity. In the following, εr will be only
used to designate the real part of the permittivity. Also, the "permittivity" or the "relative
permittivity" are used without distinction to designate the relative permittivity, noted
simply ε.

The initial deĄnitions of optical constants being recalled, the next section deĄne the
most important property of these optical constants.

I.2.1.2 Kramers-Kronig relations

For a physical system, it is crucial to satisfy the causality principle. Mathematical
causality is ensured for permittivity thanks to the Kramers-Kronig (KK) relations. For
an extensive presentation of all KK relations we refer the reader to [28]. These relations
link εr and εi, respectively the real part and the imaginary part of permittivity, by the
following relations, for ω in R+:

εr(ω) =
1

π
P

∫ ∞

0

εi(ω
′)

ω′ − ω
dω′ , (I.6)

εi(ω) =
1

π
P

∫ ∞

0

εr(ω
′)

ω′ − ω
dω′ ,
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where we denoted by P the Cauchy-Principal value, i.e., if f : R → R has only one
singularity in a ∈ R we deĄne the Cauchy-Principal value as:

P

∫ ∞

−∞
f(x)dx = lim

η→a
η>0

(∫ a−η

−∞
f(x)dx+

∫ ∞

a+η

f(x)dx

)
. (I.7)

In all generality, one can deduce the real part from the imaginary part and vice-versa.
But KK relations are based on a non-local operator: in order to reconstruct εr from εi

for instance, one must know εi all over R+. This is a serious limitation of the direct use
of the formula since measurements of εi, or εr are usually provided only on a sub-interval

of R. In particular the low convergence of the integral (of order
1

ω
) increases errors in

any extrapolation strategies. See [28] for more details.

I.2.2 Quantum theory

In the following, we brieĆy present the modelling of permittivity from quantum theory.
Firstly, the difference between the classical optical formalism and the quantum one are
clariĄed. The main concept related to quantum-physics, the band structure, is deĄned
in the second section. Then indirect (resp. direct) electronic transitions are explained in
the third (resp. fourth) section.

I.2.2.1 From macroscopic to microscopic formalism

The classical and quantum formalism both model the interaction between light and
matter. The differences between these two modelling approaches are brieĆy clariĄed in
the following paragraphs.

The basic deĄnitions of optical constants originate from optics (see [29] for an intro-
duction). In this physical theory, light is a wave and the elementary unit is the ŞmatterŤ
that has properties: the optical constants deĄned above. Then, with this modelling, it
is possible with MaxwellŠs equations, to compute the light propagation and absorption
through any material. A typical experiments is the white light decomposition with a
prism or the Young slit experiment, where a laser passing through a double slit exhibits a
diffractive pattern. Everyday conĄrmations of the classic optics theory are also available
by looking at a bending stick in water or a rainbow in the sky. Optics theory is well
established and no experiment has falsiĄed its predictions. However, what can be said
by physicists on the interaction between light and matter is far from being exhausted.
With the formalization of quantum physics, a typical theoretical movement in physics
epistemological history has occurred: a new modelling that deepens and does not contra-
dict the previous theory. Similarly to the deduction of the laws of thermodynamics by
statistical physics, quantum theory is able to deduce the optical properties from a totally
different formalism.

The main difference between classical optics theory and the quantum approach is the
following: the elementary unit is not ŞmatterŤ but particles. For instance a bulk of Si is
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not a pure and uniform entity but a lattice of atoms, constituted of electrons (that are
particles), neutrons and protons (that are made of particles). Similarly, light is not only
made of waves but also of photons.

Therefore light absorption on a macroscopic level is now, from a quantum perspective,
an interaction between particles, and more precisely an interaction between electrons
and photons, since we consider only visible and infrared light in this work (protons and
neutrons can interact with ultraviolet light, but this is outside the scope of this work).

Particles are characterized by many properties but only two of them will be the focus
of our attention: a particle has a wave vector and an energy. For instance in the case of
a plane wave of frequency ν and wavevector k, the corresponding photon has the energy
E = h̄ν, where h̄ is the plank constant.

As aforementioned, light absorption on a microscopic level is the absorption of a photon
by an electron. If this interaction involves only these two particles then it results in an
increase of energy for the electron. If this interaction also involves a phonon, a particle
emitted or absorbed by the vibration of the crystal lattice, then it results in an increase
in energy and a modiĄcation of the wave vector for the corresponding electron. These
two types of interaction are named direct, when only a change of energy occurs, and
indirect, when a change of energy and wave vector occurs. Since this involves a change
of state for an electron, we will also refer to these two types of interaction as direct
transition and indirect transition of the state of an electron (see [27]). For further
details on this distinction, see Fig. I.3 and section I.2.2.2.

Now that the basic principles are recalled, we will deĄne the levels of energy allowed
for electrons, namely the band structure.

I.2.2.2 Band structure

In highs chool, we learn that electrons are small particles moving around an atomic
nucleus in circles of different radius. The electrons moving on the furthest radius can
escape to become free electrons. Each circle is called a band. From a mathematicianŠs
point of view, the band structure is a Ąnite collection of scalar functions on R3.

Precisely, the band structure describes the possible states of energy for electrons. Each
band is a function on the reciprocal space (noted E(k) where k is the wave vector).
For more convenience, bands are deĄned not on the whole reciprocal space but on its
elementary unit: the Brillouin zone (BZ). This subset of the reciprocal space is brieĆy
deĄned in the next paragraph.

A crystal is characterized by a regular array of atoms which repeat periodically in the
(real) space. A Bravais lattice is deĄned as a regular periodic arrangement of points in
space, all of them connected by translation vectors:

tn = n1t1 + n2t2 + n3t3. (I.8)

The non-coplanar vectors t1, t2, t3 are called primitive translation vectors and n1, n2, n3

are any triplet of integer numbers. The parallelepiped formed by t1, t2, t3 is called the
primitive unit cell. In order to fully describe the geometry of a crystal, one needs to
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specify how atoms are spread within the unit cell with a set of basis vectors. This basis
indicates the coordinate of atoms inside the unit cell.

The reciprocal space is deĄned as the dual of the real space: given a crystal with
primitive translation vectors t1, t2, t3, its reciprocal lattice has three primitive vectors,
g1, g2, g3, deĄned by:

ti · gj = 2πδij. (I.9)

The BZ has the property that any point of the cell is closer to the chosen lattice point
(say g ≡ 0) than to any other. Its shape is directly deduced from the geometry of the
direct Bravais lattice.

The BZ of Si and Ge is shown in Fig. I.1. L,U,X,K,W and Γ are points of high
symmetry of the BZ, also named critical points. For a detailed explanation on how
the critical points are chosen, see section I.2.2.5. In Fig. I.1, Γ is in blue, dots and path
on the boundary are in red, and paths from the center to the boundary are displayed in
green.

In order to visualize a band deĄned on the BZ, a 1D path through this 3D volume is
usually deĄned: (L → Γ → X → W → U → L → W → X → K → Γ) (see Fig. I.2
for an example). This 1D path was selected because it fully covers the smallest volume
that generates the full BZ. Indeed, the volume deĄned by the dots Γ, L, U , X, W and K
generates the full BZ with symmetry and rotation: Ąrst a mirror by the plane Γ, L, K,
then three rotations with the axis (Γ, L) generate a 8th of the BZ, Ąnally four rotations
with the z axis and a mirror with the x-y plane Ąnish the full BZ generation.

Figure I.1: Brillouin zone of Si and Ge. Figure extrated from https://fr.wikipedia.

org/wiki/Zone_de_Brillouin.

As aforementioned, bands are scalar functions on the BZ and they describe the elec-
tronic state (energy level) that electrons can admit. Without entering into the subtleties
of the band structure calculations, we ought to mention the Tight-Binding (TB) method
(see [27] for a detailed deĄnition) whose application for determining the band structure
of Si, Ge, and their alloys has been done in [26]. The key point, for the present work, is
that the band structure can be computed for any Ge content, at any strain, but only at
temperature 0 K.

In Fig. I.2, the band structure of bulk Si and Ge, obtained with TB methods, imple-
mented by [26], are shown. The x-axis is a 1D path passing through critical points inside
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the BZ (see Fig. I.8). Energy on the y-axis is relative to the maximum of the valence band
(E = E ′ − maxk∈BZ Ev(k)). Each red line is a band. Given an electron of wavevector k
(for instance, k = Γ), one can deduce, from the band structure graph, that the admissible
relative energy of this electron is in a discrete set depending on which band this electron
belongs to. In the following, ŞenergyŤ will always refer to the Şrelative energyŞ deĄned
above.
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Figure I.2: Band structure of bulk Si (left) and Ge (right) obtained by TB model from
[26].

Semiconductors are characterized by the existence of a gap in their band structure. It
is clearly visible in Fig. I.2 where there are no bands between 0 eV to ~1 eV for Si and
between 0 eV and ~0.9 eV for Ge. Such a forbidden energy interval is called a bandgap.
The band below this bandgap is called the valence band and the one up this bandgap
is called the conduction band. More generally one can deĄne direct bandgaps and
indirect bandgaps according to the type of interaction considered between two bands.
Recalling that direct transitions involve a variation in energy of an electron while keeping
its wavevector constant, it can be seen as a vertical arrow on a band structure diagram.
Indirect transitions, involving an extra variation on the wave vector, can be seen as a
diagonal arrow. The existence of the bandgaps implies that a photon with an energy
less than the bandgap cannot achieve a direct transition on an electron situated in the
valence band.

The Ągure Fig. I.3 highlights an indirect transition with a zoom around Γ on the Si band
structure, computed with TB of [26]. The Ągure Fig. I.3 highlights a direct transition
with a zoom around Γ of the Ge band structure.

Now that the basic principles have been outlined and the band structure has been
deĄned we can focus, on the aforementioned deduction of the optical constants within
the quantum mechanics framework which will be the object of the next two sections.
More precisely, we describe interband electronic transitions in materials with a fully
empty conduction band.
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Figure I.3: Distinction between indirect (left) and direct (right) transitions. A bandgap
is said direct, resp. indirect, when it corresponds to a direct, resp. indirect transition.
For instance, Si, resp. Ge, has an indirect, resp. direct, bandgap in Γ. These Ągures are
zooms of Si (left) and Ge (right) band structure shown in Fig. I.2.

Interband transitions occur when the electron jumps from one band to another. In-
traband transitions, where the electron does not change its band, are not relevant for
studying optical properties of semiconductors.

Firstly, we present the main formula of the absorption coefficient. Secondly, indirect
phonon-assisted transitions are considered. And thirdly, direct transitions are detailed.

I.2.2.3 Absorption coefficient

Following Bassani and PastoriŠs work in [30], we present in this section the relation
between the absorption coefficient and the band structure. We Ąrst deĄne quantities
associated with radiation of a given frequency ω in a medium of refractive index n.

The vector potential, noted A, of the corresponding electromagnetic Ąeld, can be
written as:

A(r, t) = A0e exp(i(k · r − ωt)) + c.c. (I.10)

where e is the polarization vector in the direction of the electric Ąeld, k is the wavevector
of the radiation, A0 is the amplitude and c.c. indicates the complex conjugate of the
previous term.

The average energy density, u, of a radiation described by the vector potential A
of Eq. I.10, is a real given by:

u =
n2A2

0ω
2

2πc2
. (I.11)

The energy flux is the product of the average energy density and the velocity of the

radiation in the medium, c
n
. So it is a real equal to u

c

n
.
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The absorption coefficient (deĄned in section I.2.1.1) is by deĄnition the energy ab-
sorbed per unit time and volume divided by the energy Ćux:

α(ω) =
h̄ωW(ω)

u(c/n)
, (I.12)

where h̄ωW(ω) is the energy absorbed per unit volume and time. The number of transi-
tions is noted W(ω). Its computations depend on the type of interaction considered and
it is available in [30] for both indirect and direct transitions.

In the two following sections, we present the main results obtained with Eq. I.12 in
literature. The notation αi (resp. αd) stands for the absorption coefficient accounting
for indirect (resp. direct) transitions. The absorption coefficient is the sum of αi and αd

(α = αi + αd).

I.2.2.4 Indirect phonon-assisted transitions

Decomposing the absorption coefficient accounting for indirect transitions as a sum on
all indirect bandgaps contributions, i.e. writing:

αi =
∑

g∈G

αi,g (I.13)

where G is the discrete set of indirect bandgaps, Bassani and Pastori were able in [30] to
model αi,g, the contribution of the bandgap noted g to the indirect absorption coefficient,
thanks to Eq. I.12. Moreover they were able to identify the temperature dependency
of α through the Bose-Einstein distribution (see below, Eq. I.17). Thus they retrieved
theoretically the empirical model Ąrst introduced by Macfarlane in [31].

As already mentioned, indirect transitions involve an electron and a phonon. Their
model is the sum of two contributions: according to absorption or emission phonons.
Thus we have, given a radiation of frequency ω, a temperature T and an indirect bandgap
g:

αi,g(ω, T ) = αi,g,abs(ω, T ) + αi,g,emi(ω, T ), (I.14)

where for the case of phonon absorption:

αi,g,abs(ω, T ) =

{
0, if h̄ω ≤ EG − h̄ωq0

Aabs (h̄ω − Eg + h̄ωq0)2 nq0(T ) otherwise,
(I.15)

and for the case of phonon emission:

αi,g,em(ω, T ) =

{
0, if h̄ω ≤ EG + h̄ωq0

Aemi (h̄ω − Eg − h̄ωq0)2 (nq0(T ) + 1), otherwise,
(I.16)

where Aabs and Aemi are Ątting parameters, Eg is the bandgap energy, h̄ωq0 is the phonon
energy and nq0(T ) is the phonon Bose-Einstein distribution, deĄned as:

nq0(T ) =
1

e
h̄ωq0

kT − 1
, (I.17)

where k is the Boltzman constant.
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This model leads to a unique formula on αi,g:

αi,g(ω, T ) =





0, if h̄ω ≤ Eg − h̄ωq0

Aabs nq0(T ) (h̄ω − Eg + h̄ωq0)2, if EG − h̄ωq0 < h̄ω ≤ Eg + h̄ωq0

Aabs nq0(T ) (h̄ω − Eg + h̄ωq0)2 +

Aemi (nq0(T ) + 1) (h̄ω − Eg − h̄ωq0)2, if h̄ω > Eg + h̄ωq0 .

(I.18)

To summarize, a clear empirical model for the indirect transitions is available on the
absorption coefficient.

I.2.2.5 Direct transitions

From Eq. I.12, Bassani and Pastori were able to provide the following equation for the
absorption coefficient accounting for direct transitions (see [30]):

αd(ω) =
e2

ncπm2ω

∑

v,c

∫

BZ

C(k)δ(Ec(k) − Ev(k) − h̄ω)dk (I.19)

where m is the electron effective mass, Ec (resp. Ev) denotes the conduction (resp.
valence) band energy, C is a scalar function that can be supposed constant and δ is the
dirac distribution.

In Eq. I.19 only interband extremum contribute signiĄcantly to the integral over the
BZ. Indeed, suppose given a pair of conduction and valence band (c, v), then the con-
tribution of this pair on the absorption coefficient is proportional to 1

ω
and to the joint

density of states, noted Jcv(h̄ω) and deĄned as,

Jcv(h̄ω) =

∫

BZ

δ(Ec(k) − Ev(k) − h̄ω)dk. (I.20)

Using in Eq. I.20 the following δ distribution property,

∫ b

a

g(x)δ [f(x)] dx =
∑

x0

g(x0)

∣∣∣∣
df

dx

∣∣∣∣
−1

x=x0

, (I.21)

in which x0 is a zero of the function f(x) contained in the interval (a, b), one gets,

Jcv(E) =

∫

Ec(k)−Ev(k)=E

dS

♣∇k[Ec(k) − Ev(k)]♣ (I.22)

where the integral dS is taken on the surface of the BZ deĄned by the equation

Ec(k) − Ev(k) = E. (I.23)

The interband is deĄned as a function of k, as the difference between the conduction
and the valence band:

Ecv(k) = Ec(k) − Ev(k). (I.24)
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Around the extrema of Ecv, the joint density of state shows strong variation since
∇k[Ec(k) − Ev(k)] is close to 0.

The previous reasoning, initially formulated in [30], allows to deduce the location of
critical points inside the band structure. These critical points are typically located on
high symmetry point of the BZ, for instance in Γ. On those critical points, where an inter-
band extrema can be found, are situated the main direct contributions to the absorption
coefficient. A direct bandgap is associated to each critical point.

To summarize, the band structure is a collection of band, namely scalar function on the
reciprocal space, R3, reduced to the BZ. Two of these bands are of particular importance:
the valence band, Ev, and the conduction band Ec. From the conduction band and valence
band, one deĄne another scalar function over the BZ: the interband (see Eq I.24). This
scalar function has extrema located over the BZ. These extrema are called the critical
points of the band structure. So from a band structure, one can compute the critical
points of this band structure.

Then, from the deĄnition of the joint density of states Eq. I.20, the extrema of the
interband are the main contribution on the absorption coefficient, thanks to Eq. I.19. A
direct bandgap is located on each of these critical points, and it can be computed as the
value of the interband at this critical point.

However, no empirical or fundamental models are currently available for modelling the
absorption coefficient for direct transitions. Such models aim to directly evaluate the
integral over the BZ of Eq.I.19. For instance, recent calculations of Eq. I.19 by ab-initio
methods have clearly emphasized the drastic impact of excitonic effects [32]. The Ągure
Fig. I.4 illustrates the state of the art in ab-initio computation of the dielectric function
and shows the semi-qualitative results obtained so far (see for instance [33, 21, 34]).
Models and computations details are out of the scope of the present work.

Figure I.4: Comparison between experimental data (dotted red) and various ab-initio
models (black, green and blue line) whose deĄnitions are available in [21]. Best results so
far are only semi-qualitative. Lautenschlager data are from [35]. Figure extracted from
[21].

To conclude, in contrast with the previously mentioned approach for indirect tran-
sitions, a clear empirical model for direct transitions is not available and only direct
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bandgaps can accurately be computed from the band structure.
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I.2.3 Ellipsometry

Even though direct theoretical computation of optical constants is currently not reach-
able, measurements methods dedicated to optical constants are available and known in
literature as Ellipsometry. In this section, we Ąrstly introduce Ellipsometry in general.
Secondly, we focus on the dispersion models used in this domain. And Ąnally we present
how optical constants measured on a discrete set of conditions (for instance temperature)
can usually be extrapolated to a continuous set of conditions.

The permittivity models used in ellipsometry are often called oscillators. An oscillator
is a complex-valued function of the energy, wavelength or angular frequency respecting
the Kramers-Kronig relations (see Eq. I.6). Also named pole, it refers to, for instance,
the Drude model (see Eq. I.26), Tauc-Lorentz model (see Eq. I.30) or the DFPM (see
Eq. I.33). In ellipsometry (see section I.2.3), a permittivity model is formulated as the
sum of oscillators of different types. We refer to such a model as an oscillator scheme.

I.2.3.1 Introduction

According to [24], Ellipsometry is an optical measurement technique that involves
generating a light beam in a known polarization state and reĆecting it from a sample
having a planar surface. By measuring the polarization state of the specularly reĆected
beam, the ellipsometry angles (ψ, ∆) can be determined. These angles are speciĄc to the
wavelength λ0 of the light beam and the angle of incidence θi of the beam at the sample
surface. Upon detailed analysis, the angles (ψ, ∆), along with the associated known
values of λ0 and θi, yield information on the sample. Such information for a bulk sample
includes the optical properties, i.e. the index of refraction n and the extinction coefficient
k, which depend on the wavelength λ0. Information deduced for samples consisting of one
or more thin Ąlms having plane-parallel surface/interfaces includes the layer thicknesses
d and (n, k) of the components. Considering samples that are isotropic, which describe
most structures of interest in photonics applications, (ψ, ∆) are deĄned by:

tan(ψ) exp(i∆) =
rp

rs

, (I.25)

where rp and rs are the complex amplitude reĆection coefficients for linear p and s-
polarization states. For these states, the electric Ąeld vibrates parallel (p) and perpendic-
ular (s) to the plane of incidence, deĄned by the incident and reĆected beam propagation
directions. Several variations of the ellipsometry experiment have been developed with
the goals to obtain a large set of (ψ, ∆) pairs that facilitates data interpretation and to
extract as much information as possible on the sample. In spectroscopic ellipsometry,
(ψ, ∆) are measured continuously versus the wavelength of the light beam. In real time
ellipsometry, (ψ, ∆) are measured versus time at Ąxed λ0. In expanded beam imaging
spectroscopic ellipsometry, (ψ, ∆) are measured along a line on the surface of the sample
using an instrument with a two-dimensional detector array. In general, the most widely
used ellipsometers for photonics applications are spectroscopic and span the range from
the ultraviolet to the near-infrared (200Ű2000 nm). Spectroscopic ellipsometry is of great
interest in photonics research and development due to its ability to extract {d, (n, k)}
information for the multiple layers materials and (n, k) for the bulk materials, e.g. wafers
or substrates.
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I.2.3.2 Dispersion models

In Spectroscopic Ellipsometry, dispersive models are extensively used in order to Ąt
the measured (ψ, ∆) on the wavelength range of interest. In the following is presented a
non-exhaustive list of them.

Drude

Drude and Sommerfeld in the late 1800Šs proposed a model that describes the inter-
action of time-varying electric Ąelds with free carriers which move freely in conductive
materials. The Drude model is given by:

εDrude(E) = εr(∞) − A

E2 − iΓE
(I.26)

where εr(∞) is the high-frequency dielectric constant, A is the amplitude and Γ is the
broadening.

Tauc-Lorentz

Jellison and Modine developed the Tauc-Lorentz (TL) model using the Tauc formula
and a Lorentz oscillator [36, 37]. The complex dielectric function is:

ε(E) = εr,T L(E) + i εi,T L(E), (I.27)

= εr,T L(E) + i (εi,T (E) εi,L(E)) .

Here the imaginary part of the TL, εi,T L, is given by the product of imaginary part of
TaucŠs dielectric, εi,T , deĄned as, for E in R+:

εi,T (E) = 1¶Eg<E♢AT

(
E − Eg

E

)2

, (I.28)

where AT is the amplitude, Eg the bandgap energy, and with Lorentz one, εi,L, deĄned
as:

εi,L =
AL E0 C E

(E2 − E2
0)

2
+ C2E2

, (I.29)

where AL is the amplitude, C the broadening term and E0 the central peak energy.
By multiplying Eq. I.28 and Eq. I.29, one gets the imaginary part of the TL model:

εi,T L(E) =





1

E

A E0 C (E − Eg)2

(E2 − E2
0)

2
+ C2E2

for E > Eg

0 for E ≤ Eg

(I.30)
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The real part of the TL model can be obtained by applying the KK relations (I.6) to
Eq. I.30. The exact analytical formula is available in [37].

Fits of Si and Ge permittivity using only TL oscillators can be found in literature. For
instance, in [38], 11, resp. 16, TL oscillators have been used in order to Ąt Si, resp. Ge,
permittivity on the energy range [0.5, 6] eV at room temperature.

Sellmeier

The Sellmeier dispersion function [39] models the real part of the permittivity. It is
given as:

εr,Sell(λ) = 1 +
Aλ2

λ2 − λ2
0

, (I.31)

or equivalently:

εr,Sell(E) = 1 +
AE2

E2 − E2
0

, (I.32)

where there are two free parameters for each Sellmeier oscillator: A the amplitude and a
resonant wavelength λ0 (or a resonant energy E0).

DFPM

The Dielectric Function Parametric Model (DFPM) is also known as PSEMI (Para-
metric Semiconductors Model). This model was Ąrst introduced in [40] and it aims to
provide a Ćexible, generic and parametric model for semiconductor materials. We Ąnd in
literature examples of it being used: Emminger et. al. [25] Ątted ellipsometry data of Ge
permittivity at various temperatures with the DFPM. Johs and Herzinger [41] modelled
Cadmium-Mercury Hg1−xCdx optical constants at various concentrations. Ihn and Kim
[42] also modelled the dielectric function of Cd1−xMgxTe alloys. We focus on this model
since these studies are also modelling optical constant according to condition parameters,
such as temperature or material content.

In all previously mentioned studies, the DFPM is always simultaneously used with a
Sellmeier model. Since this model is already presented (see Eq. I.32), it is not added in
the main equation (Eq. I.33).

In this model the dielectric function is written as the summation of m energy-bounded,
Gaussian-broadened polynomials Wj. The starting expressions is given by:

DF P M(E) = 1 + i
m∑

j=1

∫ Emax,j

Emin,j

Wj(E
′)ϕj(E,E

′, σj)dE
′ (I.33)

The next paragraphs aim to describe the different features of Eq. I.33. For a quick
presentation only go directly to Eq. I.46.
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First, the function ϕj(E,E
′, σj) under the integral describes the broadening of the jth

polynomial Wj. This function is given by:

ϕj(E,E
′, σj) =

∫ +∞

0

exp¶(is [E − E ′ + iγj(s)])♢ds−
∫ +∞

0

exp¶[is (E + E ′ + iγj(s)])♢ds

(I.34)
and the deĄnition of γj is given by the broadening considered: γj = 2σ2

j s for Gaussian
broadening (σj ∈ R), or γj = Γj for Lorentzian broadening (Γj ∈ R). In case of Gaussian
broadening, one can transform to the variables:

ξ1,j =
E − E ′

2
√

2σj

and ξ2,j =
E + E ′

2
√

2σj

. (I.35)

Transforming Eq. I.34 with Laplace transforms for the case of Gaussian broadening one
arrives at the following expressions:

ϕj(E,E
′, σj) =

√
π

8σ2
j

[
exp

(
−ξ2

1,j

)
erfc (−iξ1,j) − exp

(
−ξ2

2,j

)
erfc (−iξ2,j)

]
,

=

√
π

8σ2
j

[Ψ(ξ1,j) − Ψ(ξ2,j)] , (I.36)

where erfc designates the complementary error function given by erfc(z) = 1 − erf(z), for
all z ∈ C, where

erf(z) =
2√
π

∫ z

0

exp
(
−t2
)

dt and Ψ(z) = exp
(
−z2

)
erfc (−iz) . (I.37)

In order to compute the erfc function, one can use a package freely available1.

Returning to Eq. I.33, we now focus on the m energy-bounded polynomials Wj. In
theory, the choice of m and ¶Wj ♣ j ∈ [[1, m]]♢ relies on the user. In practice, m is
chosen by the user and for Wj, for instance in [40], we have the following deĄnitions.
Suppose that j is a Ąxed integer.

Given,

Aj, Ej
C , E

j
L, E

j
U ∈ R+∗ such as Ej

L < Ej
C < Ej

U , (I.38)

F j
U , F

j
L, A

j
sym, A

j
UM , A

j
LM , L

j
2d, U

j
2d, σ

j ∈ [0, 1],

the interval [Ej
L, E

j
U ] is the support of the energy-bounded polynomial Wj, ie we have:

Wj(E) = 0 if E /∈ [Ej
L, E

j
U ]. (I.39)

and by deĄnition Emin,j := Ej
L and Emax,j := Ej

U . This support is divided in four
parts, ie introducing,

Ej
UM = Ej

U + (Ej
C − Ej

U)F j
U , (I.40)

1See http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package. This package, written in
cpp, also provides wrappers for C, Octave, Matlab, Python, R, Scilab and Julia.
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Ej
LM = Ej

L + (Ej
C − Ej

L)F j
L,

we have the following partition:

[Ej
L, E

j
U ] = [Ej

L, E
j
LM ] ∪ [Ej

LM , E
j
C ] ∪ [Ej

C , E
j
UM ] ∪ [Ej

UM , E
j
U ]. (I.41)

In order to respect notations of [40], we introduce the following variable changes: given
E in R+∗:

yj,1 :=
1

Ej
LM − Ej

L

E − Ej
L

Ej
LM − Ej

L

(I.42)

yj,2 :=
1

Ej
C − Ej

LM

E − Ej
LM

Ej
C − Ej

LM

yj,3 :=
1

Ej
UM − Ej

C

E − Ej
UM

Ej
UM − Ej

C

yj,4 :=
1

Ej
U − Ej

UM

E − Ej
U

Ej
U − Ej

UM

and we introduce six intermediate variables:

cj
L := Lj

2d

Aj
LM

1 − Aj
LM


Ej

C − Ej
LM

Ej
LM − Ej

L

2

, (I.43)

dj
L :=

1

1 − Aj
LM


Ej

C − Ej
LM

Ej
LM − Ej

L

Aj
LM

(
Ej

C − Ej
L

) Lj
2d

Ej
LM − Ej

L

+
1

Ej
C − Ej

LM


,

cj
U := U j

2d

Aj
UM

1 − Aj
UM


Ej

C − Ej
UM

Ej
UM − Ej

U

2

,

dj
U :=

1

1 − Aj
UM


Ej

C − Ej
UM

Ej
UM − Ej

U

Aj
UM

(
Ej

C − Ej
U

) U j
2d

Ej
UM − Ej

U

+
1

Ej
C − Ej

UM


,

Aj
L := Aj(1 − Aj

sym),

Aj
U := Aj(1 + Aj

sym).

Finally, for E in R+∗, Wj is given by the following equation:

Wj(E) = 1[Ej
L, Ej

LM ]P
j
1 (yj,1(E)) + 1[Ej

LM , Ej
C ]P

j
2 (yj,2(E)) + (I.44)

1[Ej
C , Ej

UM ]P
j
3 (yj,3(E)) + 1[Ej

UM , Ej
U ]P

j
4 (yj,4(E))

where P j
1 , P j

2 , P j
3 and P j

4 respectively are deĄned as function of yj,1, yj,2, yj,3 and yj,4

respectively, as:

P j
1 (yj,1) = Aj

L

(
Aj

LM(1 − Lj
2d)yj,1 + Aj

LML
j
2dy

2
j,1

)
, (I.45)

P j
2 (yj,2) = Aj

L


Aj

LM +
1 − Aj

LM

1 − cj
L − dj

L

yj,2 + cj
Lyj,2

2 + dj
Lyj,2

4


,

32



P j
3 (yj,3) = Aj

U


Aj

UM +
1 − Aj

UM

1 − cj
U − dj

U

yj,2 + cj
Uyj,2

2 + dj
Uyj,2

4


,

P j
4 (yj,4) = Aj

U

(
Aj

UM(1 − U j
2d)yj,1 + Aj

UMU
j
2dy

2
j,1

)
.

To summarize, given six control points of R2 deĄned as:

C1 = (Ej
L, 0) (I.46)

C2 = (Ej
LM , Â

j
L)

C3 = (Ej
C , A

j
L)

C4 = (Ej
C , A

j
U)

C5 = (Ej
UM , Â

j
U)

C6 = (Ej
U , 0)

where Âj
U = Aj

UA
j
UM and Âj

L = Aj
LA

j
LM , Wj is a real function that passes through

all these six control points, is a polynomial of order 1, 2 or 4 on each subinterval of
[Ej

L, E
j
U ] (deĄned by Eq. I.41), is continuous and differentiable in Ej

UM and Ej
LM , and is

discontinous in Ej
C if Aj

sym is not equal to zero.
An example of one Wj function is available in Fig. I.5.

EL ELM EC EUM EU

AL

Âj
L

Âj
U

A

AU

W0

Figure I.5: Schematic construction of W0 from the six control points coordinates. Pa-
rameters are available in table I.1.

In practice, a DFPM model is usually deĄned so the support of each oscillator overlaps.
The Ąnal choice of oscillator supports deĄnition in fine relies on the user. For instance,
assuming that three oscillators are used (m = 3), the following relations could be chosen
to deĄne oscillator support:

E0
C < E1

C < E2
C , (I.47)

E0
U = E1

C , (I.48)
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E1
L = E0

C ,

E1
U = E2

C ,

E2
L = E1

C .

In order to actually compute this model, one remarks that two variable changes are
needed. Firstly, Wj is expressed in Eq. I.44 as a variable of ¶yi ♣ i ∈ [1, 4]♢ and must be
expressed as a function of E. Secondly, Wj, as a function of E, need to be expressed in
term of ξ1,j and ξ2,j deĄned in Eq. I.35. The Ąnal step consists in evaluating the following
integral,

I(i,j)
n =

∫ Emax,j

Emin,j

ξi,j
n Ψ(ξi,j) (I.49)

for i in [[1, 2]], n in [[0, 4]], j in [[1,m]], where Ψ(z) is deĄned by Eq. I.37 and where the

n exponent on ξi,j denotes the usual polynomial function. In order to compute I
(i,j)
n , 1D

precomputed table of Ψ are used in literature (see [40, 25, 41]). We do not use such tables
in our implementation and rather we divide the integration interval [Emin,j, Emax,j] in
seven subintervals and apply a twelve dots Gauss-Legendre quadrature formula on each
subinterval.

In the following, we illustrate the DFPM with simple examples of Ąrst, only one oscil-
lator, and then, a summation of three oscillators.

In Fig. I.6, one can see an example of a single DFPM oscillator (m = 1). The input
values are given in Table I.1. In Fig. I.6b, the orange dashed line is W0(E) and the blue
line is the actual imaginary part of the oscillator. One remarks the smoothing operated
by the convolution of W0 by ϕ0 in order to get the imaginary part. The corresponding
real part is shown in Fig. I.6a.
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(a) Real part.
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(b) Imaginary part.

Figure I.6: A DFPM with one oscillator. Parameters are available in Table I.1.

In Fig. I.7, one can see a DFPM model composed of three oscillators (m = 3). The
resulting real, respectively imaginary, part of the model is the sum of each oscillator real,
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respectively imaginary, part. The parameters are available in Table I.1. The deĄnition
of the three oscillators support follow the scheme introduced by Eq. I.47.
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Figure I.7: A DFPM with three oscillators. Parameters are available in table I.1.

Fig. A EC EU EL FU FL Asym AUM ALM L2d U2d σ

I.5, I.6 5.19 3.17 4.89 1.76 0.1 0.3 0.35 0.045 0.15 0 0 45.28

I.7, osc 1 0.93 1.76 2.89 1.76 0.4 0.5 0 0.75 0.5 0 0 40
I.7, osc 2 5.19 3.17 4.89 1.76 0.1 0.3 0.35 0.045 0.15 0 0 45.28
I.7, osc 3 12.22 4.89 6.5 3.17 0.1 0.8 -0.72 0.024 0.4 0 0 64.7

I.10a, x = 0 19.67 3.34 4.80 1.12 0.61 0.92 0.12 0.21 0.56 0 0 81.4
I.10a, x = 1 29.67 5.34 6.30 3.12 0.43 0.83 0.2 0.21 0.05 0 0 61.8

I.10b, x = 0 89.06 4.80 6.5 3.26 0.61 0.89 0 0.22 0.27 0 0 124
I.10b, x = 1 52.02 6.30 7.5 3.26 0.61 0.75 0 0.07 0.27 0 0 124

Table I.1: Parameters of DFPM models shown in various Ągures.
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I.2.3.3 Critical point model

Both Eg for TL model and EC from the DFPM represent a bandgap of the considered
material and thus accept a physical interpretation. In order to extract these speciĄc
parameters from ellipsometry measurements, a model, the critical point parabolic band
(CPPB), has been proposed in [43]. It allows, as a preliminary step, to retrieve bandgaps
by Ątting the second derivative of the measured real and imaginary part of the permit-
tivity.

A example can be found for instance in [25] and is shown in Fig. I.8. The authors
Ąrst extracted critical points (EC) with the CPPB model, and then Ątted a DFPM with
height oscillators on measurements using all previously extracted EC .

The CPPB function models the second derivative of the dielectric function near critical
points using Ąve parameters: amplitude A, phase projection factor θ, threshold energy
Eg, broadening parameter Γ and exponent µ:

ε(ω) = B − Aeiθ

(h̄ω − Eg + iΓ)µ if µ ∈ ¶−1

2
,

1

2
♢

ε(ω) = B − Aeiθ

(h̄ω − Eg + iΓ)µ if µ = 0 (I.50)

where µ has three discrete values: µ ∈ ¶−1
2
, 0, 1

2
♢.

Figure I.8: Example of critical point identiĄcation from the numerically calculated second
derivatives of the real part (triangles) and the imaginary part (squares) of the measured
permittivity of Ge at 10 K. The solid lines represent the best Ąt of the second derivative
of Eq. I.50 to the data, and the vertical black dashed line indicates the extracted E0

threshold energy. Figure extracted from [25].
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I.2.3.4 Parametric ellipsometry

Parametric ellipsometry aims to provide models of optical constants varying on one or
multiple extra parameters, usually related to material concentration or temperature. In
our problem, we wish to provide a uniĄed model for the permittivity of Si, Ge and their
alloys at different temperatures. So two extra parameters are considered: the Ge content
(x in [0, 1]), and the temperature, noted T .

Measurements are done on particular conditions and can be repeated on a wide range
in order to cover the set of interest. However this set of measured conditions is always
discrete and an interpolation methodology is needed in order to extend available data on
a continuous set of conditions.

The Ąrst methodology is simply to perform a linear interpolation of the permittivities
at Ąxed energy. For instance, suppose given, on energy range I = [1, 5] eV, both Si per-
mittivity (noted εSi(E)) and Ge permittivity (noted εGe(E)), then the dielectric function
of a SiGe alloy of concentration x0 ∈]0, 1[ is given by, for all E in I:

εSi1−x0 Gex0
(E) = (1 − x0)εSi(E) + x0εGe(E). (I.51)

This method is extensively used in application when no data are available, for instance
in [44, 45, 46]. However, it produces results not even close to actual measurements, as
shown in Fig. I.9.

The second methodology aims at both more Ćexibility and more precision and consists
in linearly interpolating oscillator parameters.

For instance, suppose given one TL oscillator for Si, noted O1,Si, depending on param-
eters:

ASi, CSi, E(g, Si), E(0, Si), (I.52)

and one TL for Ge, noted O1,Ge, depending on parameters:

AGe, CGe, E(g, Ge), E(0, Ge). (I.53)

The corresponding oscillator O1,Si1−xGex
is then depending on parameters:

ASi1−xGex
, CSi1−xGex

, E(g, Si1−xGex), E(0, Si1−xGex), (I.54)

which are obtained by linear interpolation, i.e :

ASi1−xGex
= (1 − x)ASi + xAGe

CSi1−xGex
= (1 − x)CSi + xCGe

E(0,Si1−xGex) = (1 − x)E(0,Si) + xE(0,Ge)

E(g,Si1−xGex) = (1 − x)E(g,Si) + xE(g,Ge). (I.55)

This methodology assumes that εSi and εGe are modelled with the same number of os-
cillators, identiĄed by pairs. Such oscillator identiĄcation is called an oscillator scheme.

Linear parameters interpolation is then performed on each oscillator deĄned by the
scheme.
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This methodology makes sense only when the oscillator parameters are in direct cor-
respondence with geometrical characteristics of the oscillator curve. For instance, the
DFPM model has been created in order to apply this methodology because all its param-
eters deĄne six geometrical control points, as illustrated in Fig. I.5. Actual interpolation
of DFPM oscillators is shown in Fig. I.10.

However, the TL oscillator parameters are more ambiguous: only Eg is a geometrical
parameter for determining the support of the oscillator. The geometrical amplitude is not
only function of A when C ≪ 1, leading to erratic interpolation as shown in Fig. I.11. On
the contrary, when C ≫ 1, the interpolation of parameters leads to realistic interpolation,
as shown in Fig. I.12.
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(a) Real part.

1 2 3 4 5 6
0

10

20

30

40

50

E (eV)

εi

Si

Si0.5Ge0.5
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(b) Imaginary part.

Figure I.9: Performing a linear interpolation on the permittivity of Si and Ge leads
to drastic errors. The differences between the prediction by linear interpolation (blue
curve) and the actual measurement (medium green dashed curve) is clear. Dashed lines
are measures from [47]. The blue line is obtained by linearly interpolating the Si and Ge
permittivity (Eq. I.51 with x0 = 0.5).

Fig. x A C Ei Eg

I.12a x = 0 30 10 5.5 1.5
I.12a x = 1 30 10 5 2

I.12b x = 0 30 10 5.5 1.5
I.12b x = 1 30 10 5 2

I.11a x = 0 20 0.2 4.5 2
I.11a x = 1 10 0.2 5.5 2

I.11b x = 0 10 0.2 4.5 2
I.11b x = 1 25 0.8 5 2

Table I.2: TL parameters of various Ągures.
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Figure I.10: Linear parameters interpolations between two DFPM oscillators with param-
eters given by table I.1. The intermediate oscillators (x = 0.25, 0.50, 0.75) are exactly
smooth translations between the curve x = 0 and x = 1. DFPM oscillator parameters of
curves x = 0.25, 0.50, 0.75 are obtained similarly to Eq. I.55.
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Figure I.11: Linear parameters interpolations between two TL oscillators with parameters
given by table I.2. Since the two initial TL oscillators (x = 0 and x = 1) have both C ≪ 1,
the interpolated oscillators do not behave coherently. For instance, the peak of curves
x = 0.25, 0.50, 0.75 is lower or upper than the peak of curve x = 0 and x = 1. TL
parameters of curves x = 0.25, 0.50, 0.75 are obtained with Eq. I.55.
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Figure I.12: Linear parameters interpolations between two TL oscillators with parameters
given by table I.2. Since the two initial TL oscillators (x = 0 and x = 1) have both C ≫ 1,
the interpolated oscillators behave coherently, i.e. the curves x = 0.25, 0.50, 0.75
are smooth transition between the curve x = 0 and x = 1. TL parameters of curves
x = 0.25, 0.50, 0.75 are obtained with Eq. I.55.
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I.2.4 Available data

Here are presented data that will be used to Ąt our model. This list is not exhaustive
and this work does not include an experimental data analysis. Three sets of data are
chosen. The permittivity of pure Si according to various temperature is taken from [48]
and shown in Fig. I.13 and I.14. The permittivity of Si, Ge and their alloys at 300 K are
taken from [47], and shown in Fig. I.15 and I.16. The absorption coefficient of Si, Ge,
and their alloys, at various temperatures, is taken from [31] and shown in Fig. I.17.

To our knowledge, data for the pure Ge permittivity according to temperature are not
found in the literature. Thus, the main goal of our model is to Ąt data of Fig. I.15, I.16
and I.17.
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Figure I.13: Experimental measurements according to temperature of the real part of
pure Si permittivity, from [48].
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Figure I.14: Experimental measurements according to temperature of the imaginary part
of pure Si permittivity, from [48]. In I.14b, the uncertainties in low energy are clearly
visible. These data cannot be used for the NIR range (1-2.5 eV).
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Figure I.15: Experimental real part of SiGe alloys permittivity at room temperature from
[47].
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Figure I.16: Experimental imaginary part of SiGe alloys permittivity at room temperature
from [47].
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Figure I.17: Braunstein et al. [31] experimental data on the absorption coefficient, at
various temperatures and Ge contents.
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I.3 Model

The proposed semi-empirical model for the permittivity of SiGe accounting for Ge
content and temperature is deĄned in this section. First, we describe the basic principles.
Secondly, the modelling of both the indirect and direct transitions is clariĄed, followed
by a detailed explanation of conditions variation.

I.3.1 Principle: parametric ellipsometry

We aim at providing an uniĄed semi-empirical model for the permittivity of Silicon,
Germanium and their alloys at various temperatures. The model must accept three input
variables, the Ge content, noted x, the temperature, noted T , and the Energy, noted E.
For the following, we choose energy as the variable instead of the angular frequency, noted
ω, and the wavelength, noted λ. Corresponding variable changes are available in Eq. I.1.
The model, providing permittivity value, is complex-valued.

Recalling that this is equivalent to a double parametric ellipsometry problem, both in
x and T , we choose the approach described in the section I.2.3.4. The following points
summarize the corresponding framework:

1. Choose a number of oscillators i.e. deĄne an oscillator scheme.

2. Fit both pure Si and pure Ge at minimum and maximum temperature with this
scheme.

3. Perform a double parameter interpolation (see Eq. I.55) in order to retrieve the
Si1−xGex permittivity at a given temperature, T , and a given Ge content, x.

As a preliminary step, we will perform a simpler task by Ąxing the temperature at
T0 = 20 °C. The framework becomes:

1. Choose a number of oscillators i.e. deĄne an oscillator scheme.

2. Fit both pure Si and pure Ge, at Ąxed temperature, T0, with this scheme.

3. Perform a single parameter interpolation (see Eq. I.55) in order to retrieve the
Si1−xGex permittivity at temperature T0, for a given Ge content, x.

The remaining question lies in the oscillator scheme deĄnition, which is explained in
the following section.

I.3.2 Principle: oscillators scheme

In this section is explained how the oscillator scheme is chosen and formulated.
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As a reminder, an oscillator is a complex-valued function of the energy, wavelength
or angular frequency respecting the Kramers-Kronig relations (see Eq. I.6). Also named
pole, it refers to, for instance, the Drude model (see Eq. I.26), Tauc-Lorentz model (see
Eq. I.30) or the DFPM (see Eq. I.33). In ellipsometry (see section I.2.3), a permittivity
model is formulated as the sum of oscillators of different types. We refer to such a model
as an oscillator scheme.

In order to deĄne an oscillator scheme, we decide to identify each oscillator to a speciĄc
bandgap of the band structure. Each oscillator will thus represent transitions associated
to a speciĄc bandgap. Such a hypothesis is justiĄed by Fig. I.18 where the bandgap
variation on Ge content is displayed on the imaginary part of the permittivity of SiGe
alloys. The bandgaps clearly follow the trend, peaks and gaps, of the permittivity. The
bandgaps variation according to Ge content are computed with the TB model from [26]
and their values are shown in Fig. I.19. From the band structure computation of each
Ge content, the bandgaps are then extracted at critical points, as shown, for instance for
pure Ge, in Fig. I.20.

This approach is coherent with the contribution of Bassani and Pastori that already
claimed that only interband extrema contribute signiĄcantly to the optical constants for
direct transitions (see section I.2.2.5).

Such methodology, i.e. to deduce, by TB, bandgaps at critical points and then use
these computed bandgaps as physical parameters for oscillators, is strictly in competition
with the induction of bandgaps done on ellipsometry measurements (see section I.2.3.4).
However, computing the band structure to deduce bandgaps is ultimately more precise:
In the 3-3.2 eV energy range, the CPPB (see Eq. I.50), could only identify one bandgap
when the TB solver allows the computation of four bandgaps, as shown in Fig. I.21.
This implies that optical transitions are more precisely described by the band structure
computation from TB.
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Figure I.18: Bandgaps at critical points on experimental permittivity imaginary part
data from [47]. Pure Si permittivity and bandgaps are in black, pure Ge permittivity
and bandgaps in red. Bandgaps variation on Ge content follow the trend, peaks and
gaps, of the permittivity. For instance, the EXX bandgap clearly marks the 4.2 peak of
the permittivity and the EKK bangap emphasizes the varying low energy peak. Three
bandgaps, EL3L1 min/max and EG25G2, are contributing to the various peaks on the
energy range 2-3.5 eV. All markers abscissa are determined by the bandgap value. Then,
all markers are directly placed on the corresponding permittivity curve. The bandgaps
are computed with the TB model from [26] and their values are shown in Fig. I.19.
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bandgaps at critical points of Si, Ge, and their alloy. Also shown (black square) are the
experimental data at 4.3K from [49]. Except for the EL3L1min and EL3L1max bandgap,
the spin-orbits splitting are averaged.

I.3.3 Indirect transitions modelling

Indirect transitions refer to indirect bandgaps, namely the CB(L) and CB(∆) bandgaps
(see Fig. I.19). From literature (see section I.2.2.4), an empirical model for the absorption
coefficient, see Eq. I.18, is available. This model exhibits a (h̄ω−Eg ± h̄ωq)

2 dependency
that is identical to the TL model (Eq. I.30) for the imaginary part of the permittivity
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(see optical constant relations in section I.2.1.1).
A TL oscillator is identiĄed to a bandgap through its Eg parameter.
Thus, we select the TL oscillators to model the indirect transitions. Recalling that

every indirect bandgap is decomposed through emitting and absorption phonons (see Eq.
I.14), we shall Ąt four TL oscillators for indirect transition modelling.

I.3.4 Direct transitions modelling

Since no empirical model can be found in the existing literature for direct transitions
(see section I.2.2.5), we choose a more pragmatic approach combining the Ćexible DFPM
model (Eq. I.33) with the gaps values at critical points computed by TB. The EC

parameters of all DFPM are set to the bandgaps values computed by TB, thus identifying
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a DFPM oscillator to a bandgap.
Seven direct bandgaps are identiĄed (see Fig. I.19 and Fig. I.20 ), leading to seven

DFPM oscillators.

To summarize, in order to model the permittivity, TL and DFPM oscillators are used.
TL (resp. DFPM) represents the indirect (resp. direct) transitions. Each oscillator is
associated (through Eg for TL oscillators, and EC for DFPM) to a bandgap, computed
thanks to TB prediction. The oscillators decomposition of our model, Ątted on the pure
Ge permittivity, is visible in Fig. I.22 and Fig. I.23. The Ątted model, shown as a red
line, is the sum of all the oscillators, shown as dashed colored line. The Ąt at low energy,
corresponding to the indirect transitions, is shown in Fig. I.22. The Ąt at high energy,
corresponding to the direct transitions, is shown in Fig. I.23.
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Figure I.22: Low energy oscillators decomposition for the imaginary part of permittivity
in our model for pure Ge. Each dashed line corresponds to an oscillator: the pale and dark
green ones are TL oscillators associated with the indirect CB(L) bandgap, the orange one
is a DFPM oscillator associated with the EG25G2 direct bandgap. The solid curve (our
model) is obtained by summing up each oscillator.

I.3.5 Real part modeling

As advised in the presentation of the DFPM (see section I.2.3.2), one Sellmeier oscillator
(see Eq. I.32) is added to the sum of the real part of all previously mentioned TL and
DFPM oscillators.

I.3.6 Temperature variations

As explained in section I.3.1, we choose the parametric ellipsometry methodology. So
all parameters, excepted the bandgaps (Eg for TL, EC for DFPM), of all TL and DFPM
oscillators are linearly interpolated.

The bandgaps variation on Ge content are described by Fig. I.19. However TB models
cannot include temperature and provide bandgaps at 0K only (see section I.2.2.2). The
remaining temperature variations of bandgaps are described in the following paragraphs.
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Figure I.23: High energy oscillators decomposition for the imaginary part of permittivity
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Eq. I.33. The peak point of each DFPM oscillator curve is positioned at the bandgap of
the corresponding critical point. The solid curve (our model) is obtained by summing up
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The temperature dependency is included in this model through the band gap Eg(T )
temperature dependency, which is well described by the following formula:

Eg(T ) = Eg(0) − α
T 2

β + T
(I.56)

where α and β are Ątting parameters and are given in Table I.3. This formula is widely
used in literature and was Ąrstly proposed by [50].

Eg(0) α β
Si 1.147 5.8e-4 636
Ge 0.71 3.4e-4 235

Table I.3: Fitting parameter for bandgap temperature dependence of Eq. I.56

We used Macfarlane [31] and Braunstein [51] experimental data to Ąt α and β for pure
Si and pure Ge.

I.3.7 Parameters

In this section are available all parameters of the model at temperature of 300K. For
DFPM oscillator, the "Left" and "Right" parameters determine the support of the oscilla-
tor, i.e. Emin and Emax. "Left" and "Right" are integer. "Left" determines Emin: if "Left"
is equal to 1, then Emin is equal to EC of the oscillator number 1. Similarly, "Right" des-
ignates Emax: if "Right" is equal to 7, then Emax is equal to EC of the oscillator number
7. For instance, for pure Si (see table I.5), the support of the oscillator number 3 is the
interval [EC, osc 0, EC, osc 5] = [1.25, 4.21]. In all DFPM parameters tables, the oscillator
number 0 is a Ąctional one used to deĄne the support of all other oscillators. For a full
deĄnition of the DFPM model, see section I.2.3.2.

Nb osc Bandgap ε∞ A C E0 Eg

0 CB(L) abs 0.00 3.00 5.00 3.00 2.173
1 CB(L) emit 0.00 8.00 5.00 3.00 2.226
2 CB(∆) abs 0.00 0.40 20.00 4.00 1.049
3 CB(∆) emit 0.00 6.00 2.99 4.00 1.151
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Nb osc Bandgap Left Right A σ EC

0 - 0.00 0.00 1.00 1.00 1.25
1 EG25G2 1.00 2.00 0.55 50.00 3.26
2 EL3L1 max 1.00 5.00 20.67 81.47 3.35
3 EL3L1 min 0.00 5.00 12.71 42.25 3.35
4 EG25G15 4.00 5.00 11.84 256.58 3.26
5 EXX 4.00 7.00 80.06 124.70 4.21
6 EKK 5.00 7.00 5.03 136.77 5.39
7 EL3L3 5.00 7.00 5.68 200.00 6.50

Table I.5: Pure Si Ątting DFPM parameters (Part 1) for direct transitions modeling. EC

are computed thanks to TB prediction.

Nb osc Asym FL ALM L2d FU AUM U2d

0 0.29 0.62 0.13 0.00 0.40 0.75 0.00
1 0.00 0.50 0.50 0.00 0.50 0.15 0.00
2 0.12 0.78 0.02 1.00 0.61 0.22 0.00
3 0.14 0.62 0.00 0.00 0.35 0.38 0.00
4 -0.35 0.40 0.45 0.00 0.15 0.28 0.00
5 -0.53 0.90 0.28 1.00 0.62 0.17 1.00
6 0.00 0.05 0.01 0.00 0.95 0.50 0.00
7 0.00 0.50 0.50 0.00 0.50 0.50 0.00

Table I.6: Pure Si Ątting DFPM parameters (Part 2) for direct transitions modeling. EC

are computed thanks to TB prediction.

A E0

1.03 0.00

Table I.7: Pure Si Ątting parameters of a single Sellmeier oscillator (see Eq. I.56).

Nb osc Bandgap ε∞ A C E0 Eg

0 CB(L) abs -0.12 1.00 46.45 2.00 0.623
1 CB(L) emit 0.00 1.70 3.15 2.00 0.676
2 CB(∆) abs 0.00 9.00 20.00 2.00 0.913
3 CB(∆) emit 0.00 4.20 3.15 2.00 0.957

Table I.8: Pure Ge Ątting TL parameters for indirect transitions modeling. Eg are
computed thanks to TB prediction and Eq. I.56 (abs and emit refer to absorbing and
emitting phonons).
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Nb osc Bandgap Left Right A σ EC

0 - 0.00 0.00 0.33 20.00 1.40
1 EG25G2 1.00 2.00 0.82 20.00 0.80
2 EL3L1 max 1.00 5.00 9.92 30.58 2.11
3 EL3L1 min 0.00 5.00 8.20 200.00 3.18
4 EG25G15 4.00 5.00 22.35 150.00 2.18
5 EXX 4.00 7.00 34.85 124.70 4.27
6 EKK 5.00 7.00 3.45 136.77 5.67
7 EL3L3 5.00 7.00 4.68 200.00 6.50

Table I.9: Pure Ge Ątting DFPM parameters (Part 1) for direct transitions modeling.
EC are computed thanks to TB prediction.

Nb osc Asym FL ALM L2d FU AUM U2d

0 0.29 0.62 0.13 0.00 0.40 0.75 0.00
1 -0.50 0.00 0.00 0.00 0.50 0.50 0.00
2 0.00 0.30 0.09 0.00 0.89 0.65 0.00
3 0.00 0.30 0.18 0.00 0.40 0.55 0.00
4 0.00 0.52 0.07 0.00 0.40 0.08 0.00
5 -0.35 0.90 0.45 1.00 0.62 0.21 1.00
6 0.00 0.05 0.03 0.00 0.95 0.50 0.00
7 0.00 0.50 0.50 0.00 0.50 0.50 0.00

Table I.10: Pure Ge Ątting DFPM parameters (Part 2) for direct transitions modeling.
EC are computed thanks to TB prediction.

A E

1.03 0.00

Table I.11: Pure Ge Ątting parameters of a single Sellmeier oscillator (see Eq. I.56).
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I.4 Results

In this section we present the main result of our study, that consist in the Ąt of our
model on data from Nolot [47] (at 300K) for high energy and from Braunstein [51] (at
various temperature) for low energy.

All the parameters are provided in section I.3.7. The Ąt of pure Si and pure Ge are
shown in Fig. I.24(a) and I.24(b). Compared to a usual linear interpolation model (see
Fig. I.9), our model demonstrates an overall good agreement to the Ątting data. On
Fig. I.24(a), the Ątting error are concentrated around 3.8 eV, for the lower concentration
of Ge, the darker curves.

On Fig. I.25, the prediction of our model are compared to the experimental data of
the absorption coefficient from [51]. The parameters of section I.3.7 are used, kept as
constant, in conjonction of the energy bandgap model of section I.3.6. Only the Eg

parameters of the TL oscillators are varying according to Eq. I.56.
Fitting our model on the high energy, temperature dependent, permittivity of Si, Ge,

and their alloys, was not performed due to the lack of available data, as mentionned in
section I.2.4.
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Figure I.24: Real (left) and imaginary (right) part of SiGe at room temperature of various
Ge content (0, 0.2 , 0.389 , 0.513 , 0.635 , 0.75 , 0.8 , 1). Dots are experimental data from
[47] and the solid line is our model.
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Figure I.25: Braunstein et al. [31] experimental data (represented by symbols) at various
temperatures and Ge contents compared to the predictions of our model.
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I.5 Numerical application

I.5.1 Motivation

In the following, our model, at 300 K, is compared with the usual linear interpolation
methodology detailed in section I.2.3.4 (see Eq. I.51). A typical SPAD pixel has been
chosen, with a layer of Silicon Germanium alloy, and the absorption in the active region
is computed with our 2D in-house RCWA software (see section II.5). All the pixel dimen-
sions are provided on the next section. Then the RCWA convergence study is performed.
Finally, comparisons between our model, the usual linear interpolation methodology and
the measured permittivity are presented on various Silicon Germanium alloys.

I.5.2 Pixel geometry

In order to test our permittivity model, we choose a 2D nanostructured SPAD pixel
surrounded by deep isolation trench (DTI) and covered by an antireĆective layer of Silicon
oxide (SiO2). The bottom of the pixel is reĆexive due to the presence of a metallic layer
(Cu). This structure is similar to the one presented in [52]. The actual simulated pixel
can be seen in Fig. I.26.

From top to bottom, the dimensions are (in µm):

• 2 thick air layer (in light pink);

• 0.15 thick SiO2 layer (in red);

• 0.4 thick grating layer, with SiO2 DTI. On x axis, the intervals composed of SiO2
are:

– DTI: [−2.5, −2.25], [2.25, 2.5],

– Grating: [−2.1, −1.9], [−1.7, −1.5], [−1.3, −1.1], [−0.9, −0.7], [−0.5, −0.3],
[−0.1, 0.1], [0.3, 0.5], [0.7, 0.9], [1.1, 1.3], [1.5, 1.7], [1.9, 2.1];

• 3.9 thick Si layer (in yellow), with DTI;

• 0.5 thick SiGe layer (in green), with DTI;

• 0.2 thick Si layer (in yellow), with DTI;

• 0.25 thick Cu layer (in blue).

The pixel has a 5 µm period and is centered at 0.

The permittivity data used are Palik [53] for SiO2, [47] or our model for Si, Ge and
SiGe, McPeak [54] for Cu.

The Ągure of merits are:

• The reĆection on top of the pixel;

• The absorption in all Si and SiGe layers;

• The euclidean norm of the electric and the magnetic Ąelds.
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Figure I.26: 2D SPAD pixel simulated. Each color corresponds to a material: light pink
for air, red for SiO2, yellow for Si, green for SiGe and blue for Cu.

I.5.3 Convergence study

Since the pixel geometry is matching a cartesian grid, i.e. there isnŠt any curved
surface, as a lense for instance, the layer deĄnition of the structure is straightforward and
does not contain approximations. Thus, the only source of numerical approximation in
RCWA simulations on this structure is the plane wave truncation, also referred as the
mode truncation.

In order to deĄne a sufficiently precise mode truncation, we Ąrst run, on a Si Ąlled
pixel, RCWA solving at 940 nm at various mode truncations. In Fig. I.27 is plotted
the computed reĆection and absorption at different mode truncation. From this Ągure
of merit, 61 modes seem sufficient. To test this threshold, we also computed, between
900 nm and 1000 nm, on 201 evenly spaced wavelengths, the reĆection and absorption
with 61 and 101 modes truncations. Fig. I.28 exhibits no differences in the reĆection
and absorption spectrum, conĄrming that 61 modes are enough. This conclusion is also
visible in Fig. I.29 where the euclidean norm of the electric and magnetic Ąelds at 940
nm exhibits no signiĄcant differences between the 61 and the 101 modes truncations.

In total, 455 RCWA simulations (50 for Fig. I.27, 402 for Fig. I.28 and 3 for Fig. I.29)
were run for a wall time inferior to 10 minutes.
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Figure I.27: Absorption and reĆection at 940 nm, at various plane waves truncations.
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Figure I.28: Absorption (blue) and reĆection (green) spectrum on the wavelength range
900-1000 nm, for 61 modes truncations (dark colored lines) and 101 modes truncations
(pale colored lines).
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(a) ♣♣E♣♣2, 41 modes. (b) ♣♣H♣♣2, 41 modes.

(c) ♣♣E♣♣2, 61 modes. (d) ♣♣H♣♣2, 61 modes.

(e) ♣♣E♣♣2, 101 modes. (f) ♣♣H♣♣2, 101 modes.

Figure I.29: Squared norm of both the electric Ąeld, E, and the magnetic Ąeld, H, at
three mode truncations (41, 61 and 101). No difference can be seen between the Ągures
of 61 and 101 modes truncations.
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I.5.4 Results

In Fig. I.30 and I.31, are available the absorption spectrum, at room temperature, on
the pixel deĄned in section I.5.2, of three methods:

• blue lines are the simulations using the experimental data from [47];

• orange lines are the simulations using the linear interpolation methodology (see
Eq. I.51);

• dark green lines are the simulations using our semi-empirical model.

One can observe the drastic divergence of the usual interpolation methodology in the
wavelength range from ~850 nm to 1000 nm, compared to the reference blue line, while
our model, despite exhibiting a phase shift, follows the reference. The less Ge content in
the SiGe layer, the wider is the interval of divergence of usual interpolation methodology.
This divergence is visible in the Ągures of all Ge concentration except for the 88% one.
On the visible range, the usual methodology performs better than our model that is
exhibiting oscillations. This is mainly due to the absence of absorption in the SiGe layer.
Indeed, Silicon is well absorbing light in the visible range and all light is absorbed in the
other layers, as it can be seen in Fig. I.32 for 63% of Ge content.

In order to produce one absorption spectrum, 1001 RCWA simulations were run on
evenly-spaced wavelengths between 500 nm and 1000 nm. Since each of the 6 Ge con-
tents contains 3 absorption spectrum, 18018 simulations were run, for a wall time of
approximately 3 hours.

Finally, this study demonstrates the improvement of accuracy that our model of SiGe
permittivity is achieving on optical simulations.
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Figure I.30: Comparisons, at various Ge contents, of the absorption spectrum between
the usual linear interpolation methodology (orange line) and our model (dark green line)
with the reference of experimental data (blue line) from [47]. Only the permittivity of
the SiGe layer is changed according to the model used.
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Figure I.31: Comparisons, at various Ge contents, of the absorption spectrum between
the usual linear interpolation methodology (orange line) and our model (dark green line)
with the reference of experimental data (blue line) from [47]. Only the permittivity of
the SiGe layer is changed according to the model used.

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

λ (µm)

Figure I.32: Absorption spectrum of the SiGe layer only, at 63% Ge, for the usual linear
interpolation methodology (orange line), our model (dark green line) and the experimental
data (blue line) from [47]. The absorption in the range 500 nm 750 nm is low, conĄrming
that the other layers of Si absorb the majority of the light.
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II.1 Introduction

In general, numerical methods make it possible to solve complex problems, quickly
validate a corrective action, optimize the geometrical properties of the device, access
non-measurable quantities and better understand the physical phenomena involved. Fab-
ricating CMOS imagers relies on a cost reduction policy, and thus efficient optical solvers
are necessary.

In this chapter, three numerical methods for solving MaxwellŠs equations are compared
on a pixel-like device. Benchmarking of the numerical methods can be found in the
literature, for instance on nanometric scatterers [55], or on photonics crystal [56], but,
to our knowledge, we cannot Ąnd such study for the particular application of pixel-like
structures. The aim of this chapter is, after presenting the three numerical methods
involved, to be able to choose the appropriate one for the study of the optical response
of CMOS imagers.

Two stakes justify such study. Firstly, the company STMicroelectronics, funding this
thesis, must be able to select the most efficient and appropriate software for its extensive
studies on CMOS pixels. Secondly, the INRIA team Atlantis wants to know whether
their software suite, DIOGENeS, implementing an innovative numerical method, can be
used to improve the numerical treatment of light propagation in complex CMOS imagers.
Both entities are thus highly interested in the results of a benchmark between the various
numerical methods for solving optics in CMOS imager.

Such a benchmark is empirical and not analytical, in the sense that the comparisons
are performed on execution time and simulation outputs, and not on evaluating formal
algorithms complexity.

Firstly, the three numerical methods compared, namely the Finite Difference Time
Domain (FDTD), the Discontinuous Galerkin Time Domain (DGTD) and the Rigorous
Coupling Wave Analysis (RCWA) methods, are presented. Secondly, the comparison of
these methods on structure of increasing complexity are performed.
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II.2 Preliminaries

II.2.1 Notations for vector fields calculus

In this section, an operator, ∇, and three associated operations are deĄned. These
notations allow compact notations and are constantly used in the rest of this chapter.

We deĄne the vector operator ∇ by

∇ :=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, (II.1)

that can be multiplied by a scalar function: given T : R3 7→ R, we have

∇T :=

(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
, (II.2)

also known as grad(T ). The operator ∇ can also be used with the usual scalar product
and cross product: given h : R3 7→ R3, we have

∇ · h :=
∂hx

∂x
+

∂hy

∂y
+

∂hz

∂z
, (II.3)

∇ × h :=

(
∂hz

∂y
− ∂hy

∂z
,
∂hx

∂z
− ∂hz

∂x
,
∂hy

∂x
− ∂hx

∂y

)
, (II.4)

also known as the divergence and the curl of the function h. These two operators can be
combined, we have in particular:

∇ · (∇ × h) = 0, (II.5)

∇ × (∇ × T) = 0, (II.6)

A × (B × C) = A (B · C) − (A · B) C, (II.7)

∇ × (∇ × h) = ∇(∇ · h) − ∆h. (II.8)

for A, B and C vectors of R3, where ∆h is the Laplacian of the function h.

II.2.2 Fourier transform

In this section the well known deĄnition of Fourier transform is recalled, as well as
some of its properties that will be used later in this chapter.

Given d a positive integer and f an integrable function on Rd with value in C, i.e. if
f ∈ L1

(
Rd
)
, the Fourier transform of f , denoted f̂ , is:

f̂ (ξ) =
1

(2π)d/2

∫

Rd

e−i ⟨ξ,x⟩f(x)dx, (II.9)

where ξ ∈ Rd and ⟨·, ·⟩ denotes the usual scalar product of Rd.
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The Fourier transform has the following properties:

• It is C-linear: if f , g are integrable and a ∈ C, then one has:

âf + g = af̂ + ĝ. (II.10)

• If x, y ∈ Rd and f ∈ L1, and one denotes:

τyf(x) = f(x − y) and eyf(x) = ei ⟨y,x⟩f(x), (II.11)

then,
τ̂yf = e−yf̂ and êyf = τyf̂ . (II.12)

In other words, the Fourier transform of a translation, τy, of a function, f , is

equivalent to a phase shift, ey, applied on f̂ , and inversely.

• If M is a matrix of GLd (R) and if g(x) = f(M−1x), for x ∈ Rd, where f ∈ L1
(
Rd
)
,

then
ĝ(ξ) = ♣detM ♣ f̂(M tξ), (II.13)

where M t is the transposed matrix of M . This property will be particularly useful
to compute the Fourier transform of the indicator function of an ellipse in R2 (see
appendix C).

• If f ∈ L1 a function such as x 7→ ♣x♣f(x) is integrable, then f̂ is in C1
(
Rd,C

)
and,

for all j ∈ ¶1, 2, ... d♢, one has:

∂f̂

∂ξj

(ξ) = −
∫

Rd

i xje
−i ⟨ξ,x⟩f(x)

dx

(2π)d/2
, (II.14)

that is the Fourier transform of x 7→ i xjf(x).

• If f ∈ L1 ∩ C1
(
Rd,C

)
, such as ∂f/∂xj is integrable for all j ∈ ¶1, 2, ..., d♢, then one

has:
∂̂f

∂xj

(ξ) = −i ξj f̂ (ξ) . (II.15)

II.3 Maxwell equations

In this section, MaxwellŠs equations, both in time-domain and in frequency-domain,
are presented. We used [57] as a basis for the presentation.

II.3.1 Homogeneous material

MaxwellŠs equations in time-domain, for linear, isotropic and homogenous materials,
that describe the spatio-temporal evolution of electromagnetic waves on a domain Ω ⊂ R3,
over a given time interval [0, T ], T ≥ 0, are deĄned, for all (x, t) ∈ Ω × [0, T ] by:

∇ × E = −∂B

∂t
,
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∇ × H =
∂D

∂t
+ J,

∇ · D = ρ,

∇ · B = 0. (II.16)

with E and B the electric Ąeld and the magnetic induction, which are vectors of R3.
We also introduce the electric displacement D, the magnetic Ąeld H, the density of
free electric charges ρ and the free electric current density J. All these quantities are
dependent on position, x = (x, y, z), and time t.

To close the system II.16, relations between (E,B) and (D,H) are required. These
constitutive relations are:

D = ε ∗(t,x) E and B = µ ∗(t,x) H, (II.17)

where, in the general case, ε and µ are tensors (3×3 matrices), depending on x, t, E and
B. The symbol ∗(t,x) denotes the space and time convolution. Assumptions on materials
implies particular properties on the two tensors ε and µ:

• If a material is linear, then ε and µ are independent of E and B;

• If a material is isotropic, then ε and µ are diagonal matrices;

• If a material is homogenous, then ε and µ are constant.

It is customary to introduce ε0 and µ0 the vacuum permittivity and permeability, as well
as εr and µr, the relative permittivity and permeability of the considered material. The
constitutive relations are then written as:

D = ε0εrE and B = µ0µrH. (II.18)

MaxwellŠs equations for linear, homogenous, isotropic, non-dispersive materials are
then given by:

∇ × E = −µ0µr

∂H

∂t
,

∇ × H = ε0εr

∂E

∂t
+ J. (II.19)

For numerical solving stability, the system II.19 is adimenssionated. The adimenssion-

ated variables of (E,H,J) are noted


Ẽ, H̃, J̃
)

, and are computed as:

H̃ = Z0H, (II.20)

Ẽ = E, (II.21)

t̃ = c0t, (II.22)

J̃ = Z0J, (II.23)
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(II.24)

with Z0 =

√
µ0

ε0

the vacuum impedance and c0 =
1

√
ε0µ0

the speed of light in vaccum.

Hence, dropping the tilde for convenience, the normalized MaxwellŠs sytem is:

∇ × E = −µr

∂H

∂t
,

∇ × H = εr

∂E

∂t
+ J. (II.25)

II.3.2 Dispersive materials

The use of Fourier transform allows to replace the time variable t into the frequency one,
ω; moving from the time-domain to the frequency-domain. Mathematically, it transforms
the time convolution, for instance D = ε ∗(t) E, into the product, D̂ (ω) = ε̂ (ω) Ê (ω).

In the case of a non-dispersive material, the constituve relations, given by Eq. II.17,
become:

D = εE and B = µH, (II.26)

A material is said to be non-dispersive when its permittivity is constant in the frequency-
domain. Conversely, a material is dispersive when its permittivity is dependent on ω in
the frequency-domain.

For time-domain solvers (see section II.4.1 and II.4.2), an analytical formulation of the
permittivity as a function of frequency is required. Various models for the permittivity
are provided in section I.2.3.2 . The choice of a permittivity model is required for solving
the time-domain Maxwell equations. This choice has a great inĆuence on the solver
performance, and for proprietary solver, such as Lumerical1, it is usually kept as a business
secret.

The permittivity model of the DIOGENeS software, is presented, as well as the mod-
iĄed Maxwell equations derived. In DIOGENeS, the model chosen is the Generalized
Dispersive Model (GDM); it is a Padé approximation, and is given as a sum of zeroth
order, Ąrst order and second order poles:

εr,g(ω) = ε∞ − σ

i ω
−
∑

l∈L1

al

i ω − bl

−
∑

l∈L2

cl − i ωdl

ω2 − el + i ωfl

, (II.27)

where ε∞, σ, (al)l∈L1 , (bl)l∈L1 , (cl)l∈L2 , (dl)l∈L2 , (el)l∈L2 , (fl)l∈L2 are in R, and L1, L2 are
non-overlapping sets of indices. Most of the standard dispersion models are included in
this formulation (Drude, Drude-Lorentz, SellmeirŠs law ...).

1https://www.ansys.com/products/photonics
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The GMD-MaxwellŠs equations are then given by (see [58] for details):

∂H

∂t
= −∇E,

∂E

∂t
=

1

ε∞


∇ × H − J s − J O −

∑

l∈L1∪L2

J l


,

J 0 =


σ +

∑

l∈L2

dl


E,

J l = alE − blP ∀l ∈ L1,

∂Pl

∂t
= J l ∀l ∈ L1, (II.28)

∂J l

∂t
= (cl − dlfl)E − flJ l − elPl, ∀l ∈ L2,

∂Pl

∂t
= dlE + J l ∀l ∈ L2.

II.3.3 Frequency-domain formulation

In this section, MaxwellŠs equations in frequency-domain, for linear, isotropic and dis-
persive materials, are presented. Assuming the EM Ąeld has an harmonic time depen-
dence of the form exp¶−i ωt♢, from which an arbitrary solution by Fourier superposition
can be built, the equations for the amplitudes E (ω,x), etc, are:

∇ · ε0εE = 0, (II.29)

∇ · H = 0, (II.30)

∇ × H = −iωε0εE, (II.31)

∇ × E = iωµ0H, (II.32)

The zero-divergence equations (Eq. II.29 and Eq. II.30) are not independent, but are
obtained by taking the divergences in Eq. II.31 and Eq. II.32. These equations are called
the frequency-domain MaxwellŠs equations, and they can be solved with the Rigorous
Coupling Wave Analysis (RCWA) numerical method [59] or the Finite Element Method
(FEM) [60].

II.3.4 Polarization

Polarization is a property of transverse waves which speciĄes the geometrical orientation
of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular
to the direction of propagation. In our work, we will mainly focus on two polarization,
named Transverse Electric (TE) and Transverse Magnetic (TM). Basically the electric
Ąelds has only an Ex component in TM, and an Ey component in TE, similarly for the
magnetic Ąeld. To be absolutely clear, Fig. II.1 illustrates the TM polarization and Fig
II.2 the TE polarization.
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Figure II.1: A schematic view of TM electric and magnetic Ąelds, with propagation axis
along the z dimension.
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Figure II.2: A schematic view of TE electric and magnetic Ąelds, with propagation axis
along the z dimension.
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II.4 Numerical methods

Three numerical methods for solving MaxwellŠs equations are presented in this section.
First, the well-known Finite Difference Time-Domain method; then, the Discontinuous
Galerkin Time Domain (DGTD) method; Ąnally, the frequency-domain numerical method
RCWA is detailed.

Since the reader might be unfamiliar with the DGTD method, and since a RCWA
solver was implemented in this thesis, both methods are extensively presented, while the
more common FDTD method is only brieĆy presented.

II.4.1 FDTD method

The Finite Difference Time-Domain (FDTD) method is undoubtedly one of the most
popular method for time-domain computational nanophotonics. For instance, the refer-
ence optical solver, providing a solution of the Time-Domain MaxwellŠs Equations (see
Eq. II.16), is Lumerical 2, which is based on the FDTD method. In STMicroelectronics,
the Lumerical software is used on a daily basis by optical engineers to study and improve
the desing of CMOS sensors.

The method is based on two Taylor expansions for both spatial and temporal deriva-
tives. The popular version presented by K.S. Yee in 1966 [11] relies on a particular
discretization of the computational space. The spatial element used is now referred to
as Yee cells (see Fig. II.3). In the original Yee scheme, the spatial derivatives are dis-
cretized using second-order central differences while time integration is achieved with a
second-order leap-frog scheme. As of today, FDTD represents an easy to use and efficient
method to solve electromagnetic problems, combining simple implementation and high
computational efficiency.

The FDTD method has a well-known limitation: a smooth discretization of curved
geometries is impossible due to the Ąxed cartesian grid imposed by the Yee algorithm.
This approximation leads to the staircasing effect (see Fig. II.4), which is an important
source of inaccuracy [61]. To overcome this pitfall, one can either use a Ąner reĄnement
of the grid, which leads to a rise of the computational cost, or exploit one of the numer-
ous possible modiĄcations of the FD method that have been proposed for tackling the
staircasing effect [62].

The convergence of a FDTD simulation relies on the reĄnement of the cartesian mesh
used. This mesh can be either uniform, or locally reĄned, One must remark, as shown
in Fig. II.5, that a cartesian mesh cannot be strictly locally reĄned. A reĄnement in a
smaller cube always propagates in the six directions of the reĄned cube.

A common way to build a well-reĄned cartesian mesh for a given structure is known,
using the Lumerical terminology as the meshfactor. Basically, it represents a number
of mesh dots per source wavelength, locally adapted to the permittivity of all materials.
For instance, in a material of dielectric constant εr, supposing that the source wavelength
is λ = 900 nm and the meshfactor is set at 10, then the mesh step is 900√

εr10
. The mesh

step for air would be 90 nm, since the air dielectric constant is approximately 1.
In the following, all the FDTD simulations are characterized by a meshfactor value,

indicating the reĄnement of its corresponding mesh. A higher meshfactor value implies

2https://www.ansys.com/products/photonics
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Figure II.3: A schematic view of a Yee cell. With a cartesian mesh, the Yee cell is a
cuboid. The electric Ąelds values are taken on the edges, while the magnetic Ąelds is
positioned on the faces of the cuboid.

Figure II.4: Illustration of the staircasing effect with the approximation of a 3D sphere
with a cartesian mesh. Figure taken from [63].

a more accurate simulation.
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Figure II.5: Uniform mesh (left), and locally reĄned mesh (right) of a cuboid. The local
reĄnement is performed on a smaller cuboid in the center of the original cuboid. The
reĄnement is propagated up to the boundaries.
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II.4.2 DGTD method

In this section, we present the DGTD method formulated on a conforming tetrahedral
mesh and assuming an uniform interpolation order across all the elements of the mesh,
which is essentially the outcome of the Ph.D. thesis of J. Viquerat [58]. This section
is highly inspired from the Thesis of A. Gobé [64]. The DGTD method is also refered
as a mixed between the Finite Volume method, using the concept of Ćuxes, and the
FEM, where the quantities of interest, namely the electric and the magnetic Ąelds, are
approximed on tetrahedron as polynomials. The degree of these polynomials is refered
as the interpolation order.

In the following, the start from the adimenssionated MaxwellŠs equations given by Eq.
II.25.

II.4.2.1 Weak formulation

Let Ω ∈ R3 be a bounded convex domain, and n the unitary outward normal to its
boundary ∂Ω. Let Ωh be a discretization of Ω relying on a quasi-uniform triangulation Th,
(∃δ,∀Ti ∈ Th,∀k ∈ Vi, hk ≤ δhi, where hi is the size of the element Ti). This triangulation
veriĄes Th =

⋃N
i=1 Ti, where N ∈ N∗ is the number of mesh elements and (Ti)i∈[[1,N ]]

is the set of elements of Th. We denote by aik := Ti

⋂
Tk the internal faces between the

adjacent cells Ti and Tk.
One can now write the weak formulation of the problem of Eq. II.19, locally, in a cell

Ti. Taking the L2 scalar product of each term with a vector test function ψ, we obtain
the following variational problem:

Find (E,H) ∈ H0(curl,Ωh) ×H(curl,Ωh) such that, ∀ψ ∈ H(curl,Ωh),

∫

Ti

µr

∂H

∂t
·ψ +

∫

Ti

∇ × E ·ψ = 0,

∫

Ti

εr

∂E

∂t
·ψ −

∫

Ti

∇ × H ·ψ = −
∫

Ti

J ·ψ.

Then, using classical vectorial calculus and Green formulas yields, for all i in [[1, N ]]:

∫

Ti

µr

∂H

∂t
·ψ +

∫

Ti

E · ∇ ×ψ =

∫

∂Ti

(ψ × E) · ni,

∫

Ti

εr

∂E

∂t
·ψ −

∫

Ti

H · ∇ ×ψ = −
∫

Ti

J ·ψ −
∫

∂Ti

(ψ × H) · ni.

By using the properties of the mixed product:

(ψ × E) · ni = (E × ni) ·ψ, (II.33)

one gets the local weak formulation of the Maxwell equations for the DGTD method:
∫

Ti

µr

∂H

∂t
·ψ +

∫

Ti

E · ∇ ×ψ =

∫

∂Ti

(E × ni) ·ψ,
∫

Ti

εr

∂E

∂t
·ψ −

∫

Ti

H · ∇ ×ψ = −
∫

Ti

J ·ψ −
∫

∂Ti

(H × ni) ·ψ. (II.34)
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II.4.2.2 Discretization in space

We start by deĄning the approximation space Vh such as:

Vh =
{
v ∈

(
L2 (Ω)

)3
, v♣Ti

∈ (Pp (Ti))
3 , ∀Ti ∈ Th

}
, (II.35)

where, for p ∈ N, Pp (Ti) is the space of all polynomial functions of degree p on the cell
Ti. We denote by (Eh, Hh,Jh), the semi-discrete Ąelds seeked in the space Vh, and their
restriction on Ti as

(
Eh♣Ti

, Hh♣Ti
,Jh♣Ti

)
. We also deĄne the set of scalar basis functions

(ϕik)1≤k≤di
for each Ti, with di the number of degree of freedom (d.o.f.) per dimension.

Additionally, we associate the three vectors φv
ik to each scalar basis function, such that:

φ1
ik =



ϕik

0
0


 , φ2

ik =




0
ϕik

0


 , φ3

ik =




0
0
ϕik


 . (II.36)

For a 3D system, we notice that Ei and Hi are vectors Ąelds of R3:

Ei =



Ex

i

Ey
i

Ez
i


 , Hi =



Hx

i

Hy
i

Hz
i


 , (II.37)

which can both be locally expanded on the chosen set of basis functions:

Ev
i =

di∑

j=1

Ev
ijϕij, Hv

i =

di∑

j=1

Ev
ijϕij, v ∈ ¶x, y, z♢ . (II.38)

For practical purpose, we deĄne the six vectors of di components:

Ēv
i =



Ev

i1
...

Ev
idi


 , H̄v

i =



Hv

i1
...

Hv
idi


 , v ∈ ¶x, y, z♢ , (II.39)

as well as the following 3di components vector:

Ēv
i =




(
Ex

ij

)
1≤j≤di(

Ey
ij

)
1≤j≤di(

Ez
ij

)
1≤j≤di


 , H̄v

i =




(
Hx

ij

)
1≤j≤di(

Hy
ij

)
1≤j≤di(

Hz
ij

)
1≤j≤di


 . (II.40)

Those vectors will be used to write the matrix-vector semi-discrete variational formu-
lation of our system, analogously to system II.34. However, before that, the boundary
terms in this formulation require some particular treatment before going further with the
spatial discretization process.

II.4.2.3 Numerical fluxes

Given that the test functions and the unknowns can now be discontinuous at the
interfaces ail (between the cells Ti and Tl), it is important to notice that the surface
integrals, deĄne as:
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∫

ail

(Eh × nil) ·ψ, and

∫

ail

(H × nil) ·ψ, (II.41)

are not clearly deĄned. Indeed, the Ąelds Eh and Hh can relate to either the Ąeld value
in Ti (Eh,i and Hh,i) or Tl (Eh,l and Hh,l). We need to deĄne the numerical Ćuxes (or
traces), which will allow us to recover a proper deĄnition of the surface integrals. This
will permit reconnecting the Ąeld values between neighboring cells.

In the current work, we present two very common Ćux choices. The Ąrst one is the
centered Ćux, which is deĄned as:

Ev =
Ev,i + Ev,l

2
, and Hv =

Hv,i + Hv,l

2
. (II.42)

This choice of Ćux leads to a non-dissipative DGTD scheme if combined with a Leap-
Frog time integration and leads to L2 spatial convergence of order p (in hp) [65]. The
second numerical Ćux considered is the upwind Ćux, which is deĄned as:

Ev =
1

Yi + Yl

(¶YE♢il + αn × [[H]]il) , and Hv =
1

Zi + Zl

(¶ZH♢il + αn × [[E]]il)

(II.43)
where ¶A♢il = Ai +Al is twice the mean value of A at the interface, [[A]]il = Al −Ai is

the jump of A at the interface, and α ∈ [0, 1] is a tunable parameter that allows to vary
between the centered Ćux of Eq. II.42 (when α = 0), to a fully upwind Ćux (α = 1). The
jump term of the upwind Ćux introduces dissipation in the DG scheme. This dissipation
can help dampening non physical modes when instabilities occur [66]. It also leads to a
better L2 spatial convergence (as order p+ 1 (hp+1) against order p (hp) for the centered
Ćux).

II.4.2.4 DG matrices

In this part, we present the Finite Elemente (FE) matrices which will allow us to write
the matrix-vector form of the system II.34. We choose the test functions ψ such that
they are the 3di vectors φv

ik, which constitutes the Galerkin choice:

∫

ti

µr

∂Hi

∂t
· φv

ik +

∫

Ti

Ei · ∇ × φv
ik =

∑

l∈Vi

∫

ail

(E∗ × nil) · φv
ik,

∫

ti

µr

∂Ei

∂t
· φv

ik −
∫

Ti

Hi · ∇ × φv
ik = −

∑

l∈Vi

∫

ail

(H∗ × nil) · φv
ik −

∫

Ti

Ji · φv
ik. (II.44)

(II.45)

Mass Matrix We start by considering the time-derivative term of the E evolutionary
equation of system II.44. The x component is, ∀kin[[1, di]]:

∫

Ti

εr

∂Ei

∂t
· φx

ik =

∫

Ti

εr

∂Ex
i

∂t
· ϕx

ik
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=

di∑

j=1

∂

∂t
Ex

ij

∫

Ti

εrϕijϕik

=


Mεr

i

∂Ēx
i

∂t



k

(II.46)

where Mεr

i is the mass matrix, of dimension di × di:

Mεr

jk =

∫

Ti

εrϕijϕik, (II.47)

with (j, k) ∈ [[1, di]]
2.

Stiffness matrices We focus now on the curl integral of the E evolutionary equation
of system II.44. The x component is, ∀kin[[1, di]]:

∫

Ti

Hi · ∇ × φx
ik =

∫

Ti


Hy

i

∂ϕik

∂z
−Hz

i

∂ϕik

∂y



=

∫

Ti

di∑

j=1


Hy

ijϕij

∂ϕik

∂z
−Hz

ij

∂ϕik

∂y



=

di∑

j=1

Hy
ij

∫

Ti

ϕij

∂ϕik

∂z
−

di∑

j=1

Hz
ij

∫

Ti

ϕij

∂ϕik

∂y

=
(
Kz

i H̄y
i − K

y
i H̄z

i

)
k

= −
(
Ki × H̄i

)x

k
.

(II.48)

with the three stiffness matrices deĄned as:

(Kv
i )jk =

∫

Ti

ϕij

ϕik

∂v
for v ∈ ¶x, y, z♢, (II.49)

with (j, k) ∈ [[1, di]]
2. We can also deĄne the global 3di × di stiffness matrix that will

be used in the matrix-vector form of the Ąnal system:

K̄i =




Kx
i

K
y
i

Kz
i


 . (II.50)

Flux matrices Finally, we consider the right handside of system II.44 that contains
the Ćux contribution. Here we are using the centered Ćux Eq. II.42, but the upwind case
Eq. II.43, as well as the generalization to other Ćuxes is straightforward. We also note
that in the conforming case, the Ąeld expansion is deĄned on ail over the basis functions
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of cells Ti or Tl is equivalent. We proceed as previously, focusing on the x component of
the Ćux of the E evolutionary equation of system II.44 :

∫

ail

( Hx × nil) · φx
ik =

∫

ail

(Hy
∗n

z
il −Hz

∗n
y
il)ϕik

=

∫

ail


Hy

i +Hy
l

2
nz

il − Hz
i +Hz

l

2
ny

il


ϕik

=
1

2

di∑

j

(¶Hy♢iln
z
il − ¶Hz♢iln

y
il)

∫

ail

ϕijϕik

=
(
Sil

(
H̄∗ × nil

))x

k

where the Ćux matrices are:

(Sil)jk =

∫

ail

ϕijϕik, (II.51)

with (j, k) ∈ [[1, di]]
2.

Semi-discrete formulation Thanks to the deĄnition of the elementary matrices, we
can deĄne both global mass and Ćux matrices, which will allow to write the semi-discrete
formulation in a compact form:

M̄u
i =




Mu
i 0di×di

0di×di

0di×di
Mu

i 0di×di

0di×di
0di×di

Mu
i


 , S̄u

i =




Su
i 0di×di

0di×di

0di×di
Su

i 0di×di

0di×di
0di×di

Su
i


 . (II.52)

which leads to the following matrix vector expression of the semi-discrete DG scheme for
MaxwellŠs equations:

M̄
µr

i

∂H̄

∂t
= −K̄i × Ēi +

∑

l∈Vi

S̄il

(
Ē∗ × nil

)
, (II.53)

M̄εr

i

∂Ē

∂t
= K̄i × H̄i −

∑

l∈Vi

S̄il

(
H̄∗ × nil

)
− M̄iJ̄i. (II.54)

II.4.2.5 Elements mapping

One of the strength ot the DG method is that the FE matrices described in section
II.4.2.4 are not stored for each element of Th, but are calculated only once for all on a
reference element noted T̂ and then mapped on the considered physical tetrahedron Ti.
Let T̂ be deĄned as follows in the ξ = (ξ, η, ζ) coordinate system:

T̂ =
{

(ξ, η, ζ) ∈ R3
+ ♣ ξ + η + ζ ≤ 1

}
. (II.55)

Then, we deĄne the physical tetrahedron in the x = x, y, z coordinate system as the
image of T̂ by a mapping ψTi

(see Fig. II.6) deĄned as:

ψTi
: T̂ 7→ Ti, such that, ∀ξ ∈ T̂ , x = ψTi

(ξ). (II.56)
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The vertices of T̂ are noted (A1, A2, A3, A4), and the vertices of Ti are noted (v1, v2, v3, v4).
In this case, ψTi

is a linear combination of ξ, η and ζ, deĄned as:

ψTi
(ξ) = v1 + (v2 − v1)ξ + (v3 − v1)η + (v4 − v1)ζ. (II.57)

Let (ϕîj)j=1...di
be the basis functions on Ti, and (ϕ̂j)j=1...di

deĄned by ϕ̂j = ϕij ◦ ψTi
on

T̂ . Then, we can write the mass matrix on the element Ti as:

(Mi)jk =

∫

Ti

ϕij(x)ϕik(x)dx

(Mi)jk =

∫

T̂i

ϕ̂j(ξ)ϕ̂k(ξ)
∣∣∣JψTi

∣∣∣ dξ

where JψTi
is the jacobian matrix of the mapping ξ, deĄned as:


JψTi

)
jl

=


∂xj

∂ξl



jl

=




(v2 − v1)x (v3 − v1)x (v4 − v1)x

(v2 − v1)y (v3 − v1)y (v4 − v1)y

(v2 − v1)z (v3 − v1)z (v4 − v1)z


 . (II.58)

In this case, the determinant ♣JψTi
♣ is constant and only depends on (v1, v2, v3, v4). Hence,

the mass matrix for each physical tetrahedron of Th is a simple multiplication of the mass
matrix calculated on the reference tetrahedron:

(Mi)jk =
∣∣Jψti

∣∣

M̂
)

jk
. (II.59)

A similar situation occurs for stiffness and Ćux matrices by using a change of variables
(see [67] for additional details).

(Kv
i )jk =

3∑

m=1

[∣∣Jψti

∣∣J−1
ψti

]
vm


K̂m
)

jk
.

(Sv
i )jk =

∣∣Jψti

∣∣
∣∣∣J−1
ψti

n̂
∣∣∣

Ŝ
)

jk
.

II.4.2.6 Polynomial expansion basis

In this part, we discuss the choice of the basis function (ϕ̂j)j=1...di
. Over all the possible

polynomial bases available, Lagrange polynomials are quite a common choice. They can
be deĄned by a set of interpolation nodes distributed across the cell. The Lagrange
interpolants Li are deĄned by the following property:

Li(xj) = δij, ∀(i, j) ∈ [[1, di]]
2. (II.60)

There must be the same number of nodes xj and polynomials in order to deĄne a complete
basis. In a tetrahedron the number of Lagrande nodes needed to have a polynomial order
p is equal to:

n(p) =
(p+ 1)(p+ 2)(p+ 3)

6
, (II.61)
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Figure II.6: Linear mapping from the reference element T̂ to the physical element Ti. In
this Ągure, one has ε = (ε, ζ, η).

and for each of its faces, it is:

s(p) =
(p+ 1)(p+ 2)

2
. (II.62)

Lagrange polynomials with equispaced nodes are chosen as it allows a simple integration
of the elementary matrices on the reference element since the node positions are known
exactly.

II.4.2.7 Time discretization

Previously, the semi-discrete scheme, Eq. II.54, was obtained by discretizing the spatial
derivatives of MaxwellŠs equations. Similarly, the time derivatives need to be considered
for the time discretization. Then, we consider the reduced problem of the 1D MaxwellŠs
equations:

µr

∂Hy

∂t
=
∂Ez

∂x
,

εr

∂Ez

∂t
=
∂Hy

∂x
+ j(t).

By dropping the spatial subscripts of the unknowns, the semi-discrete formulation asso-
ciated to this system becomes:

M
µr

i

∂Hi

∂t
= KiEi + [E∗]

xi
xi−1

,

Mεr

i

∂Ei

∂t
= KiHi + [H∗]

xi
xi−1

− MiJi, (II.63)

(II.64)

with,

E∗ =
1

Yi + Yl

(¶Y E♢il + α[[H]]il), H∗ =
1

Zi + Zl

(¶ZH♢il + α[[E]]il). (II.65)

80



In the previous equalities, subsection l designates i− 1 or i+ 1. When trying to go from
system II.63 to ??, a non-symmetric A matrix is obtained in the general case:

A =

[
Aα,H AH

AE Aα,E

]
. (II.66)

The off-diagonal blocks represent both the centered part of the Ćow and the stiffness part,
while the diagonal blocks represent the upwind contribution. Therefore, A is strictly anti-
diagonal in the case of centered Ćows. Furthermore, the following properties are obtained
in the case of a homogeneous medium (Yi = Yl = Y ):

• Aα,H and Aα,E are equal, e.g. Aα,H = Aα,E := Aα;

• AH and AE are multiples of each other, e.g. AH = εr

µr
AE.

To begin with, we consider the simple case of vacuum (εr = µr = 1). In this case, one has
a symmetric A matrix and thus a diagonalizable system. Thus, one can just retain the
corresponding formulation in the diagonalized basis, for the study of the time-stepping
schemes. This has the effect of reducing to a system of ODEs of the form:

∂ϕ

∂t
(t) = λϕ(t) + b(t) := f(t, ϕ(t)), (II.67)

for each λ eigenvalue of A. A number of time-integration techniques from the ODE
community are appropriate to solve Eq. II.67.

We can classify time-stepping methods into two main categories: the explicit time
integration techniques, and the implicit methods. For the Ąrst category, the time state
ϕ(t + ∆t) is computed explicitly from ϕ(t). For the second category, the time-updated
solution is obtained by solving an implicit expression of the form g(ϕ(t), ϕ(t + ∆t)) =
0. It leads to the resolution of a linear system of equations at each time-step. As
expected, the implicit method is more expensive than the explicit technique. But, implicit
methods are generally unconditionally stable. This means that any choice of ∆t leads to
a stable algorithm. For explicit methods, a numerical criterion on the time-step called the
CourantŰFriedrichsŰLewy (CFL) condition, must be respected. Otherwise, the resulting
algorithm will be unstable and blow up. In conclusion, explicit time-stepping generally
requires much more time-steps but each time-step is signiĄcantly less numerically costly.
Hereafter, solutions are investigated on intervals of the form [0, T ] with T > 0, discretized
in time-steps of length ∆t. In order to refer to the discrete approximation of ϕ(tn), with
tn = n∆t, we used the notation ϕn. A family of DG methods, called space-time DG
methods (see [68, 69]) is designed to deal with time derivatives similarly to space. The
main disadvantage of these methods is that they usually lead to an implicit scheme.

In the rest of this section, we present the second and fourth-order Runge-Kutta (RK)
schemes. RK time schemes are a class of multi-stage algorithms based on the multiple
evaluations of the right side of Eq. II.67 to evolve the system in time. Suppose that Eq.
II.67 is integrated between t and t+ ∆t:

ϕ(t+ ∆t) = ϕ(t)

∫ t+∆t

t

f(u, ϕ(u))du. (II.68)
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We can approximate Eq. II.68 using a quadrature formula with s terms:

ϕ(t+ ∆t) ⋍ ϕ(t) + ∆t
s∑

j=1

βjf (t+ δj∆t, ϕ(t+ δj∆t)) , (II.69)

where (βj)j∈[[1,s]] and (δj)j∈[[1,s]] are constants depending of the choice of the quadrature
formula. In order to evaluate the ϕ(t + δj∆t) values, RK methods use a so-called pre-
diction/correction technique. It builds on the previous guesses to calculate the next one.
The nth time-step with an s-stage RK algorithm is written as follow:

ϕ1 = f(tn, ϕ
n),

ϕk = f(tn + δk∆t, ϕn + ∆t
s∑

j=1

αj,kϕj) for k ∈ [[2, s]], (II.70)

ϕn+1 = ϕn + ∆t
s∑

j=1

βjϕj,

where we suppose that ϕ0 = ϕn. The system II.70 is implicit in the general case. The
summation in each intermediate stage extends to the maximum number of stages. Explicit
RK schemes can be obtained if one has αj,k = 0, ∀k ≥ j. A second order RK scheme is
given by:

ϕ1 = f(tn, ϕ
n),

ϕ2 = f(tn∆t, ϕn + ∆tϕ1),

ϕn+1 = ϕn +
∆t

2
(ϕ1 + ϕ2).

Similarly, the most classical version of an explicit fourth-order RK algorithm is given by:

ϕ1 = f(tn, ϕ
n),

ϕ2 = f(tn
∆t

2
, ϕn +

∆t

2
ϕ1),

ϕ3 = f(tn
∆t

2
, ϕn +

∆t

2
ϕ2),

ϕ4 = f(tn∆t, ϕn + ∆tϕ3),

ϕn+1 = ϕn +
∆t

6
(ϕ1 + 2ϕ2 + 2ϕ3 + ϕ4).

The main drawback of explicit methods is the CFL condition. This time-step restriction
is computed from an energy-based stability study. In DIOGENeS, theoretical results from
[65] are used. Consequently, for a space discretization with polynomial order p, the time-
step is chosen as follows:

∆tp = cp min
Ti∈Th

VTi

ATi

, (II.71)

where VTi
is the volume, ATi

is the area of the boundary the cell Ti, and cp is an order-
dependent constant. The maximal acceptable value for cp, can be determined on a basic
test case.
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II.4.2.8 Boundary condition

Each computational setup needs to be closed by boundary conditions, which depends on
the physics of the problem. In principle, the physical domain might be inĄnite; in practice,
the computed domain must be Ąnite. Moreover, the computed domain is a compact of R3,
and usually a cube, or a rectangular parallelepiped is used. Then the boundary conditions
are equations applied to the unknowns on the boundary of the computed domain. There
are four common boundary conditions, the perfect electric conductor (PEC), the perfect
magnetic conductor (PMC), the absorbing boundary condition (ABC) and the periodic
boundary condition (PBC).

In DGTD methods, the boundary conditions are imposed by adding a layer of cells
called Šghost cellsŠ. This layer is outside the computational domain (see Fig. II.7).
Then, speciĄc values of the Ąelds are set in these ghost cells. Thus, the behavior of
the solution on the boundary is controlled, without any special treatment, via numerical
Ćuxes. Hereafter, the Ąeld inside the ghost cells are noted Egc and Hgc, while the Ąelds
in the boundary cells are denoted Ebc and Hbc.

Figure II.7: Ghost cells layer on the computational domain boundary. Boundary condi-
tions are naturally handled via numerical Ćuxes and ghost cells.

Perfect electric conductor condition PEC is an idealized material which exhibits
inĄnite electrical conductivity. A zero tangential electric Ąeld, and a zero normal magnetic
Ąeld, are enforced by setting the Ąeld values in the ghost cells on a PEC boundary as:

Egc = −Ebc and Hgc = Hbc. (II.72)

Perfect magnetic conductor condition PMC represents the reciprocal of the PEC.
Most of the time, it is used to impose symmetry planes (see below). A zero tangential
magnetic Ąeld, and a zero normal electric Ąeld, are enforced by setting the Ąeld values in
the ghost cells on a PMC boundary as:

Egc = Ebc and Hgc = −Hbc. (II.73)

Absorbing boundary condition ABC allows to partially absorb Ąelds radiating out
from the physical domain. There exist several forms of these conditions. The Ąrst-order
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Silver-Müller boundary conditions is often used (see [67]):

n × (E + Z(n × H)) = 0,

n × (H − Y (n × E)) = 0,

with n the exterior normal derivative. Imposing the Silver-Müller boundary condition
is similar to setting the incoming Ćux to zero on the boundary. For this reason, its
expression depends on the upwind factor α:

Ygc = Ybc,

Egc = 0 +
1 − α

Ybc

n × Hbc,

Hgc = 0 − 1 − α

Zbc

n × Ebc.

These conditions perfectly absorb normally-incident plane waves, when imposed on the
boundary. However, when waves are incident at increasing angles, its performance de-
creases.

Periodic boundary condition PBC can be used in order to simulate inĄnite mono or
bi-directional arrays, considering one elementary pattern. Cells from a periodic boundary
face are matched with cells on the opposite boundary face of the domain. This way, every
cell has a neighbor which is well-deĄned, and standard Ćuxes can be applied. A periodic
mesh is a prerequisite to use PBC. In other words, opposite faces in the periodic direction
must match.

When a simulation domain is symmetrical in two directions, only a quarter of the whole
simulation domain can be simulated in order to retrieve the electric and the magnetic
Ąeld on the whole volume. This is done by applying PEC and PMC to the symmetri-
cal directions. Since these conditions actually depend on the source polarization, letŠs
describe them with an example.

Consider a simulation volume exhibiting a symmetry in both x and y directions, with
periodic condition in x and y, and absorbing condition in both zmin and zmax. One could
simulate the whole domain, without taking advantage of the symmetries, by applying the
following boundary conditions, for all source polarizations:

• PBC on xmin, xmax, ymin and ymax boundaries;

• ABC on zmin and zmax boundaries.

Then, taking advantage of the domain symmetries in both x and y axis, so simulating
only a quarter of the domain but retrieving the solution on the whole volume, can be
performed by applying the following boundary conditions, for TE source polarization:

• PMC on xmin and xmax boundaries;

• PEC on ymin and ymax boundaries;
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• ABC on zmin and zmax boundaries;

and for TM source polarization:

• PEC on xmin and xmax boundaries;

• PMC on ymin and ymax boundaries;

• ABC on zmin and zmax boundaries.

The reduction of the simulation volume by a factor of 4 allows, a priori, to reduce the
simulation time by a factor of 4.

Finally, one must remark that the PEC are, within Lumerical software, denoted as,
"antisymmetric condition", while the PMC are denoted as "symmetric condition". And
the ABC conditions are denoted as PML, for Perfect Match Layer.

II.4.2.9 Perfectly matched layers

A novel numerical concept was developed in 1994 by Bérenger in order to overcome
the limitations of ABC. The objective is to absorb the waves radiated from a system. To
do so, Bérenger deĄned an artiĄcial volume surrounding the physical domain in which
a damping should occur progressively. Those artiĄcial volumes are known as perfectly
matched layers (PML). Outgoing waves propagate in the physical domain toward the
PML, and cross the interface. No reĆection occurs, and the wave is progressively damped
by the artiĄcial medium while it continues to propagate in the PML. At one point, the
wave will encounter the boundary of the computational domain, which is usually PEC or
ABC. In both cases, the remainder of the wave will be totally (PEC) or partially (ABC)
reĆected toward the domain. In practice, the wave will travel a second time over the
PML length, causing more damping. In general, when it re-enters again in the physical
domain, the amplitude of the wave is attenuated by several orders of magnitude. For
this reason, the error induced by PMLs is supposed to be small enough not to lose the
beneĄts of high-order methods. ABCs can be seen as a "geometric" condition (i.e. it
only becomes more efficient with a larger distance from the source), while PMLs take
advantage of the high-order spatial discretization to allow higher levels of damping.

PMLs have evolved since BérengerŠs implementation, and several variations are now
available [70]. One can cite the uniaxial PML (UPML) [58], and the complex frequency-
shifted PML (CFS-PML), which are in use for MaxwellŠs equations. The last one is used
in DIOGENeS.

II.4.2.10 Illumination sources

Plane waves The most simple kind of source are plane waves. Indeed, they are com-
monly used in numerical electromagnetics to determine the fundamental properties of a
physical system even if these waves correspond to an asymptotic physical conĄguration
(i.e. any radiating source propagating on a sufficiently large distance should look like a
plane wave). Resonances and modes of a physical system can be excited depending on
the spectral proĄle of the source. Monochromatic plane waves are the most basic kind of
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time dependence. In the temporal domain, a monochromatic wave, with frequency ω0, is
formulated as:

E(t) = E0 sin(ω0t). (II.74)

One can notice that the Fourier transform of II.74 is proportional to the Dirac function
δω0 . This type of source can be useful, but running a whole time-domain simulation
only to obtain the response of the system at one frequency may not be worth it, and a
frequency-domain method, such as RCWA, may be more suited for this type of source.
In order to obtain a broader frequency spectrum, one can use:

E(t) = E0 sin(ω0(t− t0)) exp


−(t− t0)

2

2σ2


, (II.75)

which is a Gaussian function of width σ centered around t0, and modulated by a sine
function. Its Fourier transform has the expression:

Ê(ω) = E0i σ

√
π

2
exp (i ωt0)


exp


−σ2(ω − ω0)

2

2


− exp


−σ2(ω + ω0)

2

2


, (II.76)

This means that such a pulse traveling through a structure will excite it on a wideband
of wavelength, and not just on a single one.

TF/SF formulation Different possibilities are available in order to impose the plane
waves inside the physical domain. A Ąrst simple one is to use the ghost cells on the ABCs.
This solution is no longer viable when PMLs are used (imposing Ąelds in the PMLs will
directly damp them). A possible alternative is to deĄne an additional artiĄcial contour
inside the physical domain and between PMLs and the scatterer, on which the Ąeld could
be imposed directly. For periodic domains, the artiĄcial contour can be replaced with
inĄnite artiĄcial surfaces.

First, we consider the splitting of the electric Ąeld in two parts:

Etot(x, t) = Einc(x, t) + Esca(x, t), (II.77)

where Etot is the total Ąeld, Einc is the incident Ąeld, and Esca is the scattered Ąeld. In
our case, the incident Ąeld is a plane wave and it is known since it is imposed analytically.
We consider now a splitting of the computational domain in two regions: the Ąrst one
which in which the total Ąeld is computed, while in the second region the scattered Ąeld is
computed. We call the interface between these two regions the total Ąeld/scattered Ąeld
(TF/SF) interface. The DGTD formulation II.54 is still valid in both regions, and no
modiĄcation is required, except for the computation of the Ćuxes between both regions.
Consider a TF/SF interface between two cells, such that the local cell Ti is in the total Ąeld
region and its neighbor cell Tl is the scattered Ąeld region. The upwind Ćux calculated
for cell Ti is:

E∗,tot =
1

Yi + Yl

(¶YEtot♢il + αn × [[ Htot]]il) , (II.78)

with ¶YEtot♢il = YiEi,tot +YlEl,tot and [[Htot]]il = Hl,tot −Hi,tot. However, the Ąeld values
corresponding to cell Tl are not El,tot and Hl,tot, but El,sca and Hl,sca. Hence, the Ćux
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formulation must be modiĄed to account for this difference. By considering Eq. II.77,
one easily shows that the right Ćux can be calculated as follows:

E∗,tot =
1

Yi + Yl

(¶YE♢il + αn × [[H]]il) +
1

Yi + Yl

(YlEinc + αn × Hinc) . (II.79)

Symmetrically, the upwind Ćux for cell Tl in the scattered Ąeld region is:

E∗,sca = E∗ − E∗,inc. (II.80)

II.4.2.11 DIOGENeS software suite

This DGTD method is implemented in the object-oriented framework of the DIOGENeS3

computational nanophotonics software suite, which is programmed in Fortran 2008. DIO-
GENeS (DIscOntinuous GalErkin Nanoscale Solvers) is a software suite, which is dedi-
cated to the numerical modeling of nanoscale wave-matter interactions in 3D. The ini-
tial (and current) version of this software concentrates on light-matter interactions with
nanometer scale structures for applications to nanophotonics and nanoplasmonics. DIO-
GENeS relies on a two layer architecture. The core of the suite is a library of generic
software components (data structures and algorithms) for the implementation of high
order DGTD (Discontinuous Galerkin Time-Domain) and HDGFD (Hybridizable Dis-
continuous Galerkin Frequency-Domain) schemes formulated on unstructured tetrahedral
and hybrid structured/unstructured (cubic/tetrahedral) meshes. This library is used to
develop dedicated simulation software for time-domain and frequency-domain problems
relevant to nanophotonics and nanoplasmonics, considering various material models. The
parallelization of these fullwave solvers relies on coarse grain SPMD (Single Program Mul-
tiple Data) strategy, which is implemented with the MPI message passing standard. In
addition, DIOGENeS has recently evolved with the inclusion of components dedicated to
geometrical modeling (GFactory) and numerical optimization (Optim). The architecture
of DIOGENeS is sketched in Fig. II.8.

The DGTD method being presented, we focus, in the next section, on the third nu-
merical method used for solving Maxwell equations in this thesis: the RCWA method.

II.4.3 RCWA

In the following sections, the modal numerical method named Rigorous Coupling Waves
Analysis (RCWA), also referred to as the Fourier Modal Method (FMM), is described.
It was Ąrst introduced in [13] and then further developed by the use of the scattering
matrix formalism in [71] and [59]. The following section is based mainly on [59] and [72]

Firstly, the layers deĄnitions of the simulated structure are recalled. Secondly, the
source deĄnition is made precise. Thirdly, the computation of the Fourier transform of
each layer permittivity is explained. Fourthly, the eigenmodes problem of each layer is
described, followed by the scattering matrix that reassembles the solution on the whole
structure. Finally the electric and magnetic Ąelds computation is explained.

3https://diogenes.inria.fr
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Figure II.8: Components of the DIOGENeS software suite, schema extracted from https:

//diogenes.inria.fr.

II.4.3.1 Geometric definitions and Fourier domain

For the rest of this chapter, the light is assumed to pass from top to bottom. Thus,
the light is at normal incidence when its propagation vector is parallel to the z-axis.

In RCWA, the coordinate system is oriented such that the z-axis is normal to the
layers of the structure, and the structure is assumed to be periodic in the xy-plane, with
a rectangular basis, deĄned by two vectors of R2, I1 and I2. The xy-basis of the structure
being rectangular, I1 and I2 are perpendicular. We assume the xy-coordinate to be chosen
such that I1 is collinear to the x axis, and I2 is collinear to the y axis. By convention, we
assume, in the following, that the origin of the xy-plane is exactly at the center of the
structure xy-basis. Finally, the xy-basis of the simulation is a centered rectangle of side
ax, ay, deĄned by:

ax := ♣♣I1♣♣, xmin := −ax

2
, xmax :=

ax

2
,

ay := ♣♣I2♣♣, ymin := −ay

2
, ymax :=

ay

2
. (II.81)

For simplicity, we will lump the transverse coordinates in the xy-plane into a vector r.

The main requirement for the RCWA method is that the structure is deĄned into z-
layers of constant permittivity along the z axis. Namely the structure is cut into layers
along the z axis and the permittivity within each layer varies only on the transverse
coordinate, i.e. we have ε(r, z) = ε(r) within each layer.

In the following, this layer deĄnition requires speciĄc notations: each layer is indexed
by i, with thickness di, extending from zi to zi + di, with layer 1 extending from z1 ∈ R

to z1 + d1. The inĄnite half-space, ¶(x, y, z) ∈ R3 ♣ z < z1♢, under the structure, is
denoted layer 0. And the inĄnite half-space on top of the structure, ¶(x, y, z) ∈ R3 ♣ z >
zM−1 + dM−1♢ (assuming there is M − 1 layer in the structure) is denoted layer M .
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To determine the reciprocal lattice of the Fourier domain, namely the reciprocal space,
or the plane wave space, we Ąrst deĄne the real space primitive lattice vector matrix
whose columns are I1 and I2:

Lr = [I1 I2] =

[
I1x I2x

I1y I2y

]
. (II.82)

Then, the reciprocal lattice is deĄned by the columns of:

Lk = 2πL−T
r , (II.83)

where L−T
r denotes the transpose of the inverse matrix of Lr. Since we assumed that the

basis is rectangular, we have:

Lr =

[
ax 0
0 ay

]
and Lk =

[2π
ax

0

0 2π
ay

]
. (II.84)

II.4.3.2 Source

Typical problems require solving for transmission, reĆection, or absorption spectra of
a structure. In these cases, incident radiation from layer 0 is assumed to be a plane wave
propagating in the negative z direction. The incident wavevector is k0, with an in-plane
component in the reciprocal space k. For a plane wave of wavelength λ, with incident
angle θ and ϕ (see Fig. II.9), we have:

k =

[
k0 + kpar,x

k0 + kpar,y

]
. (II.85)

where k0, kpar,x and kpar,y are deĄned as:

k0 :=
2π

λ
,

kpar,x = k0 ∗ sin(θ) ∗ sin(ϕ),

kpar,y = k0 ∗ sin(θ) ∗ cos(ϕ).

II.4.3.3 Units and conventions

In this section, MaxwellŠs equations in time-harmonic form, solved by the RCWA nu-
merical method, are recalled, as well as the units chosen for both the electric and the
magnetic Ąeld.

We will adopt a derivation and notion similar to those used in [72]. The starting point
is MaxwellŠs equations in time-harmonic form, assuming an exp (−iωt) time dependence:

∇ · ε0εE = 0,

∇ · H = 0,

∇ × H = −iωε0εE,

∇ × E = iωµ0H, (II.86)
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For simplicity, we assumed that materials are linear and nonmagnetic. These assumptions
are satisĄed for most calculations for nanophotonics. From here on after, we will use

Lorentz-Heaviside units, so that the speed of light c and vacuum impedance Z0 :=
√

µ0

ε0

are both unity (making c, µ0 and ε0 drop out). These units are effectively the same as
starting with SI units and scaling with:

√
µ0ε0 ωSI → ω,
√
µ0

ε0

HSI → H,

ESI → E. (II.87)

This change of units brings the electric and magnetic Ąelds onto the same scale and
the temporal and spatial frequency scales onto the same scale, providing better numer-
ical conditioning in the implementation, and simplifying notation. In these new units,
MaxwellŠs equations becomes

∇ × H = −iωεE,
∇ × E = iωH. (II.88)

x
y

z

ϕ

θ

Figure II.9: DeĄnition of the incident light angles: θ and ϕ. The red vector represents
the light propagation vector.

II.4.3.4 Fourier transforms

In this section, the Fourier decomposition of the Ąelds, and the Fourier transform of
the permittivity, involved in the RCWA numerical method, are described.

The next step is to take the spatial Fourier transform in the xy-plane. Because of the
periodicity and separability of the z-axis, the Ąelds have the form:

E(r, z) =
∑

G

EG(z) exp (i (k + G) · r) ,

H(r, z) =
∑

G

HG(z) exp (i (k + G) · r) . (II.89)
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where k is the source wave vector in-plane component (see Eq. II.85) and G is a reciprocal
lattice vector: L−1

k G ∈ Z2. The plane wave truncation, namely the truncation of the
inĄnite summation of Eq. II.89, leads to the introduction of, in principle, the only
approximation parameter required for RCWA. Assuming that a Ąxed set of discrete G
has been chosen as well as an ordering (the same of all layers), we denote by h(z), the
vector

[HG1(z), HG2(z), ... ]T , (II.90)

and similarly for e(z):
[EG1(z), EG2(z), ... ]T . (II.91)

The Fourier transform of the in-plane dielectric function, or permittivity, noted ε, is:

εG =
1

♣Lr♣

∫

cell

ε(r) exp (−i G · r) dr, (II.92)

where the integral is over one unit cell of the real space lattice, a centered rectangle,
deĄned by Eq. II.81. In general ε can be a tensor, but we assume in the following that
the z-axis is separable for simplicity; i.e. that it is of the form:

ε =



εxx εxy 0
εyx εyy 0
0 0 εz


 . (II.93)

In this case, each component can be Fourier transformed separately, and we obtain Ąve
sets of coefficients: ε̂G,xx, ε̂G,xy, ε̂G,yx, ε̂G,yy, ε̂G,z. Using the same ordering of G as for
Eq. II.90, we can form the block Toeplitz matrix ε̂xx whose (m,n)-th element is deĄned
by:

ε̂xx,mn = ε(Gm−Gn),xx. (II.94)

That is, the (m,n) entry of ε̂xx is the Fourier coefficient corresponding to the reciprocal
lattice vector Gm − Gn. The matrices ε̂xx, ε̂xy, ε̂yx, ε̂yy and ε̂z are deĄned analogously.
Generally, the hat symbol ( ˆ ) is used to refer to square matrix operators acting on
the reciprocal space, on G. Using these deĄnitions, we can Fourier transform MaxwellŠs
equations (Eq. II.88 for each Ąeld component):

i k̂yhz(z) − h′
y(z) = −i ωdx(z),

h′
x(z) − i k̂xhz(z) = −i ωdy(z),

i k̂xhy(z) − i k̂yhx(z) = −i ωε̂zez(z),

i k̂yez(z) − e′
y(z) = −i ωhx(z),

e′
x(z) − i k̂xez(z) = −i ωhy(z),

i k̂xey(z) − i k̂yex(z) = −i ωez(z), (II.95)

where primes denote differentiation with respect to z, and k̂x is a diagonal matrix with
entries (kx +G1x, kx +G2x, ... ) and analogously for k̂y. The Ąrst two equations of II.95
contain dx and dy, which are the Fourier coefficients of the displacement Ąeld D. To
obtain a closed set of equations, we need to relate the displacement Ąeld, dx and dy, to
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the electric Ąeld ex and ey. This turns out to be subtle due to the need to apply the
proper Fourier factorization rules, taking into account account discontinuities in both ε
and E. For now, we assume that there exists a matrix E such that,

[
−dy(z)
dx(z)

]
= E

[
−ey(z)
ex(z)

]
. (II.96)

The deĄnition of E is made precise next to the description of our implementation of
RCWA, in section II.5.3.

Starting from the system of equations II.95, eliminating the z components using the
third equations of II.95, the fourth and Ąth equations become:

−k̂yε̂
−1
z k̂xhy(z) + k̂yε̂

−1
z k̂yhx(z) + i ωe′

y(z) = ω2hx(z), (II.97)

−i ωe′
x(z) + k̂xε̂

−1
z k̂xhy(z) − k̂xε̂

−1
z k̂yhx(z) = ω2hy(z), (II.98)

(II.99)

or in matrix form,

(
ω2I − K

) [hx(z)
hy(z)

]
= −i ω

[
−e′

y(z)
e′

x(z)

]
, (II.100)

where I is the identity matrix of proper dimension, and where K is:

K =

[
k̂yε̂

−1
z k̂y −k̂yε̂

−1
z k̂x

−k̂xε̂
−1
z k̂y k̂xε̂

−1
z k̂x

]
. (II.101)

Similarly, eliminating the z components with the sixth equation of II.95, the Ąrst and
second equation of II.95 become:

i ωh′
x(z) + k̂xk̂xey(z) − k̂xk̂yex(z) = ω2dy(z), (II.102)

− k̂yk̂xey(z) + k̂yk̂yex(z) − i ωh′
y(z) = ω2dx(z), (II.103)

which can be written as:

(
ω2E −K

) [−ey(z)
ex(z)

]
= −i ω

[
h′

x(z)
h′

y(z)

]
, (II.104)

where

K =

[
k̂xk̂x k̂xk̂y

k̂yk̂x k̂yk̂y

]
. (II.105)

Finally, by applying the Fourier transform, the original MaxwellŠs equations of Eq.
II.88 are reduced to Eq. II.100 and II.104.
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II.4.3.5 Layer eigenmodes

The main idea behind the RCWA is to expand the Ąelds within a layer into eigenmodes
which have a simple exp(i qz) dependence for some complex number q. In this section,
the eigenvalue problem associated with each layer is described, i.e. from Eq. II.100 and
II.104, we wish to deĄne an eigenvalue problem. The eigenvalues are also referred as
modes, or eigenmodes.

We assume the form of the magnetic Ąeld eigenmode is:

H(z) =
∑

G


ϕG,xx + ϕG,yy − (kx +Gx)ϕG,x + (ky +Gy)ϕG,y

q
z

]
exp (i (k + G) · r + i qz) ,

(II.106)
where x, y and z are the Cartesian unit vectors and ϕG,x and ϕG,y are expansion co-

efficients. These coefficients may be written as vectors ϕx = [ϕG1,x, ϕG2,x, ... ]T , and
analogously for ϕy. We then have:

h(z) =


ϕxx + ϕyy − k̂xϕx + k̂yϕy

q
z

]
exp (i qz) , (II.107)

where h(z) is a column vector whose elements correspond to G vectors. With this, Eq.
II.100 and II.104 become:

(
ω2I − K

) [ϕx

ϕy

]
= ωq

[
−ey

ex

]
,

(
ω2E −K

) [−ey

ex

]
= ωq

[
ϕx

ϕy

]
,

where the z dependence is dropped on ex and ey to represent a Ąxed mode with exp(i qz)
variation. Eliminating the electric Ąeld and using the fact that KK = 0, we Ąnally obtain
the eigenvalue problem:

(
E
(
ω2 − K

)
−K

)
φ = φq2, for φ =

[
ϕx

ϕy

]
, (II.108)

where q2 is the diagonal matrix whose diagonal elements are the eigenvalues q2
n. The

columns of the square matrix φ are [ϕx,n, ϕy,n]T , the Fourier coefficients of the eigenmodes.
Eq. II.108 is an asymmetric matrix eigenproblem, which may be complex if ε has an
imaginary part. A useful orthogonality property, exploited in the next section, can be
obtained by multiplying through by ω2 −K and using KK = 0. Then Eq. II.108 becomes:

(
(ω2 − K)E

(
ω2 − K

)
− ω2K

)
φ = (ω2 − K)φq2, (II.109)

which has the form of a generalized symmetric eigenproblem. It follows that the eigen-
vectors φn, φn′ , corresponding to the eigenvalues qn, qn′ , satisfy the orthogonality rela-
tionship:

ϕT
n (ω2 − K)ϕn′ = δnn′ . (II.110)

The matrix ω2 − K being not positive deĄnite, it is not easier to solve the generalized
symmetric problem than the asymmetric problem.
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II.4.3.6 Field recovery

In this section, the computation of the electric and magnetic Ąeld in real space, from
eigenmode basis, is determined by solving Eq. II.109, is shown.

The transverse magnetic Ąeld, in layer i, is represented as:
[
hx(z)
hy(z)

]
=
∑

n

[
ϕx,n

ϕy,n

]
(an exp(i qnz) + bn exp(i qn(di − z))) , (II.111)

where n indexes the eigenmodes, an is the coefficient of a forward propagating wave
(towards negative z) at z = zi + di, and bn is the coefficient of a backward propagating
wave at z = zi. For q = ±

√
q2, there are two choices depending on the sign chosen. For

numerical stability, the sign is chosen such that Imq ≥ 0, so that the deĄned coefficient
is the maximum amplitude of each wave in the layer. Let now deĄne a diagonal matrix
operator f(z) with entries:

f(z)nn = exp(i qnz), (II.112)

which represents the modal phase accumulation operator. Let us also deĄne transverse
Ąeld component vectors in the Fourier basis:

ht(z) = [ hx(z), hy(z)]T and et(z) = [−ey(z), ex(z)]T , (II.113)

and the diagonal matrix q̂ such that q̂nn = qn, as well as the mode amplitude vectors for
forward and backward waves:

a = [a1, a2, ... ]T and b = [b1, b2, ... ]T . (II.114)

With these deĄnitions, the mode amplitudes are related to the physical Ąelds with the
following equation:

[
et(z)
ht(z)

]
=

[
(ω2 − K)φq̂−1 − (ω2 − K)φq̂−1

φ φ

] [
f(z)a

f(d− z)b

]

= M

[
f(z)a

f(d− z)b

]
. (II.115)

Using the orthogonality relationship of Eq. II.110, which in matrix form is φT (ω2 −
K)φ = 1, it can be veriĄed that the inverse of M is:

M−1 =
1

2

[
q̂φT φT (ω2 − K)

−q̂φT φT (ω2 − K)

]
, (II.116)

Then, the procedure to retrieve the z Ąelds component is described in [73].

The Ąelds can now be computed at any position in the real space, given the forward
and backward propagation coefficient, an and bn.

The computation of the propagation coefficient, an and bn, is performed through the use
of the scattering matrix. The scattering matrix for the structure is constructed from the
solutions to the q eigenvalue problem. The details of each of these steps is not repeated
here since all implementation details are available in [59].
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The RCWA method being presented, we focus, in the next section, on the actual
implementation of our 2D and 3D RCWA solvers. During this thesis, RCWA is the only
numerical that was actually implemented from scratch. Both DGTD and FDTD have
been used though already available software, Lumerical for FDTD and DIOGENeS for
DGTD.

II.5 RCWA implementation

In this section, the RCWA implementation of the 2D and 3D solver are described. This
section also constitutes a minimal documentation for future users of this software.

II.5.1 Convergence inputs

The RCWA method relies on two approximations: the geometrical deĄnition of the
device, that is detailed in section II.5.2, and the plane wave truncation, detailed in the
following paragraphs.

The proper choice of the plane wave truncation, namely the Ąnite set of reciprocal
vectors G, of Eq. II.89, has been the object of numerous discussions in the literature [72].
In our implementation, we focus only on the standard squared plane waves truncation,
even if the circular truncation, where all the G vectors within a circular region around
the origin in reciprocal space are used, is promising.

In practice, the user deĄnes a variable: halfnpw so that the chosen wave vectors are the
sets:

Gx ∈ ¶ k0n, ♣ ∀n ∈ [[−halfnpw, halfnpw]]♢ ,
Gy ∈ ¶ k0n, ♣ ∀n ∈ [[−halfnpw, halfnpw]]♢ , (II.117)

in the 3D case and where [[a, b]] denotes all the (positive or negative) integers between
a and b. Geometrically, one could expect that Eq. II.117 is equivalent to a square
truncation. In 2D, only the plane set of plane wave Gx is considered.

The eigenvalue problem II.108 is solved in using the eig 4 Matlab function. One can see
directly that the size of the eigenvalue problem scales as N , the number of G. Thus, in
3D, the storage requirements for an entire simulation scale as O(MN2), where M is the
number of layers. And since the solution to the eigenvalue problems usually requires on
the order of O(N3) operations (see [72]), the total run time of a single simulation scales
as O(MN3).

Since the plane wave truncation, the time complexity and the memory requirements are
described, we focus in the next section on the deĄnition of the geometry for a simulation.

4https://www.mathworks.com/help/matlab/ref/eig.html
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II.5.2 Geometry and visualization

As mentionned previously, the RCWA method supposes that the simulation region
is partitioned in z-layers, whose permittivity is homogeneous in the z direction. This
constitutes the main limitation of RCWA of simulating complex geometrical structures,
since a staircasing effect must be introduced in the z dimension of such an object. And, as
shown in section II.5.1, the numerical cost of a simulation is proportional to the number
of layers. So layer discretization comes with a high numerical cost.

Given a layered structure in the z dimension, the structure, or more precisely the
permittivity ε, can vary in each layer, in the x (respectively x and y) direction for a 2D
structure (respectively a 3D structure). For the following, we assume that the period in
the x (respectively y) dimension is ax (resp. ay), and that the structure is centered, i.e
that the structure is deĄned on the interval [−au

2
, au

2
], where the u denotes either x or y.

In 2D, for each layer, the structure is deĄned by a 1D step function. For instance,
given a layer with the following properties, assuming ax = 1 µm:

• Minimum is at zmin = 0 µm.

• Maximum is at zmax = 1 µm.

• Permittivity jumps are at x = −1, x = −0.5, x = 0.5 and x = 1 µm with corre-
sponding values:

– ε(x) = 10 + i ∀x ∈ [−1, −0.5],

– ε(x) = 2 ∀x ∈ [−0.5, 0.5],

– ε(x) = 1 ∀x ∈ [0.5, 1].

Then the permittivity, and thus all the materials within these layers, can be directly
described by the following 2D array:

A =




−1 10 + i
−0.5 2
0.5 1
1 ·


 , (II.118)

where for every line i, the permittivity value of A(i, 2) lies in the [A(i, 1), A(i + 1, 1)]
interval. The · symbol in the last line denotes an unused value. For simplicity, we used ab-
stract materials and we avoid mentioning the wavelength dependence of the permittivity
in this example.

This representation of materials within a layer as a 1D step function will be used in
the computation of the Fourier transform of the permittivity, in section II.5.3.
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In 3D, the geometry description is more complex than in 2D. Since the permittivity in
the z dimension is assumed constant in each layer, ε, in each layer, is a 2D function on
the simulation basis square, noted D, deĄned as:

D :=
[
−ax

2
,
ax

2

]
×
[
−ay

2
,
ay

2

]
. (II.119)

In our implementation, we rely on three 2D formal primitives: the polygons, the disk and
the ellipsoid. We claim that combining these three primitives would allow the user to
build the various structures needed for simulating CMOS sensors. In Figs. II.10 and II.11
are shown two example structures. Fig. II.10 illustrates the use of the three primitives
functions:

• Polygon2D that adds a polygon to the structure,

• Disk_2D that adds a disk to the structure and

• Ellipse_2D that adds an ellipsoid.

On the left of Fig. II.10, a top view of the layer is shown. Fig. II.11 illustrates the usage of
three helper functions that perform 2D usual transformation: a rotation with the Rot2D
function, a translation with the Translation2D function and an axial symmetry with the
Symmetry2D function. More advanced features, such as multiples including polygons,
and examples of z layered structures or complex gratings, are illustrated in the Appendix
B.

Two rules must be respected in the generation of such 2D layers:

• Polygons must be strictly included in each other.

• Disk and ellipsoid must be empty, i.e. they must not include other polygons, other
disks or other ellipsoids.

Following these rules allow us to automatically compute the 2D layer structure as a strict
union of polygons and ellipsoids. This technical feature is not detailed here, but it is of
high importance for the computation of the Fourier transform of such a 2D layer, that
is described in section II.5.3. Basically the solver takes as input a list of polygons that
can be strictly included in each other, and provides, for the Fourier computation, a list
of polygons in strict union that can have holes. To achieve such geometrical operations,
we extensively use the matlab polyshape object5. A check is then performed on the disks
and ellipsoids to ensure their boundaries do not cross another object (polygon, disk or
ellipsoid) boundary.

Finally, we must notice that a disk is a particular type of ellipsoid. We distinguished
them here only for convenience.

The geometry module of our RCWA solver being described, we focus in the next section
on the computation of the Fourier transform of the permittivity in each layer.

5https://www.mathworks.com/help/matlab/ref/polyshape.html
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A r r a y _ o f _ c i r c l e = [ ] ;
Array_of_Polygon = [ ] ;

% [ x , y ] Polygone c o r r d i n a t e s .
p_coor = [ −0.5 , 0 ;

0 , 0 ;
0 , 0 . 5 ;

−0.5 , 0 . 5 ] ;

Array_of_Polygon = [ Polygon2D ( p_coor , . . .
epsSiO2 ) ] ;

% Disk
D_radius = 0 . 4 ;
D_center = [ 0 . 5 , − 0 . 5 ] ;
A r r a y _ o f _ c i r c l e = [ Disk_2D ( D_radius , . . .

D_center , . . .
epsSiO2 ) ] ;

% E l l i p s o i d
E_X_Ray = 0 . 4 ;
E_Y_Ray = 0 . 2 ;
E_center = [ 0 . 5 , 0 . 5 ] ;
E_theta = pi / 2 ;
A r r a y _ o f _ c i r c l e = [ Array_of_circ le , . . .

Ell ipse_2D (E_X_Ray, . . .
E_Y_Ray, . . .
E_center , . . .
E_theta , . . .
epsSiO2 ) . . .

] ;

% C r e a t i n g l a y e r
Layers (end + 1) = [ layer_2D ( d , . . .

eps_square , . . .
Array_of_Polygon , . . .
Array_of_circ le , . . .
current_z−d , . . .
current_z ) . . .

] ;
current_z = current_z − d ;

Figure II.10: Illustrating the generation of a 2D layer for the 3D RCWA solver. An
ellipse, a disk and a square of SiO2 (green) are added in a substrate of Si (red).

A r r a y _ o f _ c i r c l e = [ ] ;
Array_of_Polygon = [ ] ;

% [ x , y ] P o l y g o n e s c o r r d i n a t e s .
p1 = [ −0.7 , 0 . 1 ;

−0.2 , 0 . 1 ;
−0.2 , 0 . 7 ;
−0.3 , 0 . 7 ;
−0.3 , 0 . 5 ;
−0.4 , 0 . 5 ;
−0.4 , 0 . 7 ;
−0.7 , 0 . 7 ] ;

p2 = Rot2D ( p1_coor , pi /2 , [ 0 , 0 ] ) ;
p3 = Translation2D ( p1_coor , [ 0 . 8 , 0 . 1 ] ) ;
p4 = Symmetry2D ( p1_coor , [ −1 , −1] , [ 1 , 1 ] ) ;

% Adding 4 p o l y g o n e s
Array_of_Polygon = [ Polygon2D ( p1 , epsSiO2 ) , . . .

Polygon2D ( p2 , epsSiO2 ) , . . .
Polygon2D ( p3 , epsSiO2 ) , . . .
Polygon2D ( p4 , epsSiO2 ) ] ;

% C r e a t i n g l a y e r
Layers = [ layer_2D ( d , . . .

eps_square , . . .
Array_of_Polygon , . . .
Array_of_circ le , . . .
current_z−d , . . .
current_z ) ] ;

current_z = current_z − d ;

Figure II.11: Illustrating the generation of a 2D layer for the 3D RCWA solver. A complex
polygon is added (top left), as well as its translation (top right), rotation (bottom left)
and axial symmetry (bottom right).
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II.5.3 Fourier transform computation

As explained in section II.4.3, the Fourier computation of the permittivity function εG

must be computed for each layer. Recalling Eq II.92, We have:

εG =
1

♣Lr♣

∫

cell

ε(r) exp (−i G · r) dr.

In a 2D structure, where each layer is of one dimension, the analytical computation of
εG is equivalent to computing the Fourier transform of a 1D step function (see section
II.5.2). There are no speciĄc difficulties, and the formula is available in appendix C. Fast
Fourier Transform [74] (FFT) can also be used. Since this is only a 1D Fourier transform,
the time difference between analytical and FFT is negligible.

In 3D structures, the computation of εG is more subtle. Similarly to the 2D case, an
FFT can be used, which would introduce a x-y mesh and so geometrical errors. The FFT
is available, and preferred when the number of primitives in the layer is high (≥ 50),
leading to a high computational cost of the analytical Fourier transform.

For the analytical computation of εG, we Ąrst focus on the Fourier transform of the
three primitives used: polygons, disk and ellipsoid. The Fourier computation of a polygon
with holes is known and available in [75] or [76]. For convenience we provided the proof
and our formula in appendix C. The computational cost of such formula scales linearly
according to the number of dots on the polygons boundary. Then, the Fourier transform
of a disk is the well-known Bessel function (see appendix C), this formula allows us to
avoid approximating disks as polygons. Finally, the Fourier computation of an ellipsoid
is performed with the Bessel function and the use of a linear transformation of the plane,
to retrieve a disk from the original ellipsoid, and with the property II.13 of the Fourier
transform.

Since the Fourier transform of all the three primitives is known, the problem of com-
puting εG for each 2D layer consists in combining these primitives Fourier transform.
This is where our transformation of multiple strictly included polygons into polygons in
strict union comes into play (see section II.5.2). From a set of polygons in strict union,
which can have holes, a simple loop is needed to compute the Fourier transform of the
permittivity of the 2D layer. Disk and ellipsoid are then added simply with their Fourier
transformed, scaled with the permittivity value of the polygon that contains them (details
are available in appendix C).

To test our implementation of the analytical Fourier transform, we used the inverse
Fourier transform, in order to compare ε and F−1 (FA (ε)). Such comparisons allow us
to test both the primitive Fourier transform function, as well as our transformation of
polygons strictly included, into polygons in strict union with holes. In Fig. II.12, such a
test for the structure generated by table II.10 is shown.

The Fourier transform computation being described, the next section illustrates the
electric and magnetic Ąeld computation in our RCWA solver.
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II.5.4 Field computation

To keep the following description concise, we choose to not provide details of the Ąelds
computation of our RCWA software. Instead, one of the tests for Ąeld computation is
provided. The structure is a simple 3D elliptical grating, shown in Fig. II.13. This struc-
ture was simulated with both our RCWA software and Lumerical6. Each Ąeld component,
real and imaginary parts, are shown in Fig. II.14 and II.15. The exact juxtaposition of
Ąeld values from our software and Lumerical conĄrms the validity of our implementation.

The RCWA solver implementation being described, the next section focuses on the
benchmark, on structure of increasing complexity, of the three numerical methods pre-
sented previously.

6https://www.ansys.com/products/photonics
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(a) Exact Re(ε). (b) Inverse Fourier transform.
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(c) Slice at x = 0.4 µm.
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(d) Slice at y = 0.4 µm.

Figure II.12: Test of the analytical Fourier transform by comparing the real part of the
exact permittivity value, ε, (shown in Fig. II.12a) and the real part of F−1 (FA (ε))
(shown in Fig II.12b). Figures on the second row are 1D cut (at x = 0.4 µm for Fig.
II.12c and at y = 0.4 µm for Fig. II.12d) of the two above functions: the blue curve is
the exact permittivity and the red curve is the result of F−1 (FA (ε)). One clearly sees
the well-known Gibbs phenomenon, or the L2 convergence of the Fourier transform, with
the oscillation of the red curves.
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Figure II.13: Example structure of an ellipsoid grating. Green material is SiO2 and red
material is Si. The electric and magnetic Ąelds component shown in Fig. II.14 and II.15
are computed on this structure. This structure is analogous to the simple silicon slab
described in section II.6.1. The ellipsoid has an angle of π

4
, a x radius of 0.2 and a y

radius of 0.1.
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Figure II.14: Comparison of electric and magnetic Ąelds components, at λ = 940 nm,
computed with both our in-house RCWA solver and the Lumerical solver, on the structure
desbribed by Fig. II.13. Dashed lines are RCWA results and blue crosses are FDTD
results. 1D slices are extracted from the 3D domain: left column plots are at Ąxed y = 0
and z = −1.968 µm, right column plots atx = −0.176 and y = 0 µm. TE polarization is
considered.
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Figure II.15: Comparison of electric and magnetic Ąelds components, at λ = 940 nm,
computed with both our in-house RCWA solver and the Lumerical solver, on the structure
desbribed by Fig. II.13. Dashed lines are RCWA results and blue crosses are FDTD
results. 1D slices are extracted from the 3D domain: left column plots are at Ąxed y = 0
and z = −1.968 µm, right column plots at x = −0.176 and y = 0 µm. TM polarization
is considered.
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II.6 Benchmark on various structures

In this section, the numerical study of CMOS pixels is performed, as well as a bench-
mark of the three numerical methods presented in section II.4. First, the three numerical
methods are compared in section II.6.1 on a simple silicon slab, and then a pixel-like ge-
ometry, with and without nanostructuration, is considered, comparing DGTD and FDTD
methods in section II.6.2, and FDTD and RCWA methods in section II.6.3.

For the DGTD method, the DIOGENeS7 sofware was used. For the FDTD method,
Lumerical8 was used and for the RCWA numerical method, our in-house Matlab solver,
brieĆy described in section II.5, was used.

These benchmarks will provide useful informations on the pros and cons of each method
for the speciĄc geometry of CMOS pixels.

II.6.1 Simple structures

Three simple 3D cases are Ąrst considered that can be seen as a simpliĄcation of a
nanostructured pixel, where both the DTI and the bottom metallic reĆector are not
taken into account. Thus they consist of a simple Oxide Silicon interface, which is either
planar or patterned.

The simplicity of the geometry helps us to a priori guarantee the convergence to
identical results. So these structures are well-suited for a Ąrst benchmark and comparison
of the numerical methods.

II.6.1.1 Geometry

In this section, the exact dimensions of the three simple cases considered are described,
as well as the material permittivity used. These cases are simply an SiO2-Si interface,
which is either planar, or structured with a square grating, or a pyramidal grating. Each
case is named according to the interface type: planar, square or pyramidal.

On Fig. II.16, the three geometries are visualized. They share a common simulation
basis, which is centered in the x and y-axis, of size 0.5 µm in both axis. The total size in z
is 5 µm. Periodic boundaries are applied in x and y, while PML are used in the z direction.
Light is coming from top, on the wavelength range [850, 1250] nm. The Ągures of merit
are both the reĆection, measured on top of structure, and the transmission, measured
above the SiO2-Si interface (see Fig. II.16). The three cases are distinguished according
to the SiO2-Si interface: the planar case is not structured, while the rectangular one is
patterned with a centered square of size 250 nm, and the pyramidal case is patterned
with a centered pyramid of depth 250 nm and basis square of 350 nm. The permittivity
of Silicon and SiO2 are obtained from Palik [53].

The geometry of the considered structure is now clariĄed. Next, we focus on the
comparison of the absorption spectrum obtained with either FDTD, DGTD, or RCWA
numerical methods.

7https://diogenes.inria.fr/
8https://www.ansys.com/products/photonics
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Figure II.16: Illustration of the simple structures deĄnition: left Ągure is planar case,
second is square case and on the right is the pyramidal case. Yellow material is SiO2,
and blue material is Silicon.

II.6.1.2 Results

In this section, the numerical results of the three simple Silicon slab structures, for
the three numerical methods, RCWA, FDTD and DGTD, are shown. To keep this work
concise, the convergence study is not shown here. For the DGTD method, a mesh with
22659 cells and a P2 interpolation degree are used. For the FDTD methods, a meshfactor
(see section II.4.1) of 22 is used. For both time-domain solvers, the energy threshold
is set to 0.1%. The energy threshold is a criteria that limits the physical simulation
time. It represents the fraction of the remaining energy inside the domain, to the energy
introduced into the domain. For the RCWA, a plane wave truncation of 41, and an
approximation of the pyramid in 40 layers, are used.

In Fig. II.17 (respectively II.18), the resulting reĆection (respectively transmission)
spectrum, for all three structures, on all three numerical methods, for both TE and
TM polarizations, are shown. The planar structure being equivalent in TE and TM,
only one plot is provided. The superposition of the curves conĄrms the validity of the
implementation of each software used and our ability to use effectively these softwares.
The only small discrepancy can be seen on the reĆection spectrum of the pyramidal case,
and it is discussed in the next section II.6.1.3.

The corresponding simulation times are available in Table II.1. One must notice that
the simulation time of the RCWA solver, being a frequency-domain one, cannot be strictly
compared to the simulation time of the time-domain method, such as FDTD or DGTD.
Indeed, to obtain the curve shown in Fig. II.17 for instance, 100 RCWA simulations were
required, while a single time-domain simulation provides the full spectrum response.
Comparing the simulation time of FDTD and DGTD, one must notice the speed of the
Ąnite difference method. Despite the expectancy, the pyramidal case, enhancing the
well-known staircasing effect, is faster when simulated with the FDTD. This will also be
discussed in the next section II.6.1.3. For the RCWA solver, the cost of approximating the
inverted pyramid with 40 layers is clear (see Table II.1), leading to a high computational
cost.
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Case Method Wall time TE Wall time TM
Planar RCWA <1 mn -

- DGTD-P2 13 mn -
- FDTD 7 mn -

Rectangular RCWA <1 mn <1 mn
- DGTD-P2 8 mn 10 mn
- FDTD 7 mn 7 mn

Pyramidal RCWA 12 mn 12 mn
- DGTD-P2 8 mn 10 mn
- FDTD 12 mn 14 mn

Table II.1: Simulation time for the three numerical methods, on the three simple cases
described in section II.6.1. One clearly sees the cost of the z layer approximation for the
RCWA, for the pyramidal case.

The main results being presented, a focus on the pyramidal case is shown in the next
section.

II.6.1.3 Discussion on pyramidal case

The pyramidal case is singular for two reasons:

• Firstly, it enhances the staircasing effects, imposing to FDTD a Ąner mesh, and
to RCWA a multiple z-layers structure, leading to higher computational cost (see
Table II.1).

• Secondly, it introduces a peak, at the bottom of the pyramid, that is respected by
Delaunay meshes by introducing ill-shape tetrahedra (tetrahedra with a small angle
at one of their vertices). These ill-shape tetrahedra introduce, through the CFL
condition (see II.71) a smaller time step, leading to a higher computational cost for
the DGTD method. In order to control this phenomenon, an apex, namely a trun-
cation of the pyramid peak, is introduced in the geometry for DGTD simulations.
Some examples of Delaunay meshes with a different apex are shown in Fig. II.19.
The corresponding time-step are available in Table II.2, as well as the wall time for
the DGTD-P3 simulation using these meshes. One remarks easily the inĆuence of
the apex on the timestep, and thus on the total simulation time. The smaller the
apex is, the higher the time step and the longer the simulations.

On Fig. II.20, the reĆection and transmission spectra for the DGTD-P3 simulation
with various values of the apex are compared to the reference FDTD results. One can
clearly notice the inĆuence of the apex on the Ągure of merit.

The discrepancy of Fig. II.17 and II.18 are explained by the apex deĄnition being
different between the three numerical methods.
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Apex size Method ∆t (sec) Wall time TE Wall time TM
2 nm DGTD-P3 3.90 ×10−18 1 h 18 mn 1 h 35 mn
8 nm DGTD-P3 1.34 ×10−17 24 mn 34 mn
20 nm DGTD-P3 1.33 ×10−17 27 mn 28 mn
12 nm FDTD 5.73 ×10−18 12 mn 14 mn
8 nm DGTD-P2 1.36 ×10−17 8 mn 10 mn

Table II.2: Simulation time and time step (∆t) according to the apex deĄnition (see Fig.
II.19). All DGTD times refer to the 0.1% energy threshold. FDTD time corresponds to
the reference FDTD results with a meshfactor of 22. The increase of ∆t according to the
apex is clear, leading to shorter simulation time.

II.6.1.4 Conclusion on simple structures

In this section, our ability to converge to identical results, with the three optical solvers
and for three simple structures, has been demonstrated. Comparing the time, the refer-
ence Lumerical software is faster on those three simple cases.

In this study, the importance of respecting the geometry, in particular for the pyramidal
case, was emphasized, and we did not, on purpose, discuss the importance of using the
identical permittivity value. The RCWA, being a frequency-domain solver, uses directly
the exact value provided by literature, while FDTD and DGTD, being time-domain
solvers, use a Ąt of the permittivity on the wavelength range of interest [850, 1200] nm.
Those Ąts can induce a different spectrum response if not precise enough. The best way to
avoid permittivity Ąt error is to compare the reĆection and transmission for the simplest
structure, namely the planar case. In our work, the exact agreement of the spectrum
response for the planar case is conĄrming that the Ąts used for both FDTD and DGTD
are precise enough. To keep the current work concise, these Ąts are not shown here.

108



900 1,000 1,100 1,200
0.8

0.85

0.9

0.95

1

λ (nm)

T (λ)

(a) Planar

900 1,000 1,100 1,200
0.8

0.85

0.9

0.95

1

λ (nm)

T (λ)

(b) Rectangular TE

900 1,000 1,100 1,200
0.8

0.85

0.9

0.95

1

λ (nm)

T (λ)

(c) Rectangular TM

900 1,000 1,100 1,200
0.8

0.85

0.9

0.95

1

λ (nm)

T (λ)

(d) Pyramidal TE

900 1,000 1,100 1,200
0.8

0.85

0.9

0.95

1

λ (nm)

T (λ)

(e) Pyramidal TM

Figure II.17: Transmission spectrum for all three numerical methods, on all three simple
cases. Dashed blue is DGTD, dashed green is FDTD and dashed red is RCWA. The y
axis is zoomed on the interval [0.8, 1]. Results match perfectly, except for the pyramidal
case, which is discussed in section II.6.1.3.
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Figure II.18: ReĆection spectrum for all three numerical methods, on all three simple
cases. Dashed blue is DGTD, dashed green is FDTD and dashed red is RCWA. The y
axis is zoomed on the interval [0, 0.2]. Results match perfectly, except for the pyramidal
case, which is discussed in section II.6.1.3.
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Figure II.19: DeĄnition of the apex for the Delaunay mesh used with the DGTD method,
of the pyramidal simple case described in section II.6.1.1. The pyramid head is truncated
to avoid ill-shaped tetrahedra (tetrahedra with small angle). The FDTD, using a cartesian
mesh, or the RCWA, approximating the z geometry variations into layers, implicitly
introduces an apex whose size is relative to either the mesh cell size for FDTD, or the
layers approximation for RCWA.

Figure II.20: ReĆection (left) and transmission (right) spectra obtained with DGTD-P3

for the pyramidal case (deĄned in section II.6.1.1), for various values of the apex sizes
(see Fig. II.19). The lower the apex, the closer the DGTD result is to the reference
FDTD results. In order to emphasize this effect, the y-axis is zoomed in: the differences
observed are of order 10−3.
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II.6.2 FDTD and DGTD on pixels

This section is devoted to a numerical study of the model pixel geometries introduced
in section II.6.2.1. Firstly, we consider an inner Si volume with a Ćat top surface and
perform a detailed assessment of the DGTD method. Secondly, we consider a pixel with
a nanostructuring of one-dimensional gratings of the top surface of the inner Si volume.
In both cases, the DGTD results are compared with reference results provided by the
FDTD method.

These pixel geometries can be seen as a simple silicon slab, where two complex geomet-
rical elements have been added: Ąrstly, Deep Isolation Trenches are added, as well as a
Tungstene shield covering the exterior Silicon volume. Secondly, a bottom metallic reĆec-
tor is added. These structures do not include lens, nor nanostructuration. Benchmarks
on nanostructured pixels are performed in section II.6.3 and II.6.4.

II.6.2.1 Geometry

The geometrical characteristics of the model pixels are the following:

• Size in X: ∼6 µm

• Size in Y: ∼6 µm

• Size in Z: ∼5 µm + 0.7 µm (TF/SF air) + PML

• PBC in XoZ and YoZ boundaries

• PEC in XoY for origin in Z (Z = 0)

The exact dimensions are conĄdential and thus not speciĄed. The Si, W, SiO2 material
permittivity used are taken from Palik [53].

The square pixel and the octogonal pixel are identical, except for the DTI shapes, as
visible on Fig. II.21 and II.22.

II.6.2.2 FDTD results

The Ąrst set of results obtained with the FDTD method are shown in Fig. II.23 in the
form of spectra of the volumic absorption in the internal Si volume. These results have
been obtained in the following conditions:

• Mesh resolution: λ/18, full geometry

• PEC conditions at the bottom side

• Simulation size in grid points: 209 x 84 x 390

• Physical time: 2 × 10−12 sec (2000 fs)

• System with 10 processors

• Wall clock time: 13 h 16 mn (square pixel) and 16 h 15 mn (octogonal pixel)
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Figure II.21: Sketched of the model square pixel. Purple is Si material, blue is SiO2, black
is tungsten and white is Air. The exact dimensions of the simulated pixel are conĄdential.
The sketch is not at scale and for illustration purposes only.

We shall make here two additional remarks: (1) the full geometry is considered, i.e., the
symmetry of the problem is not exploited and, (2) the physical simulation time has been
voluntarily set to a large value for ensuring the convergence in time. We note that the
differences between the results for the two shapes, i.e., square versus octogonal pixel, are
relatively minimal. This has motivated our choice to focus on the square pixel geometry
in the sequel.

II.6.2.3 FDTD results for the square pixel

We now present the results of a numerical convergence in space assessment of the FDTD
method for the square pixel geometry, see Fig. II.24. These results have been obtained
in the following conditions:

• 1/4 of the full geometry with PEC/PMC conditions on the lateral sides

• Cu layer (200 nm) at the bottom side

• Physical time: 2 × 10−12 sec (2000 fs)

• System with 15 processors

Details of the characteristics of FDTD meshes, time steps and CPU times are summarized
in Tab. II.3. Note that these simulations have been performed with 1/4 of the full
geometry by taking into account the symmetry of the problem. Moreover, the PEC
condition at the bottom boundary has been replaced by a layer of dispersive Cu. We can
conclude from these results that a FDTD mesh with a characteristic length λ/22 yields
a sufficiently converged result.

Finally, we select the FDTD mesh with a characteristic length λ/22 and perform simu-
lations for different physical simulation times in order to assess the convergence in time,
see Fig. II.25. These results have been obtained in the following conditions:
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Figure II.22: Sketched of the model octogonal pixel. Purple is Si material, blue is SiO2,
black is tungsten and white is Air. The exact dimensions of the simulated pixel are
conĄdential. The sketch is not at scale and for illustration purposes only.

Mesh resolution Size in gridpoint # time steps Wall time ∆t (sec)
λ/14 54 x 88 x 81 137,108 57 mn 1.458 ×10−17

λ/18 69 x 92 x 97 145,921 1 h 53 mn 1.371 ×10−17

λ/22 85 x 99 x 114 158,858 2 h 57 mn 1.259 ×10−17

λ/26 99 x 103 x 131 170,443 3 h 29 mn 1.173 ×10−17

λ/30 114 x 107 x 147 182,900 6 h 01 mn 1.093 ×10−17

λ/34 129 x 111 x 163 196,063 7 h 30 mn 1.020 ×10−17

Table II.3: FDTD results with semi-inĄnite Cu layer at the bottom. Volumic absorption
in the internal Si volume. Numerical convergence versus the average number of grid
points per wavelength.

• 1/4 of the full geometry with PEC/PMC conditions on the lateral sides

• Cu layer (200 nm) at the bottom side

It is clear from these results that a physical simulation time between 500 fs and 700 fs is
acceptable. In the sequel, we Ąx the physical simulation time to 600 fs.

Before moving to the presentation of results obtained with the DGTD method, we il-
lustrate one of the issues faced with the structured (Cartesian) mesh used in the FDTD
method. Indeed, even if a non-uniform discretization is possible with this type of mesh,
ensuring a perfect alignment of mesh lines with material interfaces is a difficult task as de-
picted in Fig. II.26. Even if the mismatch between mesh lines and material interfaces can
be minimized, we have observed that FDTD results are sensible to the mesh at material
interfaces.
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Figure II.23: FDTD results with PEC condition at the bottom boundary. Volumic
absorption in the internal Si volume.
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Figure II.24: FDTD results with semi-inĄnite Cu layer at the bottom. Volumic absorption
in the internal Si volume. Numerical convergence versus the average number of grid points
per wavelength.
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Figure II.25: FDTD results with semi-inĄnite Cu layer at the bottom. Volumic absorption
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Figure II.26: FDTD results with semi-inĄnite Cu layer at the bottom. InĆuence of the
type of mesh at material interfaces.
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Mesh Cu layer (nm) # cells hm (nm) hM (nm) Ratio
M1 200.0 97,629 41.6 344.9 8.3
M2 200.0 175,876 38.5 336.4 8.7
M3 200.0 314.174 35.2 344.5 9.8

Table II.4: Characteristics of meshes for the DGTD simulations.

Mesh [h1 , h2] (nm) [h1 , h2] (nm) [h1 , h2] (nm) [h1 , h2] (nm)
M1 [41.6 , 117.5] [117.5 , 193.3] [193.3 , 269.1] [269.1 , 344.9]

5,247 54,212 37,078 1,090
M2 [38.5 , 113.0] [113.0 , 187.5] [187.5 , 261.9] [261.9 , 336.4]

29,591 122,608 23,051 626
M3 [35.2 , 112.6] [112.6 , 190.0] [190.0 , 267.4] [267.4 , 344.5]

195,596 98,914 19,176 487

Table II.5: Characteristics of meshes for the DGTD simulations.

II.6.2.4 Comparison between FDTD and DGTD

We now switch to a numerical convergence study with the DGTD method. We consider
the following setting:

• 1/4 of the full geometry with PEC/PMC conditions on the lateral sides

• Top PML: 600 nm

• Bottom PML: 200 nm

• Dispersive Cu layer instead of PEC wall (bottom side)

• Physical time: 600 fs

Several unstructured tetrahedral meshes have been constructed whose characteristics are
summarized in Tab. II.4. We recall that in the case of the DGTD method one has
access to two parameters for assessing the convergence in space: the usual discretization
parameter, which is here denoted by h, and the interpolation degree p, which is used
for approximating the components of the electromagnetic Ąeld within each mesh cell
(tetrahedron). In Tab. II.5, we give the minimum and maximum values of h for each
mesh.

Results are presented in Figs. II.27 and II.28 and compared with the reference FDTD
result. Overall, the selected combinations of mesh resolution and interpolation degree all
yield results that are in line with the reference FDTD result. Finally, the convergence in
time is depicted in Fig. II.29 for mesh M1 and using the DGTD-P5 method.

II.6.2.5 Conclusion on square pixel comparision between FDTD and DGTD

Finally, these comparisons between the FDTD and DGTD numerical methods on the
Ćat square pixels demonstrate the ability to reproduce identical absorption spectrum, as
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Figure II.27: DGTD results with semi-inĄnite Cu layer at the bottom. Volumic absorp-
tion in the internal Si volume. Left: mesh M1 - Right: mesh M2.
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Figure II.28: DGTD results with semi-inĄnite Cu layer at the bottom. Volumic absorp-
tion in the internal Si volume. Mesh M3.
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Figure II.29: DGTD results with semi-inĄnite Cu layer at the bottom. Volumic absorp-
tion in the internal Si volume. Numerical convergence versus the physical simulation
time.
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shown in Fig. II.28. Since this structure has a Ćat top surface, the light goes back and
forth, fully reĆected on the bottom metallic reĆector and partially reĆected on the top
Si-SiO2 and SiO2-Air interfaces. These multiple reĆections explain the four resonances
that are visible in Fig. II.28. The physical phenomena is thus captured by both numerical
methods. A more detailed discussion about simulation time is given in the Ąnal conclusion
of this chapter.
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II.6.3 FDTD and DGTD with a nanostructuring of the square
pixel

II.6.3.1 Comparison between FDTD et DGTD

In Ąg. II.30 we summarize the results of a numerical convergence study with the FDTD
method. In these plots, ŞMeshfactorŤ is the number of points per wavelength. Simulations
have been performed on 1/4 of the full geometry with PEC/PMC conditions on the lateral
sides. The maximum physical time is set to 1000 fs. Results obtained with the DGTD
method are shown in Fig. II.31. Two meshes have been used: M1 with 174,637 cells
(hm = 32.4 nm and hM = 284.6 nm) and M1 with 343,736 cells (hm = 32.6 nm and
hM = 225.6 nm). Form these results, we can note the sensibility of the FDTD method
to the alignment of the mesh with material interfaces. This alignment is improved as
the mesh is reĄned but it is also clear that numerical convergence is hard to achieve.
On the contrary, the DGTD method relies on a mesh that is perfectly positioned on
material interfaces. As a consequence, DGTD results are less erratic and, for a given
mesh, numerical convergence can be achieved by increasing the interpolation degree as
demonstrated here with the results for mesh M1.

It must be noted that, for the square pixel with 1D grating, the absorption spectrum
obtained with both DGTD and FDTD, do not match exactly, as visible in Fig. II.31.

II.6.3.2 Parametric study

The objective of this section is to conduct a preliminary assessment of the impact of
nanostructuring on light absorption in the active Si layer. The results of this study will
serve as a guide for the numerical optimization study, which will be realized in the chapter
III. Here we only consider a nanostructuring of the top surface of the active Si layer based
on a 1D grating with a rectangular sections. Several partial views of geometrical models
(tetrahedral meshes) for some selected grating parameters are shown in Fig. II.32.

The Ąrst conĄguration that we consider is characterized by the following setting:

• ConĄguration C1

– 1/4 of the full geometry with PEC/PMC conditions on the lateral sides

– Top PML: 600 nm

– Bottom PML: 200 nm

– Dispersive Cu layer instead of PEC wall (bottom side)

– Grating width: 600 nm

– Minimum space between rods: 1000 nm

– Physical time: 600 fs

– DGTD-P4 method

Three tetrahedral meshes have been constructed whose characteristics are summarized
in Tab. II.6. They correspond to three choices of the grating depth. Results are depicted
in Fig. II.33. The plot also includes the FDTD result for the Ćat structure. For this
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Figure II.30: Square pixel with a 1D grating. Volumic absorption in the internal Si
volume. FDTD results (bottom Ągure is a zoom).

900 920 940 960 980 1,000

0

0.1

0.2

0.3

0.4

0.5

λ (nm)

A
(λ

)

Mesh M1, DGTD-P3

Mesh M1, DGTD-P4

Mesh M2, DGTD-P4

λ0 = 940 nm

920 930 940 950 960

0

0.1

0.2

0.3

0.4

0.5

λ (nm)

A
(λ

)

Mesh M1, DGTD-P3

Mesh M1, DGTD-P4

Mesh M2, DGTD-P4

MeshFactor = 30

λ0 = 940 nm

Figure II.31: DGTD results with semi-inĄnite Cu layer at the bottom. Square pixel with
a 1D grating. Volumic absorption in the internal Si volume. Numerical convergence
versus mesh and interpolation order.
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Figure II.32: Views of meshes of the square pixel with a 1D grating. 1D grating of active
Si volume along Ox using rods with rectangular section.

Mesh Depth (nm) # cells hm (nm) hM (nm) Ratio
M1 15.0 99,810 15.0 349.4 23.3
M2 30.0 99,721 30.0 368.7 12.3
M3 60.0 99,915 42.2 368.4 8.8

Table II.6: Characteristics of meshes of the square pixel with a 1D grating. ConĄguration
C1.

Ąrst conĄguration, the selected grating parameters do not notably affect the absorption
proĄle as compared to the reference FDTD result. The second conĄguration that we
consider is characterized by the following setting:

• ConĄguration C2

– 1/4 of the full geometry with PEC/PMC conditions on the lateral sides

– Top PML: 600 nm

– Bottom PML: 200 nm

– Dispersive Cu layer instead of PEC wall (bottom side)

– Width grating: 400 nm

– Minimum space between rods: 800 nm

– Physical time: 600 fs

– DGTD-P4 method

Three tetrahedral meshes have been constructed whose characteristics are summarized
in Tab. II.7. As previously, these meshes correspond to three choices of the grating
depth. Results are depicted in Fig. II.34. For this second conĄguration, we note that
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Figure II.33: DGTD results with semi-inĄnite Cu layer at the bottom. Square pixel with
a 1D grating, conĄguration C1. Volumic absorption in the internal Si volume. Numerical
convergence versus mesh resolution.

Mesh Depth (nm) # cells hm (nm) hM (nm) Ratio
M1 15.0 100,517 15.0 345.4 23.1
M2 30.0 100,528 30.0 353.1 11.8
M3 60.0 101,377 33.3 344.9 10.4

Table II.7: Characteristics of meshes of the square pixel with a 1D grating. ConĄguration
C2.

as the depth of the grating is increased, while the values selected for the other grating
parameters are kept Ąxed, the absorption spectrum is affected in the lower and upper part
of the wavelength window considered here. The third conĄguration that we consider is
characterized by the following setting:

• ConĄguration C3

– 1/4 of the full geometry with PEC/PMC conditions on the lateral sides

– Top PML: 600 nm

– Bottom PML: 200 nm

– Dispersive Cu layer instead of PEC wall (bottom side)

– Width grating: 400 nm

– Minimum space between rods: 400 nm

– Physical time: 600 fs

– DGTD-P4 method (unless otherwise stated)

Five tetrahedral meshes have been constructed whose characteristics are summarized in
Tab. II.8. As previously, these meshes correspond to three choices of the grating depth,
which is here taken in the range [15 nm , 180 nm]. Results for meshes M1 to M4 are
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Figure II.34: DGTD results with semi-inĄnite Cu layer at the bottom. Square pixel with
a 1D grating, conĄguration C2. Volumic absorption in the internal Si volume. Numerical
convergence versus mesh resolution.

Mesh Depth (nm) # cells hm (nm) hM (nm) Ratio
M1 15.0 101,388 15.0 402.7 26.9
M2 30.0 101,664 30.0 364.3 12.2
M3 60.0 102,550 32.3 377.5 11.5
M4 120.0 101,306 40.7 381.0 9.4
M5 180.0 101,046 39.1 360.3 9.2

Table II.8: Characteristics of meshes of the square pixel with a 1D grating. ConĄguration
C3.

depicted in Fig. II.35. In addition, Fig. II.36 shows a comparison of results that have been
obtained with the DGTD-P4 and DGTD-P5 methods for mesh M4. Similarly, Fig. II.37
shows a comparison of results that have been obtained with the DGTD-P4 and DGTD-P5

methods for mesh M5. With this third conĄguration, the calculated absorption spectra
are always improved as compared to that of the Ćat structure. However, we also note
that for the deeper gratings, numerical convergence in the lower part of the wavelength
window is harder to achieve. The fourth conĄguration that we consider is characterized
by the following setting:

• ConĄguration C4

– 1/4 of the full geometry with PEC/PMC conditions on the lateral sides

– Top PML: 600 nm

– Bottom PML: 200 nm

– Dispersive Cu layer instead of PEC wall (bottom side)

– Width grating: 400 nm

– Depth grating: 120 nm
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Figure II.35: DGTD results with semi-inĄnite Cu layer at the bottom. Square pixel with
a 1D grating, conĄguration C3. Volumic absorption in the internal Si volume. Numerical
convergence versus mesh resolution.
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Figure II.36: DGTD results with semi-inĄnite Cu layer at the bottom. Square pixel with
a 1D grating, conĄguration C3. Volumic absorption in the internal Si volume. Numerical
convergence versus interpolation order with mesh M4.
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Figure II.37: DGTD results with semi-inĄnite Cu layer at the bottom. Square pixel with
a 1D grating, conĄguration C3. Volumic absorption in the internal Si volume. Numerical
convergence versus interpolation order with mesh M5.

Mesh ∆ (nm) # cells hm (nm) hM (nm) Ratio
M1 200.0 102,072 43.8 342.7 7.8
M2 100.0 103,715 34.4 334.8 9.8
M3 50.0 104,002 16.8 344.9 20.6

Table II.9: Characteristics of meshes of the square pixel with a 1D grating. ConĄguration
C4.

– Minimum space between rods: ∆

– Physical time: 600 fs

– DGTD-P4 method (unless otherwise stated)

Three tetrahedral meshes have been constructed whose characteristics are summarized
in Tab. II.9. This time, the grating parameter which is varied is the minimum space
between rods. Results are presented in Figs. II.38 (mesh M1), II.39 (mesh M2) and II.40
(mesh M3). Finally, in Fig. II.41 we compare the results obtained with the three meshes,
i.e., for the three values of the parameter ∆, when using the DGTD-P5 method. Clearly,
all these grating deĄnitions yield a notable improvement of the volumic absorption in the
internal Si volume.

II.6.3.3 Conclusion on FDTD and DGTD with a nanostructuring of the
square pixel

These comparisons of the absorption spectrum of a nanostructuring of the square pixel
illustrate the difficulties that are faced when simulating highly resonant structures. The
FDTD abd DGTD results are of similar amplitude, and exhibit similar resonances, as
visible on Fig. II.31. However, we do not achieved a perfect absorption spectrum match.
This discrepancy is explained by the main difference between the FDTD and the DGTD
methods: a cartesian mesh is used by FDTD, and a conformal mesh by DGTD. This
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Figure II.38: DGTD results with semi-inĄnite Cu layer at the bottom. Square pixel with
a 1D grating, conĄguration C4. Volumic absorption in the internal Si volume. Numerical
convergence versus interpolation order with mesh M1.
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Figure II.39: DGTD results with semi-inĄnite Cu layer at the bottom. Square pixel with
a 1D grating, conĄguration C4. Volumic absorption in the internal Si volume. Numerical
convergence versus interpolation order with mesh M2.
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Figure II.40: DGTD results with semi-inĄnite Cu layer at the bottom. Square pixel with
a 1D grating, conĄguration C4. Volumic absorption in the internal Si volume. Numerical
convergence versus interpolation order with mesh M3.
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Figure II.41: DGTD results with semi-inĄnite Cu layer at the bottom. Square pixel with
a 1D grating, conĄguration C4. Volumic absorption in the internal Si volume. DGTD-P5

method.
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difference introduces small geometrical variations. These differences were not impacfull
for the three simple structures (see section II.6.1) and for the Ćat square pixel (see sec-
tion II.6.2), but for a nanostructured pixel, the light is diffracted on the grating, and
then bounces back and forth on both the DTI and the bottom metallic reĆector. This
diffraction is highly dependent on the trenches size (see section III.1). Thus, a small
geometrical error has a high impact on the resulting absorption spectrum, due to the
multiple reĆections on all interfaces.

A more detailed discussion about simulation time is given in the Ąnal conclusion of
this chapter.

Finally, these DGTD simulations of a nanostructuring of the square pixel illustrate how
important gratings are in order to improve the performance of CMOs imagers. A complete
optimization of gratings parameters is performed on a 2D structure in the chapter III.
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II.6.4 FDTD and RCWA, octogonal pixels

In this section, we compare our implementation of the RCWA method, described in
section II.5, and the reference FDTD software, from Lumerical. The chosen structure is
a nanostructured octogonal pixel, in order to focus on a test case particularly difficult for
the FDTD methods, since the staircasing effect is enhanced in the x and y dimensions
at the grating layer. We do not compare with the DGTD method in this case in order
to not increase exponentially the total number of simulations since the previous study
already brings us enough results. This study can be seen as the following of the previous
one, since nanostructured octogonal pixels were not studied in section II.6.2.

The chosen geometry is a pixel with both octogonal DTI and octogonal grating, a
Cu reĆector layer at the bottom and a tungsten shield covering the exterior Si volume.
Various slices on the geometry are available in Fig. II.42. In order to minimize the
permittivity Ąt error, a short wavelength range ([935, 945] nm) is chosen.

The convergence study of the FDTD method is shown in Fig. II.43, and we note that
a meshfactor of 28 is sufficient. The RCWA convergence study is shown in Fig. II.44.
A plane wave truncation of 81 seems enough, even if spectral difference can still be seen
between the 101 and the 81 plane wave truncation. The cost of a single RCWA simulation,
for various plane waves truncation, is shown in Fig. II.45. The spectrum response of both
FDTD and RCWA is shown in Fig. II.46. Despite an obvious discrepancy in the results
from FDTD and RCWA in Fig. II.46, one must remark that the x-axis is zoomed in,
only an interval of 10 nm is compared. This leads us to conclude that the results from
FDTD and RCWA are actually in good agreement.

The simulation time required for a wider plane wave truncation is too important (≥ 50
hours) to obtain more converged RCWA results.

Finally, the results of these benchmarks are discussed in the conclusion.
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Figure II.42: Description of the nanostructured octogonal pixels. Blue material is air,
green is SiO2, brown is Cu, red is Si, black is Tungstene and orange is TaO2. Exact
dimensions are provided since this pixel is not conĄdential.
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Figure II.43: FDTD convergence study on octogonal pixel described in Fig. II.42. The
meshfactor refers to the number of mesh dots per wavelength, adapted to the material
permittivity (see section II.4.1 for details).
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Figure II.45: CPU time of RCWA simulations of Fig. II.44a.
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II.7 Conclusion

In this chapter, three numerical methods solving MaxwellŠs equations in time-domain
(FDTD and DGTD) and in frequency-domain (RCWA) have been presented, and com-
pared on various geometries of interest to our study.

The effect of structuration, enhancing light absorption, has been studied. The grat-
ing introduces a diffractive effect that is particularly sensitive to the exact geometry
simulated: this has been seen with, Ąrst, the pyramidal grating, whose reĆection and
transmission spectra are sensitive to the apex deĄnition (see section II.6.1). Secondly,
the 1D grating on the square pixel, simulated with both FDTD and DGTD, exhibits ab-
sorption spectrum differences (see section II.6.3), mainly due to the non-conformal mesh
used by the FDTD method. Thirdly, the comparison between FDTD and RCWA on
octogonal pixels exhibits a similar discrepancy, since the absorption spectrum of RCWA
is shifted by 2 nm and present amplitude discrepancies of 10%. These studies show the
great importance of conformal numerical methods, since the optical response of nanos-
tructured pixels greatly depends on the geometry considered, in particular with small
geometrical variation, of the scale of a typical FDTD mesh steps.

In this study, we faced a common problem of benchmarking studies. The stake was
to compare numerical methods, which are theoretical algorithms leading to the unique
solution of a well-posed problem, but only software simulations are compared, mean-
ing that all empirical benchmarks compare actual implementation of a given numerical
method, and not the numerical methods by themself. This extra layer, the implementa-
tion, leads to a speciĄc dimensionality of the benchmark problem, often not clariĄed by
the authors of benchmarks studies: the quality of a solver implementation can drastically
impact performance, as well as the tests on speeds performed, and the time allowed on
code optimization. In our study, we compared the reference FDTD software, Lumerical
developed for more than 20 years by a team of experienced developers, with a RCWA
software written in two years by myself and my thesis tutor in STMicroelectronics, with
a DGTD solver implemented by the INRIA team Atlantis since December 2015. How
one could compare solvers speed, when the amount of time and effort to optimize these
software is so unequally distributed ?

Another common problem when benchmarking numerical methods, lies in the deĄnition
of the test case considered. In our study, we choose a series of test cases of increasing
complexity, starting with a simple nanostructured silicon slab to pixel-like structure.
It is worth mentioning that exact pixels were not considered here as a lens must be
added on top of the pixel structures studied. But an exact pixel structure is not given
only by adding a lens: fabrication process cannot exactly etch DTIs with a constant
width in the x and y dimension, nor with a perfect z depth; moreover, every angle in
the structure that is assumed to be 90° is a structural approximation in comparison
to what is actually feasible in the etching process. Such slight differences between the
actual fabricated pixel, and the simulated pixel, can have high importance, since we
conclude previously that structural variations of a few nanometers can impact the optical
response of nanostructured pixels. To respect conĄdentiality, we cannot show pictures of
fabricated pixels in this work. Anyway, the underlying problem of the test case deĄnition
is not speciĄc to pixel benchmarks but to all benchmarks. In Fig. II.47, Delaunay
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meshes of decreasing precision of a rabbit are shown. The question is: which meshes are
mesh of rabbit, and which meshes are not ? Meaning, what is the criteria to select the
required accuracy ? Up to which quality the physical phenomena enhanced by a rabbit
are captured ? For the pixels, one could say that the required accuracy is the one that
allows to improve the pixel performance. But the underlying problem remains, since the
ŠperformancesŠ dependencies on structure variations, even very small variations, must be
clariĄed.

The initial problem was to select the best numerical methods for the simulation of
CMOS pixels. This problem, even with high stakes for both the INRIA Atlantis team,
and STMicroelectronics, is an ill-posed problem. In other words, it does not have a unique
solution. Instead, the solutions lay in a space of at least two dimensions: it depends on the
amount of effort provided to optimize a speciĄc implementation of a numerical method,
and it depends on the structural simpliĄcation that can, or cannot, be accepted.

So a single answer cannot be provided to the problem introduced in this chapter.
About simulation times, one should have remarked the lack of simulation time com-

parisons between the FDTD and DGTD numerical methods on the square pixel. One
example will show the trend: on the nanostructured pixel study in section II.6.3, the
FDTD simulation last 26 hours on 15 CPUs, while the corresponding DGTD results was
obtained after 3 hours, on 448 CPUs. Assuming equivalent CPU performances, and as-
suming that the simulation times scales linearly according to the number of CPUs, the
DGTD solver is 3.4 times slower than the FDTD solver. This particular example shows
that the DIOGENeS software is usable only by companies that can access hundred of
CPUs. STMicroelectronics has not such ressources, and thus cannot use this software for
the daily optical simulations of their pixels. However, this conclusion must be tempered,
since the two compared softwars did not receive the same amount of optimizing efforts.

If the physical effect is depending highly on the structure precision, then the conformal
Delaunay mesh used by the DGTD method is highly beneĄcial. This precision might
come at a high numerical costs, and FDTD will be preferred, even with a highly reĄned
cartesian mesh, when the DGTD simulations are too long. This is exactly the strategy
of STMicroelectronics for optical simulations at the moment. RCWA allows to quickly
compute the optical response of a large volume, as long as this volume is homogenous
in the z dimension, while both FDTD and DGTD simulation time, using meshes, will
increase with the volume size. However, whenever a complex geometry is involved, like a
lens, or a not perfectly straight DTIs, the RCWA layers deĄnition will increase linearly
the simulation time, and the FDTD or DGTD methods could be preferred for achieving
both faster and more precise results.
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Figure II.47: Delaunay meshes of a rabbit, of various precision. Taken from https:

//gmsh.info/.
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Chapter III

Nanostructuration optimization
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III.1 Introduction

CMOS image sensors (CISs) for the near infrared range (NIR) are extensively used in
smartphones, laptops, digital cameras, and in various areas such as biological inspection
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[77], Time-of-Flight (ToF) [78] and Ąber optic communication [79]. NIR light, in partic-
ular the wavelength of 940 nm, is mostly used because of its invisibility to the human
eyes, allowing constant illuminations required, for example, by distance measurement or
facial recognition. However, CIS tends to show low efficiency at such wavelengths mainly
because silicon, due to its indirect bandgap, is almost transparent and its absorption is
low.

One way to improve NIR light absorption efficiency in CISs is to use a thicker silicon
layer for a longer optical path. However, this reduces imaging quality, as crosstalk between
pixels is enhanced, and increases the fabrication cost of deep trench isolation (DTI) [80].
Another approach is to use an alternative material, for instance Germanium (Ge) [14],
that exhibits a higher absorption in the NIR light due to its direct bandgap. But the
associated fabrication process is still challenging mainly due to the appearance of defects
[81].

Major improvements so far have been accomplished by the use of a nanostructured pat-
tern on top of silicon substrate. Both plasmonic metal patterning [82]-[83] yielding strong
electric Ąeld enhancement by resonant coupling between photons and electrons in metal,
and diffractive patterning [84] allowing to increase light propagation length and effective
silicon thickness, have shown drastic increase in NIR light sensitivity of CISs. Among the
various patterns used, such as the rectangular array [82], [83] or nanopillar array [85]-[86],
the Inverted Pyramid Array (IPA) [87]-[88] have been used in mass production [89].

The design of such nanoscale patterning schemes heavily relies on numerical modeling
and, in most cases, multi-parametric simulations are performed to obtain an exploitable
picture of the role of each geometrical parameter. Depending on the complexity of the
considered structures, these numerical studies can require a considerable amount of com-
putational resources, especially in the general three-dimensional setting. An alternative
and attractive approach is to resort to a numerical optimization approach for discovering
optimal sets of geometrical parameters. Although such numerical optimization strate-
gies have been extensively considered in the recent years for metamaterial design and
metasurfaces (see in particular [90], their development for nanostructured CMOS image
sensors seems to be less remarkable.

Following these research, a recent work [88] has shown the importance of using a su-
perlattice in order to introduce dissymmetry and improve light absorption. By using a
numerical optimization methodology and considering a two-dimensional model structure,
an improvement of 28.7% in the averaged (from 800 nm to 1000 nm) light absorption
compared to identical pyramid array is demonstrated. In [88], the Covariance Matrix
Adaptation Evolution Strategy (CMAES) optimization method is used in combination
with the Rigorous Coupled Wave Analysis (RCWA) method for the numerical character-
ization of each candidate design.

In this work, we introduce an inverse design approach that combines optical solvers
for the numerical characterization of light absorption in a nanostructured CMOS image
sensor, with a statistical learning-based global optimization method, for goal-oriented
discovery of the optimal patterning parameters.

Firstly, this work optimizes parameters grating of a realistic 2D SPAD with DTI, com-
puting the light absorption with our 2D RCWA in-house solver, reaching an absorption
of 83% at 940 nm. Secondly, following [88], various 3D pattern shapes (ellipsoid, cylinder,
rectangle, pyramidal etc.), for symmetric and unsymmetric gratings, are optimized on a
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simple silicon slab in order to determine which shapes enhance the most absorption in
the 920-980 nm range. This second optimization takes advantage of the geometry versa-
tility of a high order DGTD fullwave solver. Both optimizations are performed with the
Efficient Global Optimization (EGO) method, achieving a convergence to the optimum
within a reasonable number of solver evaluation [90].

III.2 State of the art

As previously mentioned, diffractive grating arrays are used in production for CMOS
imagers in order to enhance light absorption. The problem of improving the performance
of such gratings is thus widely spread within the literature [86, 85, 89, 82, 83]. In the
current section, the concepts and procedures of such studies are presented. We rely
mainly on the article [82] for introducing the physics concepts.

This article proposes a second order plasmonic grating and the concept of resonant-
chamber-like pixels to enhance the near-infrared sensitivity of Si image sensors. It is
demonstrated that second order plasmonic diffraction is efficient, and that an Si ab-
sorption of 48% at 940 nm is obtained. One must remark that the authors focused on
improving plasmonic gratings, whose pillars are made of highly reĆective metals, such as
Ag, Cu, or Al, while we focus in this work on diffractive gratings, usually made of SiO2.
Despites this difference, this article is canonical to present the concept of effective light
trace (or effective light path length).

On a Ćat pixel, the light coming from top is reĆected on the metal layer at the bottom of
the pixel. One could say that the effective path length is equal to two times the thickness
of the Si layer. On Fig. III.1, extracted from [82], the effect of a grating is represented
schematically. The light is coming from the top, with a null incident angle. Then the
light is diffracted by the grating, impinging with an incidence on the DTIs. And then
the light is reĆected on the DTI, bouncing back and forth. From, Ąrstly the diffraction
by the grating, and secondly the multiple reĆections on the DTI, a longer "effective light
path" comes into play.

Two equations govern the effective light path: Ąrstly, the light diffraction angles, noted
θd, of an incident light of angle θi, on a symmetric Si grating of period p, is:

θd = arcsin

(
sin (θi) +

lλ

nSip

)
, (III.1)

where l is the diffraction order (l ∈ Z), λ is the wavelength in vacuum, and nSi is the
Si refractive index. Secondly, the reĆectance on the DTIs, R, is computed with Snell
law, that links the angle of the incident light (on the DTI), θi,DT I , and the angle of the
transmitted light, θt, and by the Fresnel coefficient

rp =
Nt cos(θi,DT I) − ni cos(θt)

Nt cos(θi,DT I) + ni cos(θt)
, (III.2)

rs =
ni cos(θi,DT I) −Nt cos(θt)

ni cos(θi,DT I) +Nt cos(θt)
,

Rp = (rp)2,

Rs = (rs)
2,
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ni sin(θi,DT I) = nt sin(θt) (Snell law). (III.3)

where ni is the real index of refraction of the incident medium; Nt is given by Nt =
nt − ikt, where nt is the real index of refraction of the substrate medium, and kt is
its extinction coefficient. We provide only the single interface Fresnel coefficient in Eq.
III.2. These equations are equivalent to considering DTIs of inĄnite thickness. For DTIs
of Ąxed thickness (as also considered in [82]), one must use the multiple interface Fresnel
coefficients, available in [24]. Finally, the reĆectance on the Si/DTI interface is a function
of both the incident light angle on the DTI, θi,DT I . and the DTI thickness. An example
of such reĆectance map is shown in Fig. III.2.

From Eq. III.1 and Eq. III.2, the procedure to improve light absorption is the following:
the angle of diffraction, θd, given by Eq. III.1, is equal to the angle of the incident light
on the DTI, θi,DT I , of Eq. III.2 and thus it must be chosen to maximize the reĆectance
on the DTIs. The multiple reĆections on the DTIs increase drastically the absorption,
and result in a "resonant-chamber-like pixel" [82]. The author even pushed forward such
theory by analyzing the serie resulting from the multiple reĆections on the DTIs, thus
creating a new Ągure of merit by computing the effective light trace as a function of R
(see Fig. III.3).

This contribution is surely interesting, since it provides a physical intuition of the
resonances phenomenon. But, as always, the claim of a breakthrough result is hiding the
underlying hypothesis of such analysis: what is not explicitly written in [82] ? what is
the axiom that they did not clarify ?

The hidden axiom is the following: the analysis of a "resonant-chamber-like pixel" can
be performed independently on the different parts of the pixel. In other words, it is
possible to isolate both the grating on one hand, and the DTI on the other hand, in order
to model the resonances that occur in the whole pixel.

In our work, we claim that the analysis of the resonances cannot be fully performed
by summing the modeling of, Ąrst, the grating, and then, the DTI. Furthermore, the
resonances are always coupled resonances, thus depending on all parameters not inde-
pendently. In contrast to [82], we take a step back, and the resonances resulting from a
diffraction grating, of a SPAD pixel with DTIs are considered as a function of all geomet-
rical parameters. A resonance is here deĄned simply as a peak in the absorption proĄle
(see for instance Fig. III.15a). Finally, increasing the light absorption at 940 nm in a
pixel is equivalent to positioning a resonance exactly at 940 nm, instead of increasing the
effective path length.

Mathematically, this methodology consists of treating the optical absorption, of the
inner Si, as a black-box function,

f(λ, p1, p2, ... , pn) := Aλ,p1,p2, ... ,pn
, (III.4)

where λ is the wavelength of the incident light, and pi are all the geometrical parame-
ters that will be deĄned in the following. Positioning a resonance exactly at 940 nm is
equivalent to the maximization problem

max
p1,p2, ... ,pn

f(940, p1, p2, ... , pn), (III.5)
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and increasing absorption light on an NIR interval, for instance [920, 980] nm, is equivalent
to the maximization problem

max
p1,p2, ... ,pn

∫ 980

920

f(x, p1, p2, ... , pn)dx. (III.6)

The black-box function f can be evaluated on a set of parameters pi for i = 1, ..., n
with an optical solver. Then the maximization problem can be solved as an optimization
problem.

In order to minize the total number of evaluation, the optimization is performed with
the Bayesian Optimization method, also referred as Efficient Global Optimization (EGO).
With such optimizer, the black-box function f is modeled by a surrogate gaussian process
(see section III.3.2.3).

For simplicity, since we aim to demonstrate the validity of our methodology, we optimize
in this work only TM polarized incident light.

In the following, Ąrstly the optimization methodology is described in section III.3.
Secondly, in section III.4 an optimization of a 2D realistic SPADs is performed in order
to position a resonance exactly at 940 nm. Thirdly, in section III.5, a 3D optimization
is performed on a simple Silicon slab, in order to investigate the performance of various
grating shapes.

Figure III.1: This Ągure is extracted from [91]. Schematic diagram of resonant-chamber-
like pixels with plasmonic diffraction. Effective light trace is increased by reĆections.
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Figure III.2: This Ągure is extracted from [82]. Dependance of reĆectance (a) and trans-
mittance (b), of SiO2 DTI on incident angle and DTI thickness. These heatmaps are
obtained with the multiple interface Fresnel coefficient (see [24]).

Figure III.3: This Ągure is extracted from [82]. ELT is computed using ELT = R(1 −
Rk)/(1 −R), where k is the number of reĆections and R is the reĆectance of the Si/DTI
interface.
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III.3 Bayesian optimization

In this section, the Bayesian optimization framework and the EGO method in partic-
ular, as well as all the underlying probability concepts, are recalled.

III.3.1 Introduction

Optimization is an essential tool for Ąnding the best solution among the set of all
feasible solutions. When coupled to a numerical solver, it allows efficient prototyping by
reducing the total number of solver evaluations, especially when compared to standard
parameter sweeps. When the number of parameters is high, or equivalently when the
set of all feasible solutions is of high dimension, or when parameters effects are coupled,
using an efficient optimizer leads to a drastic reduction of computational cost.

Bayesian optimization 1 is deĄned by Jonas Mockus in [92] as an optimization technique
based upon the minimization of the expected deviation from the extremum of the studied
function. The objective function is treated as a black-box function. A Bayesian strategy
sees the objective as a random function and places a prior over it. The prior, a surrogate
gaussian process model for EGO, captures our beliefs about the behavior of the function.
After gathering the function evaluations, which are treated as data, the prior is updated to
form the posterior distribution over the objective function. The posterior distribution, in
turn, is used to construct an acquisition function (often also referred to as merit function)
that determines what the next query point should be.

One of the earliest bodies of work on Bayesian optimization that we are aware of are
[93] and [94]. Kushner used Wiener processes for one-dimensional problems. KushnerŠs
decision model was based on maximizing the probability of improvement (see Eq. III.57),
and included a parameter that controlled the trade-off between Śmore globalŠ and Śmore
localŠ optimization, in the same spirit as the Exploration/Exploitation trade-off.

Meanwhile, in the former Soviet Union, Mockus and colleagues developed a multi-
dimensional Bayesian optimization method using linear combinations of Wiener Ąelds,
some of which was published in English in [92]. This paper also describes an acquisition
function that is based on myopic expected improvement of the posterior, which has been
widely adopted in Bayesian optimization as the Expected Improvement function (see Eq.
III.58).

In 1998, Jones [95] used Gaussian processes surrogate together with the expected im-
provement function to successfully perform derivative-free optimization and experimental
design through an algorithm called Efficient Global Optimization, or EGO.

In the rest of this document, Bayesian optimization will always refer to EGO.

III.3.2 Preliminaries on probability theory

First we recall the usual probability deĄnitions. In order to describe brieĆy but ac-
curately the theoretical background of Bayesian optimization, we Ąrst deĄne random
variables, secondly random vectors are deĄned, followed in the third step by random

1This brief historical background is freely inspired from the documentation of the SMT python pack-
age.
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processes, focusing on gaussian processes. These deĄnitions are of increasing complexity:
the random vectors are deĄned upon the random variables, then the random processes
are deĄned upon the random vectors.

III.3.2.1 Random variables

For a proper deĄnition of measure, probability space, tribe, borelian, borelian measure,
measurable function, independent random variable, we refer to [96]. We focus in this
section only on a minimal introduction.

A real random variable (r.v.) is a measurable function, noted X, from a probability
space (Ω,F ,P) and with value in R provided with the borelian tribe B (R). The law of
a r.v., X, is the measure of probability, noted PX deĄned on R by,

PX(A) = P (X ∈ A) = P (ω ∈ Ω♣X(ω) ∈ A) , ∀A ∈ B (R) . (III.7)

A r.v. is said to be discrete if its values are in a discrete subset of R. A r.v. is said
to have a density, with density f , if there exists a function f , deĄned on R, positive or
zero, integrable on R, continuous almost everywhere, and of integral equals to 1, such
that we have:

∀A ∈ B(R), PX(A) =

∫

A

fdλ, (III.8)

or equivalently, for all a, b in R such as a < b, we have:

PX([a, b]) =

∫ b

a

f(x)dx. (III.9)

In the following, we focus only on real random variables that admit a density.

The usual quantity associated to a r.v., with density f , are:

• the expectation, also named the mean, noted E[X] and deĄned as:

E[X] =

∫

R

xf(x)dx. (III.10)

The expectation is linear. A r.v. is said to be centered when E[X] = 0.

• the variance, noted Var(X) and deĄned as:

Var(X) = E
[
(X − E[X])2] , (III.11)

A r.v. is said to be reduced when Var[X] = 0.

• the standard deviation, noted σX and deĄned as:

σX =
√

Var (X). (III.12)

The covariance of two r.v. X1 and X2, having Ąnite variance is noted Cov (X1, X2),
and it is deĄned by:

Cov (X1, X2) = E [(X1 − E[X1]) (X2 − E[X2])] . (III.13)

The covariance of two r.v. is a bilinear application. We clearly have Var(X) = Cov(X,X).
So the variance is a quadratic application. If X1 and X2 are independent, then one has
Cov (X1, X2) = 0. The reciprocal is false.
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Given µ ∈ R and σ ∈ R+, a gaussian, or normal, variable of expectation µ and
variance σ2 is a r.v. whose law is noted N (µ, σ2) and its density, f , is:

f(x) =
1√

2πσ2
exp


−(x− µ)2

2σ2


. (III.14)

Fig. III.4 shows two examples of gaussian distribution corresponding to the gaussian
law N (0, 0.5) and N (1, 0.75). A gaussian variable, Z, of law N (µ, σ2) is also deĄned as
the translated and inĆated of the centered reduced gaussian law, Z0, of law N (0, 1). I.e.
we have the following law equality:

Z = µ+ σZ0. (III.15)

−2 −1 0 1 2 3 4 5
0
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N (2, 0.75))

Figure III.4: Density of various gaussian laws.

To summarize, a r.v. is given by its value space and its law of probability. The
expectation is equivalent to the mean and the variance is describing the dispersion around
this mean value.

III.3.2.2 Random vectors

A random vector X = (X1, ..., Xn) is an measurable application from (Ω,F ,P(Ω))
to (Rn,B(Rn)). For all i, the random variable Xi is called the ith marginal. Each random
vector has a law of probability on (Rn,B(Rn)), noted PX. A random vector is said to
be discrete if the set of all its value X(Ω) is discrete in Rn. A random vector admits a
density, also named joint density, noted f(x1, ..., xn), if:

dP(x) = f(x1, ..., xn)dx1...dxn ⇔ PX(A) =

∫

A

f(x1, ..., xn)dx1...dxn, A ∈ B(Rn).

(III.16)
In such a case, we have, as expected, f ≥ 0 on Rn and

∫
Rn f = 1. The expectation of a

random vector X is the vector of the expectation of its marginals:

E [X] = (E [X1] , ...,E [Xn]) . (III.17)
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The covariance matrix of a random vector X is the square, symmetric, positive matrix:

KX = Cov(X) = (Cov (Xi, Xj))1≤i,j≤n . (III.18)

If E[X] = 0n, the vector X is said to be centered. If a random vector, X, admits a density,
f , then the ith marginal Xi admits as density:

fXi
(xi) =

∫

Rn−1

f(x1, ..., xn)dx1...dxi−1dxi+1...dxn. (III.19)

From the density of a vector, one can get the density of its marginal. However the
contrary is not true in all generality. Actually, the density of the vector is the product
of the density of all marginals if and only if all its marginals are independent. If all
marginals of a random vector are independent, then its covariance matrix is a diagonal
matrix.

One example of random vectors is given by gaussian vectors. A random vector X is
said to be gaussian if and only if all linear combinations of its marginals are real gaussian
random variables. Namely:

⟨a,X⟩ = a1X1 + ...+ anXn, (III.20)

is a gaussian random variable, for all a in Rn.

If X is a gaussian vector, then the real random variable ⟨a,X⟩ has for law

⟨a,X⟩ ∼ N
(
⟨a,E[X]⟩, atCov(X)a

)
, (III.21)

where a is a column vector of Rn, E[X] is the expectation of X (see Eq. III.17), and
Cov(X) is the covariance matrix of X (see Eq. III.18).

Indeed, by hypothesis, ⟨a,X⟩ is gaussian. And its expectation and its variance are:

E [⟨a,X⟩] = E


n∑

i=1

aiXi

]
=

n∑

i=1

aiE [Xi] = ⟨a,E[X]⟩, (III.22)

Var (⟨a,X⟩) = Var


n∑

i=1

aiXi


=

n∑

i,j=1

aiajCov (Xi, Xj) = atCov (X) a, (III.23)

where we used the linearity of the expectation and the bilinearity of the covariance (see
section III.3.2.1). With a = (1, 0, ..., 0) in Eq. III.21, one Ąnds, as expected, that X1

has for law N (E[X1],Var(X1)). More generally, for all 1 ≤ i ≤ n, Xi has for law
N (E[Xi],Var(Xi)).

Given a gaussian vector with an invertible covariance matrix, its joint density is given
by:

PX(x)dx =
1

((2π)ndet [Cov(X)])1/2
exp

(
−1

2
⟨(x − E[X]),Cov(X)−1(x − E[X])⟩

)
dx.

(III.24)
This law is noted N (E[X],Var(X)) and it is fully known once given its expectation vector
and its covariance matrix.
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Let X = (X1, ..., Xn) and Y = (Y1, ..., Ym), with n and m positive integer, be jointly
Gaussian vectors, where:

[
X
Y

]
∼ N

([
E[X]
E[Y]

]
,

[
A C
CT B

])
= N

[
E[X]
E[Y]

]
,

[
Ã C̃
C̃T B̃

]−1

, (III.25)

then the marginal law of X is:

X ∼ N (E[X], A), (III.26)

and the conditional law of Y given X is:

Y♣X ∼ N (E[Y] + CTA−1(X − E[X]), B − CTA−1C), (III.27)

or

Y♣X ∼ N (E[Y] + B̃−1C̃T (X − E[X]), B̃−1). (III.28)

The exact deĄnition of a conditional law is fairly complex, and, in our view, not enough
explained though the deĄnition of conditional events by the usual Bayes formula. Thus,
we refer to [97, 98] for a complete deĄnition.

III.3.2.3 Random processes

A random process, Z := (Zx)x∈D is a set of real random variables indexed by a set D.
If D is a Ąnite set, then Z is a random vector. If D = N, then Z is a series of random
variables. More generally, if D ⊂ Z, then Z is said to be discrete. Usually, a random
process is interesting by itself when D ⊂ Rd for a given d in N∗, or D = R+. In such
case, when the process is indexed by time (D = R+), the notation Zt is used. And when
the process is indexed by one or several spatial parameters (D ⊂ Rd), the notation Zx is
preferred. In this work, we will use only "spatial" gaussian process, therefore the notation
Zx is used.

A random process depends on two parameters: Zx(ω) depends on x ∈ D (a spatial
parameter), and the random ω ∈ Ω. Both marginals have a different interpretation:

• For a given x in D, ω 7→ Zx(ω) is a real random variable;

• For a given ω, x 7→ Zx(ω) is a real function on D, called a realization or trajectory
of the random process Z.

At Ąrst sight, a random process provides two types of information: all elements of D
are associated to a real r.v., and all these r.v. can be simulated in order to produce one
realization of the random process.

A random process, Z, is characterized by all its Ąnite dimensional laws, deĄned as,
the law of all Ąnite vectors (Xt1 , Xt2 , ..., Xtn

), for all t1, ...tn in D, n in N∗. So deĄning
a random process is equivalent to deĄning all its Ąnite dimensional laws. And a random
process has no law by itself, only all its Ąnite dimensional vectors have a law.
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In the current work, we focus on the gaussian process, deĄned as a random process
whose Ąnite dimensional laws are gaussian vectors (see section III.3.2.2). For a complete
introduction, please refer to [99]. A gaussian process, noted Z = (Zx)x∈D, is entirely
characterized by its mean function:

µZ : D → R, µZ(x) = E [Zx] , (III.29)

and its covariance kernel:

KZ : D ×D → R+, KZ(x1, x2) = Cov (Zx1 ,Zx2) . (III.30)

Indeed, given n in N∗ and X := ¶xi ♣ i ∈ [[1, n]]♢ in Dn, one gets the mean vector
and the covariance matrix of the gaussian vector Z(1,n) := (Zx1 , ... ,Zxn

) from the mean
function, µZ , and the covariance kernel, KZ , by:

E
[
Z(1,n)

]
:=




E [Zx1 ]
...

E [Zxn
]


 =



µZ(x1)
...

µZ(xn)


 (III.31)

and,

Var
(
Z(1,n)

)
:=

[
Cov

(
Zxi

,Zxj

)]
1≤i,j≤n

= [KZ (xi, xj)]1≤i,j≤n = KZ
n (X). (III.32)

where KZ
n (X) is the covariance matrix associated to the covariance kernel KZ , i.e.,

∀n ∈ N∗, ∀X ∈ Dn, KZ
n (X) := [KZ (xi, xj)]1≤i,j≤n . (III.33)

The covariance kernel of a gaussian process is, by deĄnition, deĄnite positive. Explicitly
KZ has the following property:

∀n ∈ N∗, ∀X ∈ Dn, ∀A ∈ Rn, ⟨A, KZ
n (X) A⟩ ≥ 0. (III.34)

where ⟨·, ·⟩ is the usual scalar product of Rn, and KZ
n is deĄned by Eq. III.33.

In the next section, we focus on how one can simulate a realization of a gaussian process
given its mean function and its covariance kernel. Then the different types of covariance
kernels are described.

III.3.2.4 Simulation of a Gaussian random process

Generating a realization of a gaussian process is equivalent to simulating a gaussian
vector. For instance, suppose given a centered gaussian process, Z, on the interval
[−6, 6] of known covariance kernel Σ. Generating a realization of Z is done by picking
a sample, ¶xi ♣ i ∈ [[1, n]]♢, in [−6, 6], and simulating the corresponding gaussian vector
(Zx1 , ... ,Zxn

). The more points in the sample the more reĄned is the realization. Thus,
in the following, we describe how to simulate a gaussian vector.
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Simulating a gaussian vector is possible from multiple simulations of independent real
gaussian variables. At least three methods (Cholesky, Singular Value Decomposition and
Eigen decomposition) exist and all of them rely on the decomposition of the covariance
matrix Σ. In the following we present the simulation method based on the Cholesky
decomposition.

The covariance matrix Σ is, by deĄnition, symmetric positive, and has a Cholesky
decomposition, Σ = LLT , where L is a triangular inferior matrix. From the Cholesky
decomposition, one can compute the inverse matrix by Σ−1 = (L−1)TL−1 and the deter-
minant of Σ. Given a gaussian vector, Zn ∼ N (µn,Σn), to simulate. Then, with the
Cholesky decomposition Σn = LLT and the vector of n independent gaussian variables,
g ∼ N (0n, Inn), one can writes:

Zn = Lg + µn, (III.35)

and we have as expected,

E [Zn] = LE[g] + µn = µn,

Cov(Zn) = E
[
ZnZT

n

]
= LE

[
ggT

]
LT = Σn.

Since all marginals of g are independent, the simulation of the gaussian vector Zn is re-
duced to the simulation of n independent gaussian variables. Finally, these n simulations
can be accomplished, for instance, with the standard Box-Muller method.

Other simulation methods rely on the same principle but on a different decomposition
of the covariance matrix: either with the Singular Value Decomposition or the Eigen
value decomposition 2. The simulation of a correlated (conditional) gaussian vector is
straightforward by combining Eq. III.27 and Eq. III.35.

On Fig. III.5, one can see Ąve uncorrelated realizations of a centered gaussian vector
with an exponential kernel (see Table III.1) of parameter σ2 = 1. On Fig. III.6, one can
see Ąve correlated realizations of the same gaussian vector.

−4 −2 0 2 4

−2

−1

0

1

2

x

Zx

Figure III.5: Five uncorrelated realizations of a gaussian process.

2For instance, the numpy Python package implements all three aforementioned simulation methods
(see the Multivariate normal numpy function).
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Figure III.6: Five correlated realizations of a gaussian process.

III.3.2.5 Covariance kernel

The covariance kernel of a gaussian process, also simply referred as its kernel, contains
all the assumptions on the regularity of the objective function: the regularity of f is
directly determined by the choice of the kernel. For instance if f is periodic, then periodic
kernels are preferred. It is the essential component of the gaussian process surrogate.

For a one dimensional gaussian process (indexed by D ⊂ R), the standard covariance
kernels are given in the Tab. III.1 and illustrated in Fig III.7. Kernels can be combined
by elementwise multiplication of their corresponding covariance matrix. For instance the
local periodic kernel is obtained by the multiplication of the gaussian and the periodic
kernel (see Tab. III.1), and is expressed as:

∀(xa, xb) ∈ R2, Klp (xa, xb) := σ2 exp


− 2

ℓ2
p

sin2


π

♣xa − xb♣
p


exp


− ♣xa − xb♣2

2ℓ2
eq


,

(III.36)
where (σ2, ℓp, ℓeq, p) ∈ (R)4 are its parameters.

For multidimensional gaussian process (indexed by D ⊂ Rd), covariance kernels are
built as tensorial product of unidimensional kernels. The kernel parameters are then
indexed by i in [[1, d]], and allow varying the regularity of the objective function f per
dimension.

For instance, a d dimensional gaussian kernel is expressed as,

∀ (X,X′) ∈
(
Rd
)2
, Kg,d = θ1 exp


−♣xi − x′

i♣2
ℓ2

i


(III.37)

where X = (x1, ... , xn) and X′ = (x′
1, ... , x

′
n). The vector of all its parameters

Θ := (θ, ℓ1, ... , ℓn) (III.38)

is also called the hyperparameters of the kernel Kg,d.
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Kernel name Notation K(xa, xb), ∀(xa, xb) ∈ R2 Parameters

White noise Kwn σ21xa=xb
σ2 ∈ R+

Gaussian Kg σ2 exp


− ♣xa − xb♣2

2ℓ2


(σ2, ℓ) ∈ (R+)

2

Rational quadratic Krq σ2


1 +

♣xa − xb♣2
2αℓ2

−α

(σ2, α, ℓ) ∈ (R+)
3

Periodic Kp σ2 exp


− 2

ℓ2
sin2


π

♣xa − xb♣
p


(σ2, ℓ, p) ∈ (R+)

3

Table III.1: Various covariance kernels illustrated in Fig III.7. Refer to section III.3.2.3
for the deĄnition of a gaussian process and its covariance kernel.

All the preliminaries on probability and the gaussian process are now recalled. In the
next section, we focus on how gaussian processes are used as surrogate models of black-
box function, and then how this gaussian process modeling is used to form an optimizer
called EGO.

III.3.3 Gaussian process surrogates

The regression by gaussian process, or surrogate gaussian process modeling, comes
initially from geology. The theoretical formalization was proposed by Georges Matheron
[100] in the 1960s, naming these methods "kriging" in reference to Danie Krige, an engineer
known for his work on ore deposits [101]. The main idea is to use the prediction of
surrogate models, built on a Ąnite set of observations, to perform interpolation in the
phase set, i.e. in the set of the parameters considered.

III.3.3.1 Noise free predictions

In this section the noise free prediction of a gaussian process surrogate, given a set of
observations, is presented.

In this section, the predictions of a gaussian process surrogate on noise-free observations
are presented. Basically, it explains how the function f can be interpolated by a surrogate
gaussian process, based on the n already known samples.

With D ⊂ Rd, let f : D 7→ R be a black-box function to be predicted and
suppose given n samples ¶xi ♣ i ∈ [[1, n]] ♢ in (D)n yielding the noise free responses
¶ yi ♣ i ∈ [[1, n]] ♢ in (R)n, i.e. we have, for a given n ∈ N∗

∀i ∈ [[1, n]], yi = f(xi). (III.39)
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Figure III.7: Kernels of Table III.1 illustrated. If not specified, parameters value are set
to 1.

First, we suppose that f is a realization of a centered gaussian process Z =
(Zx)x∈D, with covariance kernel K i.e. we suppose that:

∃Z, ∃ω0 ⊂ Ω, such as ∀x ∈ D, f(x) = Zx(ω0) (III.40)

and that n events already occurred:

∀i ∈ [[1, n]], ∃ωi ∈ Ω, such as yi = f(xi) = Zxi
(ωi). (III.41)

The prediction of f(xn+1) for xn+1 in D\¶xi ♣ i ∈ [[1, n]]♢ can then be rewritten as a
real conditional random variable:

Zxn+1 ♣ Z(1,n), (III.42)

where Z(1,n) is the centered gaussian vector associated with the n known samples,

Z(1,n) := (Zx1 , ... ,Zxn
)T , (III.43)

with covariance matrix Kn, and where the T exponent marks the transpose operator.
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In all generality, the law of the gaussian vector Z(1, n+1) is given by deĄnition as,

N (0n+1, Kn+1) , (III.44)

By rewriting Kn+1 as a block matrix,

Kn+1 =

[
Kn C

CT D

]
(III.45)

where

C =



K (x1, xn+1)

...
K (xn, xn+1)


 , (III.46)

is a vector of size (n, 1) and

D = K (xn+1, xn+1) , (III.47)

is real. The law of Zxn+1 ♣ Z(1,n) is directly known by applying Eq. III.27:

Zxn+1 ♣ Z(1,n) ∼ N
(
CTK−1

n Z(1,n), D + CTK−1
n C

)
, (III.48)

Since we supposed that the n events deĄned by Eq. III.41 already occurred, the prediction
of f(xn+1) is a gaussian real variable, and it has for law:

Zxn+1 ∼ N
(
CTK−1

n Yn, D + CTK−1
n C

)
, (III.49)

where

Yn =



y1
...
yn


 . (III.50)

To summarize, the use of a gaussian process modeling allows to deĄne, for each element
of D, a corresponding gaussian variable whose mean and variance are depending on the
kernel of the gaussian process and the observations. The two mean and variance function
of the predictions are usually noted µ̂ and σ̂. In the case of noise-free predictions, we
have:

∀x ∈ D, µ̂(x) = CTK−1
n Yn,

σ̂(x) = D + CTK−1
n C. (III.51)

On Fig. III.8, the mean and variance prediction functions of a noise-free gaussian process,
conditioned by eight observations, are shown for a prediction of the sin function.
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Figure III.8: Mean and variance function of a noise-free gaussian process, conditioned by
eight observations. In this example, f is the usual sin function.

III.3.3.2 Noisy predictions

In this section, the predictions of a gaussian process surrogate on noisy observation are
presented.

Firstly the noise in observation is taken into account by adding a small value to the
function evaluation. We have,

∀i ∈ [[1, n]], yi = f(xi) + εi, (III.52)

where εi ∈ R are supposed to be independent and identically distributed, following a
centered gaussian variable of variance σε, i.e. we supposed that:

∀i ∈ [[1, n]], εi ∼ N (0, σε) . (III.53)

Repeating the steps of section III.3.3.1, one gets, for each element of D, a prediction
following a gaussian variable whose mean and variance are depending on the kernel of
the gaussian process and the observations. In the case of noisy predictions, we have:

∀x ∈ D, µ̂(x) = CT (Kn + σεIn)−1 Yn,

σ̂(x) = D + σε + CT (Kn + σεIn)−1 C. (III.54)

where Yn is the column vector whose marginals are deĄned with Eq. III.52, C, D and
Kn are identical to section III.3.3.1. On Fig. III.9, the mean and variance prediction
functions of a noisy gaussian process, conditioned by Ąve observations, are shown for a
prediction of the sin function.
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Figure III.9: Mean and variance function of a noisy gaussian process, conditioned by Ąve
observations. In this example, f is the usual sin function.

In the case of the EGO, the choice of considering noise-free or noisy predictions is
included within the algorithm itself, and σε is an hyperparameter of the gaussian process
surrogate, identically to the covariance kernel hyperparameters deĄned in section III.3.2.5.
In section III.3.4.2, the method to calibrate the hyperparameters is described.

III.3.3.3 Design of experiment

Previously in section III.3.3.1 and III.3.3.2, we supposed given the f function evaluation
on a sample of the domain D ⊂ Rd. We explain now how the sample, also referred as
the design of experiment (DoE), is chosen. To simplify notations, we suppose for the
current section that D = [0, 1]d.

The simplest method to build a DoE is to select linearly spaced dots. This method is
also referred as the uniform sampling methodology, and it is illustrated in Fig. III.10,
where a 2D uniform sampling of 25 dots is performed on the unit square [0, 1]2. Even if
this method might seem interesting at Ąrst sight, it is not recommended. Indeed, the size
of the DoE increases exponentially with the dimension of D. And f might be determined
by a subset of D of lower dimension, leading to a large number of unnecessary function
evaluations.

The standard method for building a DoE for a Bayesian optimiser is the Latin Hy-
percube Sampling (LHS) one [102]. It consists of dividing each dimension of D in n
uniform intervals in order to mesh D, then each subinterval will contain a sample, for
each dimension. An example of a 25 dots LHS of the unit square is shown in Fig. III.11.
The uniform distribution within each dimension is clearly visible: each the Ąve intervals
of length 0.2 ([0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8] and [0.8, 1.0]), on both dimensions, or
axis, contain Ąve sample dots. And more precisely, the 25 intervals of length 1

25
, on each

dimension, or axis, all contain one sample dot.
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In order to select among the n!d−1 possible LHS, various criteria exist, such as a sta-
tistical criterion from [103] or a uniform criterion where the minimal distance between
two observations is maximized (see [104]). In practice, only a few LHS are generated and
then the best, according to one of the aforementioned criteria, is selected.
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Figure III.10: Uniform 2D sampling of 25 dots of the unit square.
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Figure III.11: 25 dots Latin Hypercube sampling.

The predictions of a black-box function with a gaussian process surrogate are now clar-
iĄed for both noise-free and noisy observations. In the next section, the EGO algorithm
is presented.
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III.3.4 EGO

In this section, the EGO algorithm is presented, followed by its two speciĄcities, the
determination of the hyperparameters, and the merit function (or acquisition function).
Finally a 1D example is provided.

III.3.4.1 Algorithm of EGO

This section summarizes the main steps of a global efficient algorithm. The inputs are:

• The parameter space, D, a subset of Rd,

• The size of the DoE, n in N∗,

• The covariance kernel, K,

• The merit function fmerit.

The output is the solution of the minimisation problem, xsol in D. The steps are the
followings:

• Construction of the LHS (see section III.3.3.3) of size n on the domain D.

• Evaluation of the objective function f on each dot of the LHS.

• For each iteration of the optimization loop,

– Determine the hyperparameters of the covariance kernelK (see section III.3.4.2).

– Determine the new observation xn+1 (see section III.3.4.3).

– Compute the objective function f on the new observation xn+1.

– The value of f(xn+1) is added to the DoE.

The ending criterion of the iterative optimization loop is either a number of iterations, or
a lower bound the merit function must reach, or a standard deviation on the convergence
of the gaussian surrogate model.

In the following sections, we describe, Ąrst, how the hyperparameters of the covariance
kernel are determined, and then how the new observation is selected.

III.3.4.2 Determination of hyperparameters

At the starting point of the EGO algorithm, and for each iteration, the underlying
gaussian process covariance kernel hyperparameters (see section III.3.2.5) must be cali-
brated. These hyperparameters can be determined by the, often costly, cross-validation
method [105], or the maximum log-likelihood method [106], which is described in the
following paragraphs.
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The log-likelihood is usually used in order to avoid working with the law value of the
density of probability. It consists in Ąnding (σε,Θ) that maximizes:

L (σε,Θ) = −n

2
log(2π) − 1

2
log (det (Kn + σεIn)) − 1

2
Y T

n (Kn + σεIn)−1 Yn, (III.55)

where Yn is deĄned by Eq. III.52, Kn by Eq. III.45 and σε by Eq. III.53. Finding this
maximum is by itself an optimization problem. For instance, in the DiceOptim R package
[107] it is solved with the CMA-ES [108] global optimization algorithm.

The determination of the hyperparameters of the gaussian process surrogate is de-
scribed. In the next section, the selection of the next evaluation point is clariĄed.

III.3.4.3 Merit function

The merit function, also called the acquisition function, aims to select a new observation
xn+1 ∈ D, given the prediction on D of the gaussian model Z, conditioned to the n Ąrst
observations. More precisely, the merit function provides a criterion to deĄne the best
next observation, once given µ̂(x) and σ̂(x), for all x in D. We present here three possible
merit functions, more deĄnitions are available and compared in [109].

Lower Confidence Bound (LCB). This Ąrst merit function was introduced by [110]
and consists in minimizing the LCB deĄned as,

∀x ∈ D, LCB(x) = µ̂(x) − ρσ̂(x), (III.56)

where ρ ∈ R allows customizing the weights between the exploring and the simple predic-
tion of the gaussian surrogate model. If ρ = 0, then the LCB(x) is µ̂ and the minimiza-
tion of the merit function is equivalent to the minimization of the prediction. Inversely
if ρ > 1, then the exploration of the gaussian model is enhanced. The choice of ρ relies
in fine on the user.

Probability of Improvement (PI). Introduced by [111], the PI is computed as,

∀x ∈ D, PI(x) = Φ


ymin − µ̂(x)

σ̂(x)


, (III.57)

where ymin is the minimum on all previous observation, and Φ is the distribution function
of the centered reduced normal law (N (0, 1)). The main disadvantage of this merit
function is that it tends to select dots close to the current minimum.

Expected Improvement (EI). This merit function was Ąrst introduced by [112] and
more developed by [113]. It is expressed as the expectation of a r.v. on D, and deĄned
as,

∀x ∈ D, EI(x) = E [max (ymin −Qx, 0)] , (III.58)

where ymin is the minimum on all previous observation, andQx is the r.v. of the prediction
(see section III.3.3.1), i.e.,

∀x ∈ D, Qx := Zx ♣ Z(1,n), (III.59)
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and, given the n previous observations, has for law N (µ̂(x), σ̂(x)) at x ∈ D (see Eq.
III.49). After a computation, involving an integration by part, one gets,

∀x ∈ D, EI(x) = σ̂(x) (u(x)Φ (u(x)) + ϕ (u(x))) , (III.60)

where Φ (resp. ϕ) is the distribution function (resp. the density of probability) of the
centered reduced gaussian law.

Since all merit functions must be minimized, the computation of the next observation
implies using another optimizer in order to compute this minimum. For instance, for
the DiceOptim R package, [107], this minimization problem is solved with the CMA-ES
algorithm [108].

III.3.4.4 Simple 1D example of EGO

On Fig. III.12, a simple 1D example is provided. It consists in minimizing the 1D
black function f(x) = x sin(x) on the interval [−6, 6]. Starting from a DoE of three dots,
the six EGO iterations are illustrated.

On each subĄgure of III.12, the blue curve is the function f . The dashed blue curve
is the mean function of the underlying gaussian process, µ̂. The green area is the 2σ
representation of the covariance function of the gaussian process, σ̂ and the red curve is the
EI (see Eq. III.58). Each iterations consists in Ąrstly determining the hyperparameters
of the gaussian model, resulting in the computation of µ̂ and σ̂, and secondly minimizing
the EI in order to get the next point to evaluate, which is marked in red. During the
EGO iterations, one clearly sees the green area getting smaller, illustrating the decreasing
of the uncertainties. Looking to the sixth iterations, one sees the majority of the function
evaluation where performed toward the actual minimum of 4, 8 of the function of interest
f .

The EGO is now presented, we focus in the rest of this chapter on the actual nanos-
tructuration optimization results we achieved.
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Figure III.12: Illustration of the EGO methodology on a simple 1D analytical function.
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III.4 Grating optimization in 2D

In this section, we focus on the 2D optimization of grating parameters on a realistic
SPADs pixel. For this purpose, we use the Matlab Bayesian algorithm coupled with our
2D in-house RCWA solver (see section II.5). As previously mentioned, we aim to identify
the maximal absorption possible at 940 nm and the corresponding grating parameters
using Bayesian optimization, rather than by using the usual parameters sweep, in order
to minimize the number of total simulation runs.

Following conclusion of section III.2, this maximization problem is equivalent to Ąnding
the geometrical parameters that position a resonance exactly at 940 nm.

Firstly, the realistic SPAD geometry is deĄned, as well as its parametrization. Sec-
ondly, the choice of parameters of interest is clariĄed with a sensibility analysis. Thirdly,
the optimization setup is described, including the number of DoE elements and EGO
iterations, the range of the variables to optimize and the RCWA convergence analysis.
Fourthly, the results of optimizations are presented.

III.4.1 Structure definition

In this section, a realistic 2D nanostructured SPAD structure is deĄned. All the follow-
ing 2D grating optimizations are performed on this structure. In Fig. III.14, a structure
example is provided.

In the z dimension, the structure is deĄned as a stack of layers, according to the RCWA
requirements (see section II.4.3.1). From top to bottom, the layers are:

• An air layer of 3900 nm thick;

• An antireĆective layer of TA2O5, surrounded by a Tungstène shield, 100 nm thick;

• A grating layer of thickness Ldepth, including SiO2 DTI (Deep Trench Isolation).
The grating trenches are made of SiO2;

• A Si layer of thickness Lepi − Ldepth, including SiO2 DTI;

• A reĆective Cu layer 200 nm thick.

Three components are deĄned on the x-axis: the tungsten shield in the antireĆective
layer, the DTI in both the grating layer and the Si layer, and the grating in the corre-
sponding layer. Only the grating parameters will be optimized in this study, keeping the
DTI and tungsten shield deĄnitions constant.

On the x-axis, the DTI are Ldti = 200 nm thick and the DTI center is at a distance
of Lrl,dti = 500 nm to the boundaries of the simulation. The tungsten shield is covering
both the DTI and the outer Si, so it is at a distance of Lrl,dti + Ldti/2 = 750 nm to the
x-boundaries.

As illustrated in Fig. III.13, the grating is deĄned by four parameters:

• Its depth, corresponding to the thickness of the grating layer, noted Ldepth;

• The size of one of its period, noted Lpitch;
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• Its number of period, noted nbpitch;

• Its fill factor, noted f , determining the size of the trench in one period of the grating.
The fill factor is relative, so f ∈ [0, 1].

In one period, we choose that a grating period ends with the SiO2 trench (see Fig.
III.13). So, in order to center the trenches and to respect an equal distance between the
SiO2 trenches and the left and the right DTI, an extra Si pillar of length (1 − f)LP itch

is added on the right of the grating. The total size of the grating, inside the DTI, in the
x-axis, is:

Lgrating = (nbP itch + 1 − f)LP itch, (III.61)

and the total size of the whole structure, in the x-axis, is:

Ltotal = Lgrating + Ldti + 2Lrl,dti. (III.62)

Material permittivity used in this structure are given in Table III.2. The exact value
at 940 nm is obtained by linear interpolation.

For this current work, in order to reduce the total number of parameters considered,
we set two of the grating parameters, f and nbpitch:

• f = 0.5, in order to work with a symmetric pattern, whose Si pillar and Si02
trenches are of equal size in the x axis. This symmetry hypothesis will be specially
studied in the 3D grating optimization section below (see Sec. III.5).

• nbpitch = 10, in order to work on a SPAD with a realistic Ltotal. Indeed, with
Lpitch ∈ [300, 650] nm, one gets Ltotal ∈ [4350, 8025].

The realistic 2D SPAD structure being described, we can focus on the next section on
the parameters selected for the optimization.
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Figure III.13: DeĄnition of Lpitch, f , Lrl,dti and nbpitch of the grating. In this example,
nbpitch is set to 5. Green (respectively blue) rectangles are made of Si (resp. SiO2). An
extra Si pillar of length (1 − f)Lpitch is added on the right to ensure that the grating is
centered, and that the distance between the trenches and the two DTI (left and right)
are equal. In this example, we have: Lpitch = 500 nm, f = 0.5, Lrl,dti = 500 nm and
Ldepth = 200 nm. And thus, we have Lgrating = 2750 nm and Ltotal = 3950 nm.

Name Ref εr εi

Air - 1 0

Si Palik[114] 12.9507 0.0097

SiO2 Palik [114] 2.1060 0

W Palik [114] -0.1655 20.0019

TA2O5 Bright [115] 4.1612 0

Cu Palik [114] -43.4555 4.3978

Table III.2: Permittivity value at 940 nm and material references for the realistic SPAD
2D optimization. W refers to the tungsten.
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Figure III.14: Example of 2D nanostructured SPAD, with parameters, in µm: Lepi = 5,
Lpitch = 0.5, Ldepth = 0.218, Ldti = 0.2 and Lrl,dti = 0.5. nbpitch is equal to 10. Red is air,
black is tungsten, grey is TA2O5, blue is SiO2, green is Si and orange is Cu materials.

III.4.2 Parameters sensibility analysis

In this section, we present a preliminary study of the grating parameters impact on
the inner Si absorption. This study will allow us to deĄne the design space for the
optimization.

The efficiency of a SPAD is correlated to the light absorption in its inner Si volume. In
Fig. III.14, it corresponds to the green rectangle inside the DTI, including the grating.
To get this Ągure of merit from a 2D RCWA simulation, one must compute the volumic
absorption on the inner Si volume. Details on the implementation of the volumic absorp-
tion calculus from our in-house 2D RCWA software (see section II.5) are not provided to
keep the current work concise.

So the Ągure of merit of interest is the absorption in the inner Si volume, at λ = 940
nm. In the rest of our work, it is noted A940. The following parameters study consists in
observing the inĆuence of one grating parameter variation on A940.

In the following, we set the structure parameters, if not varying, to Lepi = 5, Lpitch =
0.5, Ldepth = 0.218. Firstly, one can observe on Fig. III.15a, as expected, the resonant
and oscillating nature of the inner Si absorption according to the wavelength. The whole
goal of our optimization is to position an absorption peak exactly at 940 nm.

Secondly, the Ldepth inĆuence on A940 is shown in Fig. III.15b. The maximum reached
is 57% and the minimum reached is 14%. The variation of amplitude occurs on a wider
range than the other parameters (see below). From this graph, we choose the range of
interest as [300, 600] nm.

Thirdly, the inĆuence of Lpitch is shown in Fig. III.15c. This parameter exhibits mul-
tiple resonances of increasing amplitude, especially when Lpitch < 940. One must remark

164



that increasing Lpitch actually increases the ratio
Lgrating

Ltotal
, leading to higher absorption.

This is for instance visible in the increasing of the lower peak of Fig. III.15c. But despite
the increasing of the ratio, the maximum absorption of 80% is obtained for Lpitch = 685
nm. This shows the well-known fact that the grating is actually diffracting the light,
and thus enhancing absorption, only when its period is at the same magnitude as the
wavelength of the incident light. Since 80% is the higher absorption reached within this
parameter study, we choose for Lpitch the range [300, 650] nm to exclude this maximum
and to challenge the Bayesian optimization to perform equally or better than this maxi-
mum.

Fourthly, the inĆuence of Lepi is shown in Fig. III.15d. The multiple resonances allow
a maximum absorption of 66%. We choose for the optimization the range [4.5, 7] µm.

Finally, this preliminary study allows us to deĄne the range of interest for the grating
parameters Ldepth, Lpitch and Lepi, and to observe the inĆuence of single parameters
variations on A940. In the next section the optimization setup is described.

III.4.3 Optimization setup

In this section, the optimization setup for the 2D grating optimization is described,
including the Bayesian algorithm parameters and the RCWA convergence analysis.

As mentioned in section III.3.4.1, the EGO method requires Ąve initial parameters: the
parameter space, noted D, the size of the DoE, a covariance kernel K, a merit function,
and a stopping criterion.

For the optimization of the inner volumic absorption at λ = 940 nm, on the realistic
2D nanostructured SPAD described above (see section III.4.1), we choose the following
input parameters:

• K is a square exponential kernel (see Tab. III.1);

• The DoE contains 40 elements;

• The merit function is the Expected Improvement (see Eq. III.58);

• The stopping criterion is the number of EGO iterations, set to 460.

We deĄne two optimizations setups, depending on the number of parameters to opti-
mize. The parameters range selected correspond to the range of interest deĄned in section
III.4.2.

The Ąrst setup, denoted as setup 1, is an optimization on both (Lpitch, Ldepth), on the
space D1 = [300, 650] × [300, 600] nm2, keeping Lepi = 6.8 µm constant.

The second setup is an optimization on three parameters, (Lpitch, Ldepth, Lepi) on the
space D2 = [300, 650] × [300, 600] × [4500, 7000] nm3. This setup is denoted as setup 2.
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(c) Lpitch sweep, 851 dots.

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
0

0.2

0.4

0.6

0.8

1

LEpi (µm)

A
9
4
0

(d) LEpi sweep, 1001 dots.

Figure III.15: RCWA 2D computation of the inner Si absorption, as a function of various
parameters, of the structure described in section III.4.1. If not varying, we have Lepi = 5
µm, Lpitch = 500 nm and Ldepth = 218 nm. A940 denotes the inner Si absorption at 940
nm. In each subcation, "X dots" indicates the number of equally spaced x-axis dots that
were simulated.
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In order to perform this optimization, we use a slightly modiĄed version of the bayesopt3

function from the Matlab Global Optimization toolbox. The modiĄcation was performed
on the inner Gaussian process modeling in order to custom the underlying kernel function
and to accept a squared exponential kernel.

The convergence study of the 2D RCWA solver, for the structure described in section
III.4.1, with parameters identical to Fig. III.14, is shown on Fig. III.16. One can see
that 201 plane waves is enough. For the optimization, since Ltotal might be higher, we
select a conservative truncation of 401 plane waves. The simulation time for 401 plane
waves truncation is approximately 1 min on a single CPU.

Finally, the input parameters for the Bayesian optimization are deĄned, the corre-
sponding results of both setup 1 and setup 2 are provided in the next section.
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Figure III.16: RCWA 2D convergence study. A940 is the inner Si absorption at λ = 940.
On the x-axis is the number of plane waves truncation. 250 simulations were run: all
odd numbers from 3 to 501.

III.4.4 Optimization results

In this section, the results of the optimization setups deĄned in the above section are
presented.

III.4.4.1 Setup 1

In this section, the results of the optimization setup 1 are presented.

In Fig. III.17, the objective function for each iterations of both the DoE and the EGO
phases are shown. The blue dots represent the 40 DoE evaluation while the red dots
represent the 460 EGO iterations. The maximum reached, visible on Fig. III.17 as a
black triangle, and the corresponding optimized parameters are:

A940,max,1 = 0.77527, with (Lpitch,max,1, Ldepth,max,1) = (643.53, 356.43) nm2.
(III.63)

3https://fr.mathworks.com/help/stats/bayesopt.html
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The absorption proĄle of the optimized structure is visible on Fig. III.18. The peak
at the 940 nm wavelength is clearly visible and the optimization thus accomplished the
desired goal in positioning a resonance exactly at 940 nm.

In order to extract not only the maximum reached but also the distribution of the best
performing parameters, we represent, in Fig. III.19, the classiĄcation of the evaluated
parameters according to the value of the absorption reached. Basically, one Ąrst deĄnes
the following three parameters classes:

C1
1 =

{
(Lp, Ld) ♣ g (Lp, Ld) ∈ [c1

1, c
1
2]
}
,

C1
2 =

{
(Lp, Ld) ♣ g (Lp, Ld) ∈ [c1

2, c
1
3]
}
,

C1
3 =

{
(Lp, Ld) ♣ g (Lp, Ld) ∈ [c1

3, c
1
4]
}
, (III.64)

where g (Lp,Łd) denotes the black-box function, i.e the inner volumic absorption com-
puted by the 2D RCWA solver on the structure with parameters (Lpitch, Ldepth) = (Lp, Ld),
and where,

c1
1 = 0.8,

c1
2 = 0.75,

c1
3 = 0.725,

c1
4 = 0.7.

The distribution of classes C1
1 , C1

2 and C1
3 can be seen by plotting these classes on a

Lpitch ×Ldepth graph, or more precisely on the search space D1. as done in Fig. III.19. In
Fig. III.19b, which is already a zoom (recalling that D1 = [300, 650] × [300, 600] nm2),
the distribution of C1

1 , C1
2 and C1

3 is clearly concentrated in a small region of the whole
desing space. It appears that the coupling between the resonances in Ldepth and Lpitch,
that were observed in Fig. III.15b and Fig. III.15c, is maximal only in the subspace
D1,sub := [640, 650] × [340, 440] nm2 of D1. This means, supposing that Lpitch and Ldepth

are searched within D1 and that Lepi = 6.8 µm, that achieving at least 70% of absorption
can only be done within D1,sub. Furthermore, the maximal absorptions are obtained not
only on a square within D1, but rather on a line, as clearly visible in Fig. III.19b. For
informations, recalling that 500 iterations were performed in total, the cardinal of C1

1 , C1
2

and C1
3 are:

#C1
1 = 48, #C1

2 = 41, and #C1
3 = 53. (III.65)

Finally, the Bayesian optimization not only achieved to determine a maximum of 77%
absorption at 940 nm, but it also managed to generate 142 designs that achieve an
absorption of more than 70%. So the topology of the resonance, and the neighbor of the
reached maximum, are known. Thus we obtained both one maximum and a qualitative
information on the resonance, in spacial distribution over the design space.
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Figure III.17: Objective function according to the iterations, for the Bayesian optimiza-
tion of the setup 1 (deĄned in section III.4.3). DoE (resp. EGO) iterations are displayed
in blue (resp. red). The maximum reached is 77% and is marked as a black triangle,
with parameters given in Eq. III.63. The gray line is the maximum reached during the
optimization.
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Figure III.18: Absorption proĄle of the best design for the setup 1. The optimal pa-
rameters are given in Eq. III.63. In order to catch the exact proĄle, 401 equally spaced
wavelengths between 900 and 1000 nm are simulated.

III.4.4.2 Setup 2

In this section, the results of the optimization setup 2, deĄned in section III.4.3, are
presented.

In Fig. III.20, the objective function values for each iteration of both the DoE and the
EGO phase are shown. The maximum reached, visible on Fig. III.20 as a black triangle,
and the corresponding parameters are:

A940,max,2 = 83.953%,

Lpitch,max,2 = 621.195017622117 nm,

Ldepth,max,2 = 283.694395416066 nm,

Lepi,max,2 = 4643.31087203558 nm.
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Figure III.19: DeĄnition and distribution of classes C1
i deĄned by Eq. III.64. On the left,

an illustration on C1
i deĄnition is shown. On the right, the distribution of C1

i is shown.
The Ągure on right is already a zoom on D1 deĄned in section III.4.3. The red square is
the area of interest chosen for the further analysis (see section III.4.5).

Since parameters deĄned at a precision of 10−21 m are actually physically meaningless,
the absorption proĄle for the best design (respectively the best design with truncated
parameters) is shown in Fig. III.21 in blue (resp. orange). As visible on this Ągure,
the truncated optimal parameters only provide an absorption of 75.558%, illustrating the
high sensitivity of the resonance peak in all three parameters considered, and conĄrming
the observation of section III.4.2.

Similarly to the presentation of the optimization results of setup 1, we investigate the
distribution of the best performing parameters by deĄning the following classes:

C2
1 =

{
(Le, Lp, Ld) ♣ g (Le, Lp, Ld) ∈ [c2

1, c
2
2]
}
,

C2
2 =

{
(Le, Lp, Ld) ♣ g (Le, Lp, Ld) ∈ [c2

2, c
2
3]
}
,

C2
3 =

{
(Le, Lp, Ld) ♣ g (Le, Lp, Ld) ∈ [c2

3, c
2
4]
}
,

C2
4 =

{
(Le, Lp, Ld) ♣ g (Le, Lp, Ld) ∈ [c2

4, c
2
5]
}
, (III.66)

where g (Le, Lp,Łd) denotes the black-box function, i.e the inner volumic absorption com-
puted by the 2D RCWA solver on the structure, with parameters (Lepi, Lpitch, Ldepth) =
(Le, Lp, Ld), and where,

c2
1 = 1.0,

c2
2 = 0.8,

c2
3 = 0.75,

c2
4 = 0.725,

c2
5 = 0.7.

In Fig. III.22, both the deĄnition of C2
i and their distribution are shown. Similarly to the

results of setup 1, the higher absorption designs are spread within determined subspaces
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of the search space D2. More precisely, the optimal design (with parameters given by Eq.
III.66) lies in the resonance regions D2,sub 1, while a wider regions, noted D2,sub 2, contains
the majority of the C2

i classes members, where we deĄned:

D2,sub 1 = [4500, 4700] × [610, 625] × [270, 300] nm3, (III.67)

D2,sub 2 = [6000, 6500] × [620, 645] × [250, 380] nm3, (III.68)

and where D2,sub i are described on the triplets (Lepi, Lpitch, Ldepth). For informations, the
cardinal of the classes C2

i are:

#C2
1 = 6, #C2

2 = 43, #C2
3 = 45, and #C2

4 = 66. (III.69)

Finally, the optimization on three parameters not only provided a higher maximum
than 80% initially found in section III.4.2 but also a dispersion of the higher perform-
ing designs, allowing a deduction of the area of high coupled resonances. And despite
the maximum of 83% corresponds to an unphysical precision, the Bayesian algorithm
successfully found more than 49 designs achieving an absorption higher than 75%.

In the next section, we perform a further analysis of the optimization results of both
setup 1 and 2, trying to take advantage of the distribution observed on the best per-
forming parameters.
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Figure III.20: Objective function according to the iterations, for the Bayesian optimiza-
tion of the setup 2 (deĄned in section III.4.3). DoE (resp. EGO) iterations are displayed
in blue (resp. red). The maximum reached is 83% and is marked as a black triangle,
with parameters given in Eq. III.66. The gray line is the maximum reached during the
optimization.
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Figure III.21: Absorption proĄle of the best design (blue curve) for the setup 2.
The optimal parameters are given by Eq. III.66. The orange curve is the absorp-
tion proĄle of the best design whose parameters are truncated, i.e. with parameter
(Lepi, Lpitch, Ldepth) = (4643.3, 621.2, 283.6) nm3. In order to catch the exact proĄle,
401 equally spaced wavelengths between 900 and 1000 nm are simulated.
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Figure III.22: DeĄnition and distribution of classes C2
i deĄned in section III.4.3. On top,

an illustration on C2
i deĄnition is shown. On bottom, the distribution of C2

i is shown.
The Ągures on bottom are already a zoom on D2 deĄned in section III.4.3.
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III.4.5 Further analysis

In this section, we investigate the optimization results presented in the previous section.
More precisely, we Ąrst test if the optima reached with the setup 1 (resp. 2) can be
improved, by reĄning the searching space toD1,sub (resp. D2,sub 2). Secondly, we perform a
linear sweep on D1,sub in order to visualize the exact neighborhood of the best performing
designs found for setup 1.

III.4.5.1 Optimization on a finer parameters space

Setup 1

Since the optimum reached for the setup 1 and all the best performing designs are
within the subspace D1,sub of D1, this second optimization aims to check if the optimum
reached is actually an optimum, i.e. if it can be improved.

In Fig. III.23, the objective function for each iteration of both the DoE and the EGO
phases are shown. The blue dots represent the 40 DoE evaluation while the red dots
represent the 460 EGO iterations. The maximum reached, visible on Fig. III.23 as a
black triangle, and the corresponding optimized parameters are:

A940,max,1 = 0.77508, with (Lpitch,max,1, Ldepth,max,1) = (643.63, 359.6) nm2.
(III.70)

This optimum is equal to 77%, and so it is identical to the one reached for the Ąrst
corresponding optimization, whose results are presented in section III.4.4.1. Actually, the
only difference lies in the dispersion of the objective function to the maximum: comparing
Fig. III.17 and Fig. III.23, one clearly sees that the objective function is closer to the
maximum of 77% on Fig III.23.

Finally, this second optimization on the Ąner search space D1,sub conĄrms that the Ąrst
optimization on D1 found the optimum of 77% absorption at 940 nm.

Setup 2

Since the optimum reached for the setup 2 is within D2,sub 1 while the best perform-
ing design is inside the subspace D2,sub 2, this second optimization aims to check if the
optimum reached is a global optimum.

In Fig. III.24, the objective function values for each iteration of both the DoE and the
EGO phase are shown. The maximum reached, visible on Fig. III.24 as a black triangle,
and the corresponding parameters are:

A940,max,2 = 80.714%, (III.71)

Lpitch,max,2 = 649.01 nm,

Ldepth,max,2 = 371.55 nm,

Lepi,max,2 = 6352.7 nm.
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This optimum is lower than the 83% reached in the Ąrst corresponding optimization on
D2, conĄrming that the optimum was reached in this Ąrst optimization. Similarly to
the optimization on D1,sub, the dispersion of the objective function, for the optimization
on the Ąner space D2,sub 1, is lower on Fig. III.24 than the dispersion of the objective
function of the optimization on the larger space D2, visible in Fig. III.21.

Finally, this second study shows that the optimum previously reached is the global
optimum.

III.4.5.2 Setup 1 complete response

In this section, we aim to visualize on D1,sub the neighborhood of the optimum reached
for the Ąrst optimization done on D1. Basically, we select 21 linearly interpolated Lpitch

in the [640, 650] nm interval, and 101 linearly interpolated Ldepth on the [340, 440] nm
interval, and we compute the objective function, namely A940, at each parameters couple
of this grid. The absorption on such a grid is shown on Fig. III.25 as well as the best
performing designs found by the optimization on D1 (on Fig. III.27), or on D1,sub (on
Fig III.26). The main observation are:

• The linear sweep shows the ridge (or line) of coupling resonances that was inducted
by the Ąrst optimization results on section III.4.4.1;

• This ridge of high absorption is itself composed of gaps and peaks, as visible on
Fig. III.25;

• This ridge of high absorption exhibits the higher absorption on the [340, 380] nm
Ldepth interval, as visible on Fig. III.25;

• The Ąrst optimization on D1 identiĄed both this ridge of high absorption and its
maximum in the [340, 380] nm Ldepth interval, as visible on Fig. III.27;

• The 60 best performing designs of the optimization on D1,sub are positioned on this
ridge, as visible in Fig. III.26.

The total number of simulations of this linear sweep, on D1,sub, is 21 × 11 = 2121. This
is four times the number of simulations performed in the Ąrst optimization on the larger
space D1. This simple comparison clearly shows that linear sweeps are not efficient and
relevant for Ąnding coupling resonances. This also justiĄes why such study cannot be
realistically performed on the setup 2, due to the number of needed simulations being
too high.

Finally, this closer study, on the optimum reached for the setup 1, shows that the
Bayesian optimization allows to induce the high coupling resonances area. Consider-
ing the high number of simulations run on this linear sweep, the Bayesian optimization
accomplished such results by minimizing the number of cost function evaluations.
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III.4.6 Conclusion on 2D structure optimization

The initial problem that motivates these optimizations of a 2D realistic SPAD was to
identify the geometrical parameters of interest and to optimize the absorption at 940 nm,
and so position a resonance exactly at 940 nm.

The two optimization setups (deĄned in III.4.4.1 and III.4.4.2) found optimal designs
that exhibit a resonance exactly at 940 nm (see Fig. III.18 and Fig III.21), achieving
at most an absorption of 77% for the setup 1 and 83% for the setup 2. In view of
the reached absorption, and the corresponding absorption proĄle, we consider our initial
problem solved.

Treating the inner Si absorption as a black-box function, and optimizing it with EGO,
allowed us to perform better than the 47% absorption found in [82]. Also, our methodol-
ogy Ąnds an optimum with lower numerical cost compared to a usual linear parameters
sweep (see section III.4.5.2).

Furthermore, using the Gaussian Process surrogate allows to identify the area of cou-
pling resonances on the searched parameters space. Combining the best performing design
of setup 1 and setup 2, the prediction of the underlying Gaussian Process allows to
generate more than 97 (#C1

1 +#C2
1 +#C2

2 = 97) designs presenting an absorption higher
than 75%. This efficiency of the use of gaussian process surrogates must be remembered
for further studies. In particular, the absorption exhibiting multiple coupled resonances
(see Fig. III.15), using a local optimizer, such as conjugate gradient for instance, is not
adapted, and thus it must be avoided.

About the numerical optical solver, the absorption high sensitivity on the geometrical
parameters, as shown in Fig. III.21, points out the importance of using a conformal nu-
merical method, i.e. a numerical method that simulate exactly the structure considered.
The FDTD, for instance, using a cartesian mesh, intrinsically introduces approximation
on the structure interfaces, and thus it adds a crucial error. On the contrary, the DGTD
method, using a conformal mesh, avoids a priori such errors. RCWA is well suited as
long as all the z structure interfaces are normal to the x-axis (respectively the x-y plane)
for 2D simulations (resp. 3D simulations). In this grating optimization of 2D SPADs,
since all the z-interfaces are normal to the x-axis, we initially avoided such errors.

Finally, we can a posteriori claim that the parameter sweep in Lpitch is the most
interesting for investigating the maximum, since it exhibits, in Fig. III.15c, an absorption
peak at 940 nm of the same magnitude as the optimum found for both setup 1 and setup
2.

The main results of the 2D grating optimization of a realistic SPAD are now recalled.
The next paragraphs aims to identify all the limitations of this 2D optimization.

About the SPAD geometry considered, we claimed that the structure of Fig III.14 is a
realistic SPADs since it includes DTIs, and presents a realistic Ltotal and Lepi. However, we
excluded two structural elements that must be taken into account to optimize a structure
closer to the real device, i.e., the lens and the non-perfect metal reĆector. Firstly, a lens,
by focusing the light inside the SPADs, has a great inĆuence on the grating response,
and it should be included in a complete optimization, for instance by varying its radius
of curvature. Secondly, the bottom Cu layer of our SPADs (see Fig. III.14) is a perfect
metal reĆector, while in reality the carrier collection imposes the presence of electrodes

176



that prohibits the use of a perfect reĆector. Thus the use of a partial Cu layer at the
bottom of our structure should be considered.

On polarization, our study is performed entirely in the TM mode. A complete opti-
mization should average the TM and TE polarization.

On the optimum reached 83%, we showed in Fig. III.21 that the corresponding opti-
mum design with truncated parameters reaches only an absorption of 75%, proving the
high geometrical sensitivity of such optimum. This inherently limits the race to the higher
absorption design, since the optimum actually lies in physically meaningless geometrical
variation. However, we brieĆy presented how the process of surrogate modeling can pro-
vide more information than a single optimum: the EGO by itself successfully identiĄed
more than 97 designs exhibiting an absorption higher than 75%. Actually, the use of
gaussian process surrogate is well suited in order to perform both sensibility and classi-
Ącation analysis. In our work, we presented only a simple classiĄcation from the EGO
evaluations, but exact classiĄcation methodology using gaussian processes are available,
for instance in [116, 117]. About the sensitivity analysis, gaussian process surrogates are
also well-suited and already used in literature, for instance in [118, 119, 120]. We limited
our work to EGO, but both the classiĄcation and the sensitivity analysis from gaussian
process surrogate seems promising.

On the parameters of the gaussian process surrogate model, we used only gaussian
kernels and the choice of this kernel was not investigated. Since the gaussian process
kernel contains all the a priori information we have on the black-box function, i.e. the
absorption at 940 nm, and since we showed that the absorption exhibits multiples reso-
nances in Lpitch and Lepi, the use of a periodic kernel, or local periodic kernel (see table
III.1) seems promising.

On the DTI material and parameters, we Ąxed Lrl,dti = 500 nm, Ldti = 200 nm and the
use of SiO2 materials. Even if an appendix (see appendix A) investigated the use of an
absorbing material for DTIs, we did not investigate the inĆuence of the DTI thickness.

More globally, the grating parameters f (see Fig. III.13) is kept equal to 0.5. Thus, we
studied only symmetrical gratings, while we know from [88] that the use of unsymmetrical
grating enhances better absorption. This limitation of the 2D grating optimization is
treated in the 3D grating optimization section below III.5.

Finally, optimizing only a 2D structure intrinsically limits the scope of the optimum
found, since 3D geometry brings speciĄc difficulties. The Ąrst of these difficulties lies in
the choice of the grating shapes considered, and it is investigated in the next section on
3D grating optimization III.5.
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Figure III.23: Objective function according to the iterations, for the Bayesian optimiza-
tion of the setup 1 (deĄned in section III.4.3), on the parameters space D1,sub (deĄned in
section III.4.4.1, and illustrated in Fig III.19b). DoE (resp. EGO) iterations are displayed
in blue (resp. red). The maximum reached is 77% and is marked as a black triangle,
with parameters given in Eq. III.70. The gray line is the maximum reached during the
optimization.
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Figure III.24: Objective function according to the iterations, for the Bayesian optimiza-
tion of the setup 2 (deĄned in section III.4.3), on the parameters space D2,sub 2 (deĄned
in Eq. III.68). DoE (resp. EGO) iterations are displayed in blue (resp. red). The max-
imum reached is 80% and is marked as a black triangle, with parameters given in Eq.
III.71. The gray line is the maximum reached during the optimization.
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Figure III.25: Side view of the linear sweep responses on D1,sub, deĄned in section III.4.5.2
and also shown in Fig. III.27 and Fig. III.26. This surface is generated with 21 linearly
spaced dots on the Pitch axis and with 101 linearly spaced dots on the Depth axis.
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Figure III.26: Linear sweep response on D1,sub (deĄned in section III.4.5.2 and also shown
in Fig. III.25 and III.27) and best performing parameters of the optimization of setup 1
on D1,sub. The black triangle marks the optimum reached, purple triangles mark the 20
Ąrst best performing parameters. Green triangles mark the 60 best performing parameters
(except the Ąrst 20, already marked in purple or black). For the heat map, 21 dots are
linearly spaced on the x-axis and 101 dots are linearly spaced on the y-axis.
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Figure III.27: Linear sweep response on D1,sub (deĄned in section III.4.5.2 and also shown
in Fig. III.25 and III.26) and best performing parameters of the optimization of setup 1
on D1. Black circle marks the element of the class C1

1 , purple circles mark the element of
C1

2 and the green circles mark the element of C1
3 (see Eq. III.64 for C1

i deĄnitions). For
the heat map, 21 dots are linearly spaced on the x-axis and 101 dots are linearly spaced
on the y-axis.
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III.5 Grating optimization in 3D

In this section, the investigation on the best performing 3D grating shape for a sim-
ple structured silicon slab is performed. Taking [88] as a guideline, the importance of
breaking the symmetry in the grating geometry or equivalently the importance of using
a superlattice, is also studied. So the goal of this section is to determine which shape
is improving the best the volumic absorption, for both symmetric and unsymmetrical
gratings, in a simple silicon slab.

For this study, we choose to investigate rectangular, cone, ellipsoid, cylinder, pyramidal
and pyramidal with Ąxed angle gratings (more details are available on section III.5.1.).
However, since one does not simply parameterize continuously 3D shapes from a cuboid
to a cone, we consider various shapes and the optimizations are done independently on
each shape. The numerical optical solver used is the DGTD fullvawe solver from [121] in
order to, Ąrstly, take advantage of the geometry versatility of this solver, and secondly,
optimize on a wavelength range, as described in Eq. III.6.

Firstly, the simple silicon slab structure is described in section III.5.1. Secondly, the
six optimization setups, as well as the geometrical parameters to optimize are clariĄed in
section III.5.2. Finally the optimization results are presented in III.5.3, followed by the
validation of the best design in III.5.4.

III.5.1 Structure definition

In this section the structure, and all the grating shapes studied, are described. Taking
[88] as a guideline, we choose to optimize a more simpliĄed structure than the 2D realistic
SPAD of section III.4: an inĄnite x-y structured slab of Silicon surrounded by air and Cu
in the z dimension, with absorbing condition in both zmax and zmin. The different layers
and their thicknesses are, from top to bottom:

• A 200 nm PML air layer;

• A 200 nm SF air layer;

• A 200 nm TF air layer;

• A 400 nm structured Si layer, whose structuration are Ąlled with air;

• A 200 nm TF Cu layer;

• A 200 nm SF Cu layer;

• A 200 nm PML Cu layer;

where SF and TF denote the enclosing TF/SF volume (the TF/SF decomposition is a
tool to inject the source plane wave. Instead of being imposed on the boundary of the
computational domain, the Ąelds are imposed on an enclosing volume of the computa-
tional domain. See [58] for details). The source is injected on top to the Si layer at a
distance of 200 nm. The superlattice is chosen of size P = 600 nm in both x and y di-
mensions, and the periodic boundary conditions are applied in x and y. In Fig. III.29, an
example structure is shown, with the dimension provided above, where the structuration
pattern is visible in the Si green layer.
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The invariant geometrical parameters of the silicon slab being clariĄed, we now focus on
the parametrization of the grating parameters, which constitute the variables to optimize.
As previously mentioned, we aim to study the inĆuence of different grating 3D shapes,
as well as the symmetric hypothesis, on the absorption inside the Si layer. Six shapes are
studied in this optimization: cone, ellipsoid, cylinder, pyramidal, pyramidal with Ąxed
angle and rectangular gratings.

All these six grating shapes share a superlattice basis deĄnition: on the x-y basis of
dimension P × P nm2, four smaller grating basis are deĄned, of size a1 × a1, a2 × a2,
a2 × a1 and a1 × a2, where a1, a2 and P are linked by the following equation:

P = a1 + a2 + 2gbe, (III.72)

and where gbe is the distance between each smaller basis. In Fig. III.29, an example
of a grating basis is provided with views of the resulting mesh, illustrating the basis
positions as well as the deĄnition of gbe. Since a1 and a2 are linked by Eq. III.72, only
one parameter, a1, is a free variable. We choose for the following the range [50, 250] nm
for a1. For Ąve grating shapes, i.e. cone, ellipsoid, cylinder, pyramidal and rectangular,
four additional parameters are necessary to set the height of each of the four structures.
More precisely, we have the following parameters:

• h1, the height of the grating structure with the a1 × a1 basis,

• h2, the height of the grating structure with the a2 × a1 basis,

• h3, the height of the grating structure with the a1 × a2 basis,

• h4, the height of the grating structure with the a2 × a2 basis.

Since the Si layer is 400 nm thick, we choose for the parameters hi the range [50, 300] nm.
For the pyramidal with Ąxed angle, the height is set by the following equation,

h =
asmall

2

sin(54.7)

cos(54.7)
, (III.73)

where asmall is the minimum side of the grating basis: i.e. asmall is equal to min(a1, a2)
for the a1 × a2 and the a2 × a1 basis, a1 for the a1 × a1 basis and a2 for the a2 × a2

basis. The angle of 54.7 is chosen in agreement with the fabrication constraint on the Si
pyramid [122]. For structuration presenting a peak, formerly the pyramidal, pyramidal
with Ąxed angle and the cone, a truncation apex is applied for controlling the inĆuence of
this peak on the time step of the DGTD solver. The importance of introducing truncating
structures is explained and described in section II.6.1.

Palik references were used for the permittivity of both Si and Cu material [114].
In Fig. III.30, all the six grating shapes, for a Ąxed superlattice (with a1 = 150 and

gbe = 100) and, when relevant, Ąxed heights (with h1 = 100, h2 = 150, h3 = 200 and
h4 = 250), are shown. The z-axis is inverted for visual clarity: the gratings are pointing
upward.

The structure is described, as well as the grating parameters and shapes. In the next
section, we focus on the deĄnition of the optimization setup.
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(a) Schematic definition of the grating basis.

(b) Top view.

(c) Perspective view.

Figure III.28: Example of the basis grating deĄnition. (a) The simulation domain in the
x-y axis, of period P , is marked as a red square. The two squares are respectively of size
a1 × a1 (bottom left) and a2 × a2 (top right). The rectangulars are of size a1 × a2 (top
left) and a2 × a1 (bottom right). gbe is the distance between each basis, and gbe/2 is the
distance of each basis to the simulation domain boundary (in red). For this example,
P = 600 nm, gbe = 100 nm, a1 = 150 nm and a2 = 250 nm (given by Eq. III.72). (b-c)
Corresponding mesh visualized with Vizir [123].
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Figure III.29: Y -Z cut of the simple Si slab structure, with rectangular grating. From
top to bottom, PML air is in dark green, SF air in pale green, air in gray, including the
grating, Si in green, TF Cu in orange, SF Cu in blue and PML Cu in red. Visualization
done with Vizir [123].
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III.5.2 Optimization setup

In this section, the optimization setup for the 3D grating optimization is described,
including the EGO parameters.

As mentioned in section III.3.4.1, an EGO required Ąve initial parameters: the pa-
rameter space, noted D, the size of the DoE, a covariance kernel K, a merit function,
and a stopping criterion. For the optimization of the inner volumic absorption on the
simpliĄed 3D Silicon slab described above (see section III.5.1), we choose the following
input parameters:

• K is a square exponential kernel (see Tab. III.1);

• The DoE contains 20 iterations;

• The merit function is the expected improvement (see Eq. III.58);

• The stopping criterion is the number of EGO iterations, set to 20.

Since DGTD is a time domain solver, the objective function can be deĄned on a wave-
length range rather than a single wavelength as done in section III.4. We choose to
maximize the mean absorption on the wavelength range [920, 960] nm, and denote this
objective function as Ā in the following. We Ąrst deĄne six optimizations setups, vary-
ing on the grating shape considered. The parameters range selected correspond to the
range of interest deĄned in section III.5.1. For the pyramidal with Ąxed angle grating,
we optimize on a1, gbe and the truncation apex, while the other shapes are optimized on
a1, h1, h2, h3, h4 and gbe = 40 nm. These six Ąrst setup aims to investigate which shape
performs better.

In order to test the symmetrical hypothesis, we also perform six optimizations with
symmetric grating (a1 = a2, and h1 = h2 = h3 = h4), on the following parameters: only
gbe for the pyramidal with 54.7 angle, gbe and h1 on the Ąve other grating shapes.

To perform these optimizations, we use the R DiceOptim package [107], coupled with
the DGTD solver from the DIOGENeS software suite. The convergence study for the
DGTD simulations of the optimized design is shown below in section III.5.4. The simula-
tion time for one design is approximately 1 hour on 72 hyper threaded dual-Xeon Cascade
Lake SP Gold 6240 @ 2.60GHz cores (144 threads).

Finally, the input parameters for the Bayesian optimization are deĄned, the corre-
sponding results of the twelve optimization setups are presented in the next section.

III.5.3 Optimization results

In this section, the Bayesian optimization of the 3D grating parameters, on the twelve
setup described in the previous section, are shown.
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In Fig III.31, the mean absorption on the wavelength range [920, 980] nm, i.e. the
objective function to maximize, is shown for each DoE and EGO iterations, for all the six
non-symmetric setup. The maximum reached for each shape, as well as the corresponding
parameters, are available in Table III.3. The ellipsoid shape performs the best with a
mean absorption of 12.5%. The cylinder (resp. rectangular) shape is the second (resp.
third) best with an absorption of 11% (resp. 10%),

One must remark that, excepted for the pyramidal shapes, the optimization does not
clearly reach a maximum, the dispersion of the objective function remaining high. For the
2D grating optimization, for instance in Fig. III.24, the optimizer was always reaching a
maximum, lowering the dispersion of the objective function as the number of iterations
increases. For all results of the 3D grating optimization, this is not always the case.
It could be due to the number of parameters being high compared to the number of
evaluations. Thus, hoping to clearly reach a maximum, we try to optimize the better
performing shape, the ellipsoid grating, on the same parameters range, but with 30 DoE
and 70 EGO iterations.

In Fig. III.32, the results of this optimization are shown. Even if the maximum reached
is still 12.5%, the dispersion of the objective function remains high and 100 total iterations
is not enough. We face here the main limitation of the 3D grating optimization: even on
a simpliĄed slab structure, the whole simulation time is the current limitation. In our
case, the simulation time being one hour approximately for each iteration 4, the total
time for such optimization is more than four days.

Even if we cannot claim to have reached the optimum, we present a clear trend: the
ellipsoid grating is performing better than all other shapes considered. In Table III.4,
the improvement of the best ellipsoid design on all other best performing designs are
shown, exhibiting an improvement of minimum 12% of the best cylinder design, and an
improvement of maximum 160% on the best cone design.

As mentioned in section III.5.2, we also perform the optimization on the symmetrical
structure in order to test the unsymmetric hypothesis on the six considered shapes. The
objective function, for each iteration, of the six corresponding optimizations, are shown in
Fig. III.36. Similarly to the asymmetrical grating optimizations, we cannot clearly claim
to have reached the optimum. However for all grating shapes, except the conical one, the
best asymmetric grating is performing better than the best symmetric one. On Fig III.33,
the best design mean absorption of all twelve optimizations are shown, clearly illustrating
the drastic impact of the asymmetrical pattern to achieve efficient light trapping.

Following [88], we can explain this higher absorption because the asymmetrical grating
pattern excites more guided resonances in the Si layer, allowing a better absorption.
Indeed, in view of the light trapping theory, the enhancement of light absorption depends
on the number of optical resonances supported by the structure that could be excited.

To complete these results, the absorption spectrum of the maximum reached mean
absorption for ellipsoid grating, and the corresponding maximum reached for the sym-
metrical grating, are shown on Fig. III.34. On the one hand, one clearly sees the multiple
resonances enhanced by the asymmetrical grating that allow a higher mean absorption.
On the other hand, the choice of Ā as the objective function implies that the resonances

4On 72 hyperthreaded Xeon 3.2 GHz cores.
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are not positioned exactly at 940 nm, unlike the 2D optimization, as visible in Fig. III.18
and III.21, where A940 was optimized.

The optimization results of the twelve setup being presented, we focus in the next
section on the validation of the best design in order to prove the convergence of all
iterations.

Structure type a1 h1 h2 h3 h4 gbe Ā

Pyr 148.5 253.7 143.1 163.0 300.0 40.0 9.8%

Rect 102.3 266.3 180.1 159.3 105.7 49.1 10.5%

Ellipse 199.4 134.9 226.5 92.2 151.7 69.0 12.5%

Cone 111.0 223.8 88.7 183.4 289.7 40.0 4.8%

Cylinder 163.5 103.4 176.5 170.6 171.1 51.5 11.1%

Structure type a1 Apex - - - gbe Ā

Pyr 54.7 88.3 0.27 - - - 30.0 9.3%

Table III.3: Optimal parameters for the six optimization of the six corresponding unsym-
metrical gratings.

III.5.4 Validation of the best design

In this section, the convergence study of the DGTD solver is shown. In Fig III.35a, the
best asymmetrical cylindric design absorption proĄle is shown for increasing interpolation
degree. The energy threshold is set to 0.01%. The mesh, kept constant, contains 20174
cells, with minimum cell size of 11.7 nm and maximum cell size 127 nm. The absorption
proĄle is already well captured by the P2 curve. A similar study for the Ćat model
(without structuration) is performed on Fig. III.35b. Similarly to the cylindrical design,
P2 interpolation is enough.

III.5.5 Conclusion on 3D grating optimization

This study aimed to Ąnd the best performing 3D grating shape for a simple structured
silicon slab is performed. Taking [88] as a guideline, where only 2D optimization are
performed, we extended this research to unsymetric grating pattern of various shapes.
From considering 3D structures, speciĄc challenges arise.

Firstly the computation time for one iteration drastically increases, requiring the use of
a global optimizer which has proven in literature its efficiency in reducing the total number

187



Structure type max Ā Ellipsis Improvement

Ellipsis 12.5% *

Cone 4.8% 160%

Cylinder 11.1% 12%

Pyramidal 54.7 9.3% 34%

Rectangular 10.5% 19%

Pyramidal 9.8% 27%

Table III.4: Maximum mean absorption reached on the six non symmetrical setup, and the
corresponding improvement of the ellipsoid best design. The "Ellipsis improvement" is the
percentage of improvement of the best ellipsoid design on the maximum reached design for
the shape considered. For instance, for the cone grating, we have 12.5×100

4.8
− 100 = 160%.

of iterations needed. Bayesian optimization was chosen for this property in particular.
The computational cost is currently the main limitation for 3D optimization, justifying
the remarquable lack of such results in the CMOS imager scientiĄc community.

Secondly, adding an extra dimension increases the number of shapes that can be con-
sidered. Usually, square or pyramidal gratings are taken into account for 2D gratings.
But a 2D square can be a slice of either a cylinder, an ellipsoid or a cuboid. Similarly
a 2D pyramid, namely a triangle, can be a slice of a pyramid or a cone. Extrapolating
2D optimization results is thus not possible without Ąrst answering the question of the
structural extension. Such choice is certainly impactful on the resulting light absorption,
and must be taken into account. Our study, by optimization each shapes independently,
is seeking to answer explicitly this question.

From a physical standpoint, unsymetric gratings enhances more resonances than sy-
metric gratings, allowing a better averaged absorption. In Fig III.34, the symetric optimal
design has higher absorption peak but a lower averaged absorption on the wavelengths
range considered, since the unsymetric optimal design has three absorption peaks. The
balance between a single but higher, or multiple but lower absorption peaks, is clariĄed
in our comparison between symetric and unsymetric grating pattern.

The main limitation of our study relies in the fact that we cannot claim to have reached
the optimum. This is due to the speciĄcity of the 3D geometrical optimization, namely
the computational cost. Even if a simple Silicon slab of 400 nm thickness, the simulation
time for one iterations is one hour on 72 hyperthreaded Xeon 3.2 Gz cores.

This challenge justiĄes the choice of a Ąne Silicon slab compared to the ~5 µm of the 2D
grating optimization of section III.4. Since the Silicon thickness is lower, the absorption
enhanced is lower. Indeed in the absence of grating, a Silicon slab is a Fraby-Perrot cavity

188



whose resonnances are determined only by the silicon thickness. The 12.5% obtained by
the best design of the best performing shape, the ellipsoid, cannot be fairly compared to
the ~80% obtained in section III.4.

However the drastic impact of the grating is shown by the comparison to the Ćat case
whose absorption is 1%, illustrating the importance of the nanostructuration.

Finally, this work shows that ellipsoid grating is a good candidate to fabricate high
performing 3D grating, compared to the cylindrical, rectangular, conical or usual pyra-
midal grating. In particular, the use of a superlattice has been demonstrated to enhance
higher absorption for all shapes considered, excepted the conical grating.
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III.6 Conclusion

The optimizations on 2D and 3D gratings performed in this chapter demonstrated that
the EGO is a great candidate for investigating the dependence of optical resonances in
CMOS imagers on the geometrical parameters. In particular the 2D grating optimiza-
tion, exhibiting an absorption of 83% for SiO2 DTI, and 88% for tungsten DTIs (see
appendix A), found an absorption at 940 nm higher that everything found in literature.
Furthermore, the race to the maximum absorption reached a point of no return, where
the absorption cannot be improved without geometrical parameter variations lower than
the nanometer. Further studies on resonances must focus on both sensitivity analysis or
classiĄcation in order to Ąnd geometrical parameters that provide high absorption in the
range of feasible lithography precision.

To perform such optimization in 3D, the numerical cost is still the main bottleneck.
In our work, we considered a simple silicon slab, far from a realistic SPADs, but still the
convergence to the optimum remains unclear, even after 100 solver evaluations.

The cost function of the two optimizations are different: in 2D, the absorption at
940 nm was optimized and successfully positioned a resonance at 940 nm. While, in 3D,
the mean absorption on the range [920, 980] nm was optimized. The choice of this cost
function in fine rely on the exact signal the SPADs received: optimizing the absorption
at 940 nm, or a mean interval around this wavelength, must be selected exactly on
the performance desired by industrial. Such a choice cannot be communicated in this
work. However, from our two optimization results, the inĆuence of this cost function is
clear: optimizing exactly at 940 nm successfully positions a resonance at 940 nm, while
optimizing on an interval only positions several resonances within this interval.
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(a) Cone
(b) ellipsoid

(c) Cylinder

(d) Pyramidal with 54.7 angle

(e) Rectangular
(f) Pyramidal

Figure III.30: Six grating shapes, with constant superlattice parameters (a1 = 150 and
gbe = 100) and, when relevant heights (h1 = 100, h2 = 150, h3 = 200 and h4 = 250). The
z-axis is inverted to ease visualization. Meshes pictures are done with GMSH [124].
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(a) Cone grating.
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(b) Ellipsis grating.
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(c) Cylinder grating.
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(d) Pyramidal with 54.7 angle grating.
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(e) Rectangular grating.
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(f) Pyramidal grating.

Figure III.31: Objective function for all iterations of the six unsymmetric optimization
setup described in III.5.2. Blue dots (resp. red) are DoE (resp. EGO) iterations. The best
performing design is the ellipsoid one, reaching a maximum of 12.5% mean absorption,
whose corresponding parameters are available in table III.3.

192



0 20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

Iter

A

Figure III.32: Objective function according to iterations, for the ellipsoid grating, on
30 DoE and 70 EGO iterations, on the optimization setup described on section III.5.2
and III.5.3. The maximum reached is 12.5% and is equivalent to the previous maximum
reached of Fig. III.31b.
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Figure III.33: Best performing designs of all twelve optimization setups deĄned in section
III.5.3. Red (resp. blue) represents the symmetrical (resp. unsymmetrical) gratings.
Each best performing design is the corresponding maximum reached within Fig. III.31
and III.36.
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Figure III.34: Absorption spectrum of the best performing ellipsoid design, for the sym-
metric and unsymmetric optimization setup, compared to the Ćat design (without grat-
ings).
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Figure III.35: On the left, validation of one best performing design for the DGTD solver.
The degree of interpolation is increased, while the mesh is unchanged, with character-
istics given in section ??. On the right, convergence study of the Ćat model, without
structuration.
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(a) Cone grating.
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(b) Ellipsis grating.
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(c) Cylinder grating.
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(d) Pyramidal with 54.7 angle grating.
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(e) Rectangular grating.
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(f) Pyramidal grating.

Figure III.36: Objective function for all iterations of the six symmetric optimization
setup described in III.5.2. Blue dots (resp. red) are DoE (resp. EGO) iterations. The
best performing design is the ellipsoid one, reaching a maximum of 8.7% mean absorption.
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Conclusion

The purpose of this last chapter is to summarize the content of this manuscript and to
identify possible extensions.

In the Ąrst chapter, a semi-empirical model for the optical properties of SiGe alloys
is proposed, based on physical considerations and the summation of Tauc-Lorentz and
parametric oscillators. The key parameters of the oscillators are intuited from the optical
transition and the symmetry points in the band structure. The model is Ątted on exten-
sive experimental data, for different temperatures and germanium concentrations. This
model can be used in optical simulation tools, in order to help the design of optoelectronic
devices based on SiGe materials.

In the second chapter, a benchmark of the reference numerical method, the FDTD
method, and two alternatives, the RCWA and the DGTD methods, has been performed on
structures of increasing complexity, culminating with a nanostructured SPAD device. To
this purpose, 2D and 3D RCWA solvers have been implemented in Matlab. The reference
FDTD method remains faster than the other methods, even on the most complicated
structure considered. Detailled explanations, available in section II.7, limit the impact of
such empirical benchmark.

In the third chapter, we introduced an inverse design approach that combines op-
tical solvers for the numerical characterization of light absorption in a nanostructured
CMOS image sensor, with a statistical learning-based global optimization method for
goal-oriented discovery of the optimal patterning parameters for maximising light ab-
sorption. Firstly, we optimize the grating parameters of a realistic 2D SPAD with DTIs,
computing the light absorption with our 2D RCWA in-house solver, reaching an absorp-
tion of 83% at 940 nm. Secondly, various 3D pattern shapes (ellipsoid, cylinder, rectangle,
pyramidal etc.), for symmetric and unsymmetric gratings on a simple silicon slab, are
optimized in order to determine the shapes that maximize light absorption in the 920-
980 nm range. This second optimization takes advantage of the geometry versatility of
the DGTD method. Both optimizations are performed with the Efficient Global Opti-
mization (EGO) method, achieving a convergence to the optimum within a reasonable
number of solver evaluations.

Some perspectives of this work are the following:

• The model of the Ąrst chapter is said to be accounting for strain or unstrained
SiGe. The strain is taken into account only in the band structure computation of
strained/unstrained SiGe alloy. However, no comparison have been made between
the prediction of our model on strain SiGe permittivity data. Right now, this is
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only supposed to match. A future work would ensure that this model is correct for
strained SiGe alloys.

• Benchmarks are always selective. In our work, we selected only the DGTD imple-
mentation from the DIOGENeS software suite, while a DGTD solver is actually
available from Ansys. An identical remark can be said about the Reticolo RCWA
solver: we tested only our in-house RCWA solver and not the Reticolo one. Bench-
marks across more solvers could be done.

• The grating optimization performed in the chapter 3 must include, in future works,
a sensitivity analysis. Indeed, the optimum is found at a precision with no physical
meaning. This would allow to optimize within the range of what is feasible with
the current fabrication process.
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Epilogue

Un syllogisme est déĄni par Aristote comme une succession de proposition sŠenchaînant
logiquement. La forme du syllogisme, de lŠimplication ou de la contraposée par exemple,
assure sa validité, et ainsi la vérité de la conclusion suivant les prémisses. Tout cela est
bien connu des scientiĄques, ils lŠapprennent souvent tôt, nomment rigueur cette habilité
à expliciter toutes les étapes dŠun raisonnement, et sŠefforcent sans cesse de lŠenseigner,
par une répétition ardue, un effort constant et des corrections implacables mais justes.

Il y a cependant une dimension des syllogismes qui est rarement explicitée, voire com-
prise, dans lŠenseignement scientiĄque, et chez les stagiaires, doctorants, ingénieurs de
recherches ou chercheurs qui quotidiennement travaillent, réĆéchissent et publient des
articles. Cette dimension, inhérente à tout syllogisme, est présentée par Aristote dans le
même livre les décrivant, juste quelques pages plus loin, il sŠagit du problème du troisième
homme.

Aristote reprend une critique de la théorie platonicienne des idées, critique que Pla-
ton lui-même avait formulée dans le Parménide. Entre deux termes, lŠidée de lŠhomme
et un homme existant, un troisième terme, un troisième homme, décrivant la relation
entre ces deux termes, se glisse irrémédiablement. Un syllogisme peut ainsi constam-
ment être coupé en deux, un Abis sŠimbrique entre les deux termes initiaux, A et B, aĄn
dŠexpliciter lŠimplication A7→B. Ce troisième terme appelle lui-même deux implications
A7→Abis, Abis 7→B, qui à leur tour nécessitent un intermédiaire supplémentaire, et ceci
à lŠinĄni. Cela est problématique, car tel la Ćèche de Zénon, jamais le raisonnement
nŠatteindra son terme. Il sera comme perdu dans les limbes.

Comment ce problème antique resurgit dans nos travaux ? Où donc un troisième
terme eut été nécessaire ? A ces questions nous souhaitons, comme dŠordinaire en sci-
ence, répondre par une nième image. Non un graphique mais une simple métaphore
mathématique. Si cette thèse est un parcours présentant un départ et une arrivée, dŠun
0 à un 1, lŠensemble de ses chapitres, sections, paragraphes et phrases peut être compris
comme un ensemble rationnel Ąni, distribué dans lŠintervalle [0, 1], le complémentaire de
cet intervalle est lui-même un intervalle, non connexe cette fois, partagé entre dŠune part
le contexte, les motivations et les enjeux, ]∞, 0[, et les perspectives, ]1,∞]. En principe,
un ensemble Ąni de nombre rationnel ne déroge pas au problème du troisième homme:
entre deux nombres rationnels, un troisième existe toujours entre les deux premiers ; Q

est dense dans R. Mais la distribution des nombres ne sŠarrêtent évidemment pas aux
simples nombres rationnels: I lŠensemble des nombres irrationnels est également dense
dans R, et symétriquement un nombre irrationnel existe nécessairement entre tous cou-
ples de rationnels donnés, peu importe leur promiscuité. Le réel, ou les nombres réels,
est plus implacable encore. I, dans R muni de la mesure de Lebesgue, est de mesure 1,
quand Q est de mesure nulle. Q nŠest que dénombrable et les deux ensembles inĄnis I et
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Q sont de nature différents, le premier étant plus vaste que le second. Q nŠest ainsi quŠun
peigne de dirac dans un intervalle continu. On le voit, ce problème du troisième homme
est virtuellement partout, et actuellement nulle part.

Une erreur qui revient souvent chez un doctorant est de dévaluer systématiquement
son propre travail. LŠapprenti chercheur apprend ainsi une règle implicite qui gouverne
la pratique scientiĄque: rendre explicite ces termes intermédiaires est un travail réservé,
non à lŠauteur, mais à ses critiques. Ou suivant les mots de Wittgenstein, ce dont on ne
peut parler, on doit le taire.
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Appendix A

Grating optimization in 2D, with
Tungsten DTI

The conclusion of the article that initially motivated our 2D grating parameters opti-
mization [82], claims that using high absorbing materials in DTI enhance higher absorp-
tion. So this appendix is a replicate of the 2D grating parameters optimization, but with
Tungsten, a high absorbing material, Deep Trench Isolation.

The grating parameters and the underlying structure are identical to the one described
in section III.5.1. The parameters sensibility analysis, analogous to section III.4.2, is
available in Fig. A.1. Two, respectively three, parameters optimization results (anal-
ogous to section III.5.2) are shown in Fig A.2, resp. A.3. The maximum reached in
both optimizations is an absorption of 83%. The use of Tungsten did not increased the
maximum reached. All conclusions provided in the chapter III apply to this study.
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Figure A.1: RCWA 2D computation of the inner Si absorption, as a function of vari-
ous parameters, of the structure described in section III.5.1, with Tungsten DTI. If not
varying, we have Lepi = 5 µm, Lpitch = 500 nm, and Ldepth = 218 nm. A940 denotes the
inner absorption at 940 nm. In each subcation, "X dots" indicates the number of equally
spaced x-axis dots that were simulated.
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Figure A.2: Objective function according to the iterations, for the Bayesian optimization
of the setup 1 (deĄned in section III.4.3), on the parameters space D1,sub (deĄned in
section III.4.4.1. DoE (resp. EGO) iterations are displayed in blue (resp. red). The
maximum reached is 83% and is marked as a black triangle. The gray line is the maximum
reached during the optimization.
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Figure A.3: Objective function according to the iterations, for the Bayesian optimization
of the setup 2 (deĄned in section III.4.3), on the parameters space D2,sub 2 (deĄned in
Eq. III.68). DoE (resp. EGO) iterations are displayed in blue (resp. red). The maximum
reached is 82% and is marked as a black triangle, with parameters given in Eq. III.71.
The gray line is the maximum reached during the optimization.
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Appendix B

3D Structure generation for RCWA

In this appendix, several examples of 2D layers building, for 3D RCWA simulations,
are shown. These examples illustrate the section II.5.2 where the geometry module for
our RCWA implementation is described.
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A r r a y _ o f _ c i r c l e = [ ] ;
Array_of_Polygon = [ ] ;

s = 0 . 8 ;
p1 = [ −s , −s ;

s , −s ;
s , s ;

−s , s ] ;

s = 0 . 6 ;
p2 = [ −s , −s ;

s , −s ;
s , s ;

−s , s ] ;

s = 0 . 2 ;
p3 = [ −s , −s ;

s , −s ;
s , s ;

−s , s ] ;

p4 = [ 0 . 1 5 , 0 . 0 ;
0 . 0 , −0.4;

−0.15 , 0 . 0 ;
0 . 0 , 0 . 4 ] ;

% Adding 4 p o l y g o n e s
Array_of_Polygon = [ Polygon2D ( p1 , epsSiO2 ) ,

Polygon2D ( p2 , e p s S i ) ,
Polygon2D ( p3 , epsSiO2 ) ,
Polygon2D ( p4 , epsSiO2 ) ] ;

% C r e a t i n g l a y e r
Layers = [ layer_2D ( d , . . .

eps_square , . . .
Array_of_Polygon , . . .
Array_of_circ le , . . .
current_z−d , . . .
current_z ) ] ;

current_z = current_z − d ;

Figure B.1: Illustration of a RCWA layer with multiple including polygons.
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A r r a y _ o f _ c i r c l e = [ ] ;
Array_of_Polygon = [ ] ;

s = 0 . 8 ;
p1 = [ −s , −s ;

s , −s ;
s , s ;

−s , s ] ;

s = 0 . 7 ;
p2 = [ −s , −s ;

s , −s ;
s , s ;

−s , s ] ;

Array_of_Polygon = [ Polygon2D ( p1 , epsSiO2 ) ,
Polygon2D ( p2 , e p s S i ) ] ;

g r a t i n g _ c e n t e r = [ − 0 . 6 ;
−0.4;
−0.2;

0 . 0 ;
0 . 2 ;
0 . 4 ;
0 . 6 ] ;

s = 0 . 0 5 ; % g r a t i n g s i z e
co unt er = 1 ;
for x_c = g r a t i n g _ c e n t e r

for y_c = g r a t i n g _ c e n t e r
i f mod( counter , 2) == 0

pC = [ x_c − s ∗ sqrt ( 3 ) / 2 , y_c − s /2 ;
x_c + s ∗ sqrt ( 3 ) / 2 , y_c − s /2 ;
x_c , y_c + s ] ;

Array_of_Polygon = [ Array_of_Polygon ,
Polygon2D (pC , . . .

epsSiO2 ) . . .
] ;

e l s e

A r r a y _ o f _ c i r c l e = [ Array_of_circ le , . . .
Disk_2D ( s , . . .

[ x_c , y_c ] , . . .
epsSiO2 ) . . .

] ;

end

co unt er = counter + 1 ;
end

end

% C r e a t i n g l a y e r
Layers = [ layer_2D ( d , . . .

eps_square , . . .
Array_of_Polygon , . . .
Array_of_circ le , . . .
current_z−d , . . .
current_z ) ] ;

current_z = current_z − d ;

Figure B.2: Illustration of a RCWA layer using loops to build complex gratings.
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A r r a y _ o f _ c i r c l e = [ ] ;
Array_of_Polygon = [ ] ;

a l l _ s q u a r e _ s i z e = [ 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 ] ;
for s = a l l _ s q u a r e _ s i z e

p1 = [ −s , −s ;
s , −s ;
s , s ;

−s , s ] ;

p2 = [ −s + 0 . 1 , −s + 0 . 1 ;
s − 0 . 1 , −s + 0 . 1 ;
s − 0 . 1 , s − 0 . 1 ;

−s + 0 . 1 , s − 0 . 1 ] ;

Array_of_Polygon = [ Array_of_Polygon ,
Polygon2D ( p1 , epsSiO2 ) ,
Polygon2D ( p2 , e p s S i ) ] ;

end

% C r e a t i n g l a y e r
Layers = [ layer_2D ( d , . . .

eps_square , . . .
Array_of_Polygon , . . .
Array_of_circ le , . . .
current_z−d , . . .
current_z ) ] ;

current_z = current_z − d ;

Figure B.3: Illustration of a RCWA layer using multiple including square.

% Number o f l a y e r i n z .
NL = 4 0 ;
air_guard_top = 0 . 1 ;
top_lense = current_z ;
bot_lense = current_z − d ;
r a d i u s _ l e n s e = top_lense − bot_lense − air_guard_top ;
dz = ( top_lense − bot_lense )/NL;

for iL = 1 :NL
% zmax , zmin and d o f l a y e r iL .
zmax_layer = top_lense − dz ∗( iL −1);
zmin_layer = top_lense − dz ∗ iL ;
d_layer = dz ;
r a d i u s = sqrt ( r a d i u s _ l e n s e − ( zmin_layer− bot_lense )^2 ) ;

% a d d i n g a c i r c l e o n l y i f r a d i u s i s r e a l
i f i s r e a l ( r a d i u s )

A r r a y _ o f _ c i r c l e = [ Disk_2D ( r adius ,
[ 0 . 0 , 0 . 0 ] ,
epsSiO2 ) . . .

] ;
e l s e

A r r a y _ o f _ c i r c l e = [ ] ;
end

Array_of_Polygon = [ ] ;

% a d d i n g t h e l a y e r
Layers (end + 1) = [ layer_2D ( d_layer ,

eps_square ,
Array_of_Polygon ,
Array_of_circ le ,
zmin_layer ,
zmax_layer ) ] ;

current_z = current_z − d_layer ;
end

Figure B.4: Illustration of a 3D RCWA structure with a lens.
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% Number o f l a y e r i n z .
NL = 7 0 ;
air_guard_top = 0 . 1 ;
top_pyr = current_z ;
bot_pyr = current_z − d ;
heigh_pyr = top_pyr − bot_pyr − air_guard_top ;
dz = ( top_pyr− bot_pyr )/NL;

for iL = 1 :NL
% zmax , zmin and d o f l a y e r iL .
zmax_layer = top_pyr − dz ∗( iL −1);
zmin_layer = top_pyr − dz ∗ iL ;
d_layer = dz ;
r a d i u s = heigh_pyr − ( zmin_layer − bot_pyr ) ;

% a d d i n g a c i r c l e o n l y i f r a d i u s i s r e a l
i f r a d i u s > 0

s = r a d i u s ;
p1 = [ −s , −s ;

s , −s ;
s , s ;

−s , s ] ;
Array_of_Polygon = [ Polygon2D ( p1 , epsSiO2 ) ] ;

e l s e

Array_of_Polygon = [ ] ;
end

A r r a y _ o f _ c i r c l e = [ ] ;

% a d d i n g t h e l a y e r
Layers (end + 1) = [ layer_2D ( d_layer ,

eps_square ,
Array_of_Polygon ,
Array_of_circ le ,
zmin_layer ,
zmax_layer ) ] ;

current_z = current_z − d_layer ;
end

Figure B.5: Illustration of a 3D RCWA structure with a pyramid.
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Appendix C

Fourier transform formulas

In this annex, the Fourier transform formulas and proof of a 1D constant by part
function, and of a 2D polygone, are given. The Fourier transform of the indicator function
of polygon, or simply of a polygon, is also given in [76].

C.1 Constant by part 1D function

Definition C.1.1. Given T ∈ R+∗ and given u a periodic real function of period T . One
deĄnes the Fourier decomposition of u with:

u : R → R

x 7→
+∞∑

n=−∞
cn exp

(
i

2π

T
nx

)
(C.1)

(C.2)

where

cn =
1

T

∫ T
2

− T
2

x(t) exp

(
−i2π

T
nt

)
dt

Proposition (Simple case). Given T ∈ R+∗ and f ∈]0, 1[. Given u a periodic real
function of period T defined by:

u :

]
−T

2
,
T

2

[
→ R

x 7→
{
ϵA if x ∈

]
−T

2
,−fT

2

[ ⊔ ]
fT
2
, T

2

[

ϵB if x ∈
]
−fT

2
, fT

2

[ (C.3)

Then one has:

∀n ∈ Z, cn =





(ϵB − ϵA) f + ϵA if n = 0

(ϵB − ϵA)
sin (πnf)

πn
if n ̸= 0

211



Proof. Given n in Z:

cn =
1

T

∫ T
2

− T
2

u(t) exp

(
−i2π

T
nt

)
dt

=
1

T
ϵA

∫ T
2

fT
2

exp

(
−i2π

T
nt

)
+ exp

(
i
2π

T
nt

)
dt


+

1

T
ϵB

∫ fT
2

− fT
2

exp

(
−i2π

T
nt

)
dt



=
1

T
ϵA

[
T

πn
sin

(
2π

T
nt

)]T
2

fT
2

+
1

T
ϵB

[
T

2πin
exp

(
i
2π

T
nt

)] fT
2

− fT
2

=
ϵA

πn
(sin (πn) − sin (πnf)) +

ϵA

2πin
(exp (ifπn) − exp (−ifπn))

= (ϵB − ϵA)
sin (πnf)

πn
+ ϵA

sin(πn)

πn

=





(ϵB − ϵA) f + ϵA if n = 0

(ϵB − ϵA)
sin (πnf)

πn
if n ̸= 0

where we used several time the usual formula: exp (ix) = cos(x)+i sin(x); used a variable
change t′ = −t in the second integral of the second line et used the limited developement
of the sinus function in the last line.

Proposition (Generic case). Given T ∈ R+, m ∈ N+ and
(
(xi)i∈[[1,m+1]]

)
in [0, T ]m+1

such as 0 = x1 < x2 < ... < xm−1 < xm+1 = T .
Given u a periodic real function of period T , constant by part, defined by:

u : [0, T ] \ ¶ xi ♣i ∈ [[1,m]] ♢ → R

x 7→ ei si x ∈ ]xi, xi+1[ et i ∈ [[1,m]] (C.4)

Then one has:

∀n ∈ Z, cn =





m∑
k=1

ek

T
(xk+1 − xk) if n = 0

m∑
k=1

ek

2πin

(
exp

(
−i2π

T
nxk

)
− exp

(
−i2π

T
nxk+1

))
if n ̸= 0

Proof. Given n in Z :

cn =
1

T

∫ T

0

x(t) exp

(
−i2π

T
nt

)
dt

=
1

T

m∑

k=1

ek

∫ xk+1

xk

exp

(
−i2π

T
nt

)
dt

=
1

T

m∑

k=1

ek

[ −T
2πin

exp

(
−i2π

T
nt

)]xk+1

xk
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=
m∑

k=1

−ek

2πin

(
exp

(
−i2π

T
nxk+1

)
− exp

(
−i2π

T
nxk

))

=
m∑

k=1

ek

2πin

(
exp

(
−i2π

T
nxk

)
− exp

(
−i2π

T
nxk+1

))

=





m∑
k=1

ek

T
(xk+1 − xk) if n = 0

m∑
k=1

ek

2πin

(
exp

(
−i2π

T
nxk

)
− exp

(
−i2π

T
nxk+1

))
if n ̸= 0

where we used the limited developement of the exponential function in the last line.

C.2 Fourier transform in the plane

Definition C.2.1. Given Ω an open space of R2, one define the indicator function of Ω,
noted χΩ, by :

χΩ : R2 → ¶0, 1♢

(x, y) 7→
{

0 if (x, y) /∈ Ω

1 if (x, y) ∈ Ω
(C.5)

Proposition. Given Ω an open space of R2, the distribution, noted TΩ, associated to
χ ∈ C∞

c (R2), has a weak derivative in x, noted T
(x)
Ω :

∀ϕ ∈ C∞
c

(
R2
)
, T

(x)
Ω : ϕ 7→ −

∫

∂Ω

ϕ · vx dσ

Proof.

< ∂xTΩ, ϕ > : = −
∫

Ω

∂xϕ(x, y)dxdy

= −
∫

∂Ω

ϕ · vx dσ

thanks to Stokes formula. (vx designates the x component of the normal exterior to
Ω).

Proposition. If Ω is a polygon with n vertices; whose boundary (in positive orientation)
is p1 → p2 → ... → pn → p1, pj = (xj, yj); then:

T
(x)
Ω = −

n∑

j=1

δ[pj→pj+1]

213



where δ[pj→pj+1] is the distribution defined by:

< δ[pj→pj+1], ϕ > =

∫ 1

0

ϕ((1 − t)pj + tpj+1) · vx dt. (C.6)

where the normal exterior to Ω on the interval ]pj, pj+1[, noted v, is defined by:

v = R− π
2

· (pj+1 − pj)

=

(
0 1

−1 0

)
· (pj+1 − pj)

Remark. The Fourier transform of a function f on C∞
c (R2) is noted with the help of the

distribution:
f̂(ω) =< f, ei(w,·) >

Theoreme. Given Ω a polygon of R2, given χΩ the indicator function of Ω, the Fourier
transform of χΩ is:

∀ω ∈ R2, χ̂Ω(ω) =





− 1
ωx

n∑
j=1

vx

[
e

i(ω, pj+1)−e
i(ω, pj)

(ω, pj+1−pj)

]
if ωx ̸= 0

− 1
ωy

n∑
j=1

vy

[
e

i(ω, pj+1)−e
i(ω, pj)

(ω, pj+1−pj)

]
if ωy ̸= 0

1
2

(
xny1 − ynx1 +

n−1∑
k=1

(xkyk+1 − ykxk+1)

)
if ω = (0, 0)

(C.7)

Proof. Given ω in (R∗)2, let’s compute ∂̂1χ
Ω
(ω):

∂̂1χ
Ω
(ω) = −

∫

R2

χ(u)
(
iωxe

i(w,u)
)

du

= −
∫

Ω

iωxe
i(w,u)du

=< T
(x)
Ω , ei(ω,·) >

= −
n∑

j=1

< δ[pj→pj+1], e
i(ω,·) >

= −
n∑

j=1

vx ·
∫ 1

0

ei(ω, (1−t)pj+tpj+1) dt.

= −
n∑

j=1

vx ·
[
ei(ω, (1−t)pj+tpj+1)

i (ω, pj+1 − pj)

]1

0
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= −
n∑

j=1

vx ·
[
ei(ω, pj+1) − ei(ω, pj)

i (ω, pj+1 − pj)

]

where we used: the theorem of derivating under the integral (usable since χ has a com-
pact support), then an integral by part, then the definition of χ as an indicator, then the

definition of T
(x)
Ω , then the proposition on T

(x)
Ω in the case of Ω is a polygon, then the

definition of the distribution δ. The final result is obtained by a simple integral calculus.

Since ∂̂1χ(ω) = iωxχ̂(ω), one gets the results for ω in (R∗)2.

If ω = (0, 0), then:

χ̂(ω) =

∫

Ω

1dt

=
1

2

∣∣∣∣
xn x1

yn y1

∣∣∣∣+
n−1∑

k=1

∣∣∣∣
xk xk+1

yk yk+1

∣∣∣∣



=
1

2


xny1 − ynx1 +

n−1∑

k=1

(xkyk+1 − ykxk+1)


(C.8)

where we used the formula for the area of a non intersecting polygon, then the formula
of the determinant of a 2x2 matrix.

Remark. Given Ω a convex polygon of R2, we note, for ω ̸= (0, 0), χ̂Ω
int(ω) the function

defined by the previous theorem, where v is the interior normal and χ̂Ω
ext(ω) the func-

tion defined by the previous theorem, where v is the exterior normal. This notation is
extended in (0, 0) by assuming χ̂Ω

int((0, 0)) = χ̂Ω
ext((0, 0)) = χ̂Ω((0, 0)).

Theoreme (Fourier transform of a 2D function constant by part). Given x1, x2, y1, y2, Tx, Ty,
ϵA, ϵB ∈ R such that x1 < x2, y1 < y2, Tx := x2 − x1 et Ty := y2 − y1 .

Given S the rectangle R2 define by ¶(x, y) ∈ R2 ♣ (x, y) ∈ [x1, x2] × [y1, y2]♢.
Given Ω a convex polygon of R2, stricly included in S, (the indicator function of R2 are

noted with the usual symbol ✶).
If u, function Tx-periodic in x and Ty-periodic in y, is defined by:

u : R2 → ¶ϵA, ϵB♢
(x, y) 7→ ϵB✶S\Ω (x, y) + ϵA✶Ω (x, y) (C.9)

then its Fourier transform is:

∀ω ∈ R2, û(ω) = ϵBχ̂
S
ext(ω) + ϵBχ̂

Ω
int(ω) + ϵAχ̂

Ω
ext(ω)
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Proof. Given ω in (R∗)2, letŠs compute ∂1û(ω):

Aire(S) ∂1û(ω) :=

∫

S

u(t)
(
iωxe

i(w,t)
)

dt

= ϵB

∫

S\Ω

iωxe
i(w,t)dt+ ϵA

∫

Ω

iωxe
i(w,t)dt

= ϵB

∫

∂(S\Ω)

ei(w,σ) · vx dσ + ϵAχ̂ext(ω)

= ϵBχ̂
S
ext(ω) + ϵBχ̂

Ω
int(ω) + ϵAχ̂

Ω
ext(ω)

Thanks to Stockes formula and the previous theorem for the jump from the second line
to the third.
If ω = (0, 0), then:

χ̂(ω) = ϵB

∫

S\Ω

1dt+ ϵA

∫

Ω

1dt

= ϵBχ̂
S
ext(ω) + ϵBχ̂

Ω
int(ω) + ϵAχ̂

Ω
ext(ω)

Remark. One easily generalizes this formula in the case of several non-intersecting poly-
gons, stricly included in the rectangle S.
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