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Méthodes Galerkin discontinues hybrides couplées à des schémas de type explicite/im-
plicite pour les équations de Maxwell instationnaires

Résumé
Dans cette thèse, nous étudions et développons différentes familles de schémas d’intégration en
temps combinés avec une méthode Galerkin disontinue hybride (GDH) en espace pour les équa-
tions de Maxwell. Après avoir passé en revue les méthodes GDH pour l’équation de Poisson, les
équations de Maxwell en domaine fréquentiel et les équations de Maxwell en domaine temporel avec
une discrétisation temporelle totalement implicite dans la première partie, nous construisons une
méthode GDH totalement explicite en temps pour les équations de Maxwell en 3D en domaine tem-
porel dans la deuxième partie. Cette méthode est précise avec un ordre élevé en espace et en temps
et peut être vue comme une généralisation d’un schéma GD classique basé sur des flux décentrés.
En particulier, elle coïncide avec ce schéma pour un choix particulier du paramètre de stabilisation
introduit dans la définition des traces numériques dans le cadre GDH. Nous présentons des résultats
numériques visant à évaluer ses propriétés de convergence. Nous proposons ensuite une nouvelle
technique de post-traitement pour cette dernière méthode que nous couplons avec un schéma de
Runge-Kutta explicite. Le champ électromagnétique post-traité converge plus vite d’un ordre que
la solution non post-traitée en norme H(curl). L’approche proposée est locale, c’esr-à-dire que la
solution améliorée est calculée indépendamment dans chaque cellule du maillage, et à chaque pas
de temps nécessaire. En conséquence, son calcul n’est pas coûteux, surtout si la région d’intérêt est
localisée, soit dans le temps, soit dans l’espace. Nous présentons plusieurs expériences numériques
mettant en évidence les propriétés de superconvergence du champs électromagnétique post-traité.
Dans la dernière partie, nous proposons une méthodologie pour construire des méthodes hybrides
explicites/implicites (IMEX) pour les équations de Maxwell. Nous présentons ces méthodes IMEX
obtenues en séparant la formulation semi-discrète en parties grossières et fines, puis en appliquant
trois schémas en temps différents, d’ordre allant de 1 à 3. Nous présentons des résultats numériques
montrant que nos méthodes sont efficaces en terme de précision et en terme de temps de calcul.
Nous choisissons des cas où les maillages localement raffinés sont indispensables pour la précision
de la solution approchée : un domaine en forme de L où la solution présente une singularité, un
domaine hétérogène avec un variation importante de la vitesse de l’onde et un dispositif de cristaux
photoniques où les sphères en silicium sont très proches les unes des autres.

Mots clés: Maxwell, HDG, IMEX, post traitement



Hybrid discontinuous Galerkin methods coupled with hybrid explicit/implicit schemes
for the unsteady Maxwell’s equations

Abstract
In this thesis, we study and develop different families of time integration schemes combined with
a hybrid discontinuous Galerkin (HDG) discretization in space for Maxwell’s equations. After
presenting a review of HDG methods for Poisson equation, time-harmonic Maxwell’s equations
and for the time-domain Maxwell’s equations with a fully implicit time discretization in the first
part, we construct a fully explicit HDGTD method for the 3D time-domain Maxwell’s equations
in the second part. This HDGTD method is high order accurate in both space and time and
can be seen as a generalization of the classical DGTD scheme based on upwind fluxes. In par-
ticular, it coincides with the latter scheme for a particular choice of the stabilization parameter
introduced in the definition of numerical traces in the HDG framework. We provide numerical
results aiming at assessing its numerical convergence properties. Then we propose a novel post-
processing technique for the latter method that we couple with an explicit Runge-Kutta time-
marching scheme. The postprocessed electromagnetic field converges one order faster than the
unpostprocessed solution in the H(curl)-norm. The proposed approach is local, in the sense that
the enhanced solution is computed independently in each cell of the computational mesh, and at
each time step of interest. As a result, it is inexpensive to compute, especially if the region of
interest is localized, either in time or space. We present several numerical experiments that high-
light the superconvergence properties of the postprocessed electromagnetic fields. Pursuing our
aim, we propose a methodology to construct hybrid explicit/implicit (IMEX) HDGTD methods
for Maxwell’s equations in the last part. We present the IMEX HDGTD methods obtained from
dividing the semi-discrete formulation into coarse and fine parts and then applying three different
IMEX time-marching of three different orders (less or equal to 3). We present numerical results for
various test cases. An L shape domain where we have a singularity in the solution, a heterogeneous
domain where we have an important variation of the wave speed, and a crystal photonic device
where the spheres made of silicium are too close to each other. In these cases, the locally re-
fined meshes are a must for the accuracy of the approximated solution and the obtained numerical
results demonstrate that our methods are efficient in terms of accuracy and CPU time metrics.

Key words: Maxwell, HDG, IMEX, postprocessing
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1

Introduction

1.1 Physical context

A system of mathematical models can describe a wide variety of phenomena, which can be physical,
biological, economic, demographic, geological for example. There is a considerable number of
models, from different families, sometimes established well before the birth of the first computers.
Some are stochastic, e.g. with consideration of randomness, while others are deterministic, e.g. in
the form of ordinary differential equations (ODE) or a system of partial differential equations
(PDE). Those models can be used to simulate realistic phenomena, which can thus play a predictive
or explicative role. The study and exploitation of these models have always been essential for
engineers. The importance of numerical modeling has become a more significant challenge with the
increase in computer system capabilities, and in particular, with the advent of parallel computers.
This was particularly the case for electromagnetism.

The physicist James Clerk Maxwell (Fig. 1.1) laid the foundations of modern electromagnetism
in 1865 in [1]. For the first time, he formulated the classical theory of electromagnetism by bringing
together electricity, magnetism, and light as various manifestations of the same phenomenon.
Maxwell’s equations have been studied for many decades, for different purposes. As for most of the
computational models, computational electromagnetism can be used for validation and prototyping
in a goal-oriented engineering setup. We can find electromagnetism applications everywhere. Many
of those are part of our daily life, such as wireless communications, electromagnetic braking,
optical fibers, medical imaging, magnetic lift train, induction charging of batteries, or even in
our computer’s hard drives. The full wave Maxwell’s equations can be formulated in two settings:
the time-domain (TD) and the frequency-domain (FD) formulations. Several numerical methods
have been devised to solve both formulations. As often in numerical modeling, the choice of a
method is driven by the application. In the context of this thesis we are mainly concerned with
the time-domain formulation.
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Figure 1.1 | James Clerk Maxwell’s equations.

1.2 Numerical context

The Finite Difference Time-Domain (FDTD) method introduced by K.S. Yee in 1966 [2] is a widely
used approach for solving the system of time-domain Maxwell equations. The main reasons for the
popularity of this method are its ease of implementation and its computational efficiency. However,
to achieve the latter properties, the FDTD relies on a cartesian structured discretization of the
computational domain [3]. When the underlying physics involves complex geometrical features and
curvilinear interfaces and boundaries, the structured grid becomes a significant limitation, which
is manageable but makes the method more complex. Being naturally constructed for unstructured
grids, the Finite Element Method (FEM) is well suited for the numerical solution of PDEs in
complex geometries [4]. Although initially developed for elliptic equations, FEM have been further
extended to hyperbolic equations. In the time-domain and for the classic FEM, one generally
needs to solve the sparse linear system associated to the mass matrix at each time-step, which
makes the method very expensive and rarely used in practice. The Finite Volume method (FVM)
relies on the evaluation of integrals over volume elements and facets of the mesh. This allows
great geometrical flexibility, which is required for most electromagnetic problems [5]. However,
this method lends itself to a piecewise constant approximation of the field and is thus facing
accuracy issues. During the last twenty years, numerical methods formulated on unstructured
meshes have drawn a lot of attention in computational electromagnetics with the aim of dealing
with irregularly shaped structures and heterogeneous media. In particular, the discontinuous
Galerkin time-domain (DGTD) method has progressively emerged as a viable alternative to the
methods mentioned so far since it integrates advantages of both the finite volume time domain
(FVTD) method and the finite element time domain (FETD) method. Like FVTD, the numerical
flux is used to exchange information between neighboring elements, thus all operations of DGTD
are local and easily parallelizable. Similar to FETD, DGTD employs unstructured mesh and is
capable of high order accuracy if the high order hierarchical basis function is adopted. Such a
DGTD method has been recently designed at Inria in the Nachos project-team for the simulation
of nanoscale light/matter interaction problems. In this doctoral thesis project, we propose to
study an alternative method, which is high order accurate in space and time and well suited to
the use of locally refined unstructured grids. In particular, we aim at devising a method that
allows to reduce the number of globally coupled degrees of freedom in this context, when using
a fully implicit time integration scheme, and when combined with a hybrid implicit/explicit time



scheme it deals efficiently with the drastic restriction of the time step in this context, when using
a fully explicit time integration scheme. For that purpose, we will consider a particular form
of the DG method that has been recently introduced for the numerical treatment of model time-
domain electromagnetics problems. This particular DG formulation is referred to as the Hybridized
Discontinuous Galerkin (HDG) method.

1.3 Generalities about the DGTD method

During the last ten years, the DGTD method has progressively emerged as a viable alternative
to well established FDTD (Finite Difference Time-Domain) [6] and FETD (Finite Element Time-
Domain) [7] methods for the numerical simulation of electromagnetic wave propagation problems
in the time-domain.

The DGTD method can be considered as a finite element method where the continuity con-
straint at an element interface is released. While it keeps almost all the advantages of the finite
element method (large spectrum of applications, complex geometries, etc.), the DGTD method has
other nice properties which explain the renewed interest it gains in various domains in scientific
computing:

- It is naturally adapted to a high order approximation of the unknown field. Moreover, one
may increase the degree of the approximation in the whole mesh as easily as for spectral
methods but, with a DGTD method, this can also be done locally i.e. at the mesh cell
level. In most cases, the approximation relies on a polynomial interpolation method but the
method also offers the flexibility of applying local approximation strategies that best fit to
the intrinsic features of the modeled physical phenomena.

- When the discretization in space is coupled to an explicit time integration method, the DG
method leads to a block diagonal mass matrix independently of the form of the local approx-
imation (e.g the type of polynomial interpolation). This is a striking difference with classical,
continuous FETD formulations. Moreover, the mass matrix is diagonal if an orthogonal basis
is chosen.

- It easily handles complex meshes. The grid may be a classical conforming finite element
mesh, a non-conforming one or even a hybrid mesh made of various elements (tetrahedra,
prisms, hexahedra, etc.). The DGTD method has been proven to work well with highly
locally refined meshes. This property makes the DGTD method particularly well suited to
the design of a hp-adaptive solution strategy (i.e. where the characteristic mesh size h and
the interpolation degree p changes locally wherever it is needed).

- It is flexible with regards to the choice of the time stepping scheme. One may combine the
discontinuous Galerkin spatial discretization with any global or local explicit time integration
scheme, or even implicit, provided the resulting scheme is stable.

- It is naturally adapted to parallel computing. As long as an explicit time integration scheme
is used, the DGTD method is easily parallelized. Moreover, the compact nature of method is
in favor of high computation to communication ratio especially when the interpolation order
is increased.

As in a classical finite element framework, a discontinuous Galerkin formulation relies on a weak
form of the continuous problem at hand. However, due to the discontinuity of the global approx-
imation, this variational formulation has to be defined at the element level. Then, a degree of



freedom in the design of a discontinuous Galerkin scheme stems from the approximation of the
boundary integral term resulting from the application of an integration by parts to the element-
wise variational form. In the spirit of finite volume methods, the approximation of this boundary
integral term calls for a numerical flux function which can be based on either a centered scheme
or an upwind scheme, or a blend of these two schemes.

Figure 1.2 | Boris Grigoryevich Galerkin.

1.4 DGTD methods for time-domain electromagnetics

In the early 2000’s, DGTD methods for time-domain electromagnetics have been studied by a few
groups of researchers, most of then from the applied mathematics community. One of the most
significant contributions is due to Hesthaven and Warburton [8] in the form of a high order nodal
DGTD method formulated on unstructured simplicial meshes. The proposed formulation is based
on an upwind numerical flux, nodal basis expansions on a triangle (2D case) and a tetrahedron
(3D case) and a Runge-Kutta time stepping scheme. In [9], Kakbian et al. describe a rather
similar approach. More precisely, the authors develop a parallel, unstructured, high order DGTD
method based on simple monomial polynomials for spatial discretization, an upwind numerical flux
and a fourth-order Runge-Kutta scheme for time marching. The method has been implemented
with hexahedral and tetrahedral meshes. A high order DGTD method based on a strong stability
preserving Runge-Kutta time scheme has been studied by Chen et al. [10]. The authors also present
post-processing techniques that can double the convergence order. A locally divergence-free DGTD
method is formulated and studied by Cockburn et al. in [11]. In the same period, a high order nodal
DGTD method formulated on unstructured simplicial meshes has also been proposed by Fezoui et
al. [12]. However, contrary to the DGTD methods discussed in [8] and [9], the method proposed
in [12] is non-dissipative thanks to a combination of a centered numerical flux with a second-order
leap-frog time stepping scheme. The DGTD method has then been progressively considered and
extended to increasingly more complex modeling situations by groups of researchers in the applied
electromagnetics and electrical engineering communities for a wide variety of applications related
to aeronautics, defense, semiconductor device fabrication, etc. [13]-[14]-[15]-[16]-[17]-[18]-[19] to



cite a few. More recently, the method has also been adopted and further developed by researchers
in the nano-optics domain [20]-[21]-[22]-[23]. A full review of the nowadays numerous applications
of DGTD methods would certainly require more than a simple paragraph. Also worth to note,
the DGTD method has been implement in commercial software such HFSS-TD (the time-domain
version of the well-known HFSS software used for antenna design) [24].

1.5 Explicit versus implicit DGTD methods

From the above discussion, it is clear that the DGTD method is nowadays a very popular numer-
ical method in the computational electromagnetics community. The works mentioned so far are
mostly concerned with time explicit DGTD methods relying on the use of a single global time
step computed so as to insure the stability of the simulation. It is however well known that when
combined with an explicit time integration method and in the presence of an unstructured locally
refine mesh, a high order DGTD method suffers from a severe time step size restriction. A pos-
sible alternative to overcome this limitation is to use smaller time steps, given by a local stability
criterion, precisely where the smallest elements are located. The local character of a DG formula-
tion is a very attractive feature for the development of explicit local time stepping schemes. Such
techniques have been developed for the second order wave equation discretized in space by a DG
method [25]-[26]. In [27], a second order symplectic local time stepping DGTD method is proposed
for Maxwell’s equations in a non-conducting medium, based on the Störmer-Verlet method. Grote
and Mitkova derived local time-stepping methods of arbitrarily high accuracy for Maxwell’s equa-
tions from the standard leap-frog scheme [28]. In [29], Taube et al. also proposed an arbitrary
high order local time-stepping method based on ADER DG approach for Maxwell’s equation. An
alternative approach that has been considered in [30]-[31] is to use a hybrid explicit-implicit (or
locally implicit) time integration strategy. Such a strategy relies on a component splitting deduced
from a partitioning of the mesh cells in two sets respectively gathering coarse and fine elements.
In these works, a second order explicit leap-frog scheme is combined with a second order implicit
Crank-Nicolson scheme in the framework of a non-dissipative (centered flux based) DG discretiz-
ation in space. At each time step, a large linear system must be solved whose structure is partly
diagonal (for those rows of the system associated to the explicit unknowns) and partly sparse (for
those rows of the system associated to the implicit unknowns). The computational efficiency of
this locally implicit DGTD method depends on the size of the set of fine elements that directly
influences the size of the sparse part of the matrix system. Therefore, an approach for reducing
the size of the subsystem of globally coupled (i.e. implicit) unknowns is worth considering if one
wants to solve very large-scale problems.

A particularly appealing solution in this context is given by the concept of hybridizable dis-
continuous Galerkin (HDG) method. The HDG method has been first introduced by Cockbrun et
al. in [32] for a model elliptic problem and has been subsequently developed for a variety of PDE
systems in continuum mechanics [33]. The essential ingredients of a HDG method are:

1. a local Galerkin projection of the underlying system of PDEs at the element level onto spaces
of polynomials to parametrize the numerical solution in terms of the numerical trace,

2. a judicious choice of the numerical flux to provide stability and consistency,

3. a global jump condition that enforces the continuity of the numerical flux to arrive at a global
weak formulation in terms of the numerical trace.



HDG methods are fully implicit, high order accurate and endowed with several unique features
which distinguish them from other DG methods. Most importantly, they reduce the globally
coupled unknowns to the approximate trace of the solution on element boundaries, thereby leading
to a significant reduction in the number of degrees of freedom. HDG methods for the system of
time-harmonic Maxwell equations have been proposed in [34]-[35]-[36].

1.6 Contributions and thesis outline

The remaining of this manuscript is structured as follows:

• Chapter 2 presents the HDG method that has been studied on different equations and pub-
lished in previous works. The advantages of using HDG methods over those of DG methods
for Poisson equations are presented in section 2.3. Section 2.4 first elaborates the formula-
tion and the main principles of the HDG method for 3D time-harmonic Maxwell’s equations.
Then, to better understand how it works, we are going to present all the details for the im-
plementation of this method. We describe in section 2.5 the formulation of the fully implicit
HDG method for 3D time-domain Maxwell’s equations, a proof for the semi-discrete stabil-
ity, the well-posedness of the local solver, the existence and the uniqueness of the solution,
a proof for the unconditional stability of the HDGTD method combined with the Crank-
Nicholson time integration and finally some numerical results showing that the HDG method
outperforms the DG method both in the memory requirement and CPU time metrics.

• In chapter 3 we describe the fully explicit high order accurate HDG method for the 3D
time-domain Maxwell’s equations. Our work is published in [37].

• Our starting point for section 3.2 is the same HDGTD global formulation (2.43) men-
tioned in chapter 2 for the time-domain Maxwell’s equations. Since we are applying
an explicit time scheme on the mentioned formulation, we will obtain a direct relation
between all the variables at the same time step with the help of the conservativity equa-
tion. So we are going then to reformulate the numerical fluxes in terms of the variables
inside the two neighboring elements (3.2)-(3.3), and inject them in the local problem
to obtain a DG method with generalized upwind fluxes. In other words, this method
coincides with the classical upwind flux-based DG method for a particular choice of the
stabilization parameter τ in the HDG numerical traces.

• In section 3.3 we present first the formulation obtained in the last section with some
bilinears forms, and then we are going to find the electromagnetic energy in terms of
these bilinears forms so we can proceed for the stability proofs. Theorem 4 shows that
the energy function Eh(.) decreases in time, so we have a semi-discrete stability for the
scheme. Lemma 2 leads us to proposition 1 where we are going to show that under a 4/3

CFL condition, i.e ∆t ≤ ch
4
3 , the explicit HDGTD scheme with a RK2 discretization

in time is stable in finite time.
• Section 3.4 describes, step by step, through the spatial discretization of Maxwell’s equa-

tions by the proposed hybridizable discontinuous Galerkin method. Then, Low-Storage
Runge Kutta (LSRK) time integration is proposed in section 3.4.3 as a fully explicit
time integration to complete the discretization.

• Finally, in section 3.5 we assess numerically the influence of the parameter τ on the fully
explicit HDG scheme and we will present the numerical solution of Maxwell’s equations



in the case of propagation of a standing wave in a cubic PEC cavity, propagation of
a plane wave in a homogeneous domain and scattering of a plane wave by a dielectric
sphere. We also see that this method is high order accurate and leads us to an optimal
convergence order. All the numerical results are simulated in the framework of the
DIOGENeS software suite (section 3.5.1). It was very important to understand how
it works since he treats the DG method for Maxwell’s equations and in this chapter
the method proposed is a generalized one. So we updated all the routines treating the
numerical fluxes on the interior faces, also on the perfectly metallic boundary and the
absorbing boundary faces.

Figure 1.3 | 3D simulation for the magnitude of the electric field at a fixed time with P4 elements with the explicit
HDGTD discretization for Maxwell’s equations.

• Chapter 4 aims at showing that the fully explicit HDG method for the 3D time-domain
Maxwell’s equations presented in chapter 3 is amenable to local postprocessing to obtain
a superconvergence property with a rate k + 1, if k ≥ 1 is the interpolation order, in the
H(curl)-norm instead of k. Our novel postprocessing is inspired by two recent works, namely,
a postprocessing for an explicit HDG discretization of the 2D acoustic wave equation [38],
and a postprocessing for a HDG discretization of the 3D time-harmonic Maxwell’s equations
[39].

• Section 4.2 presents the previous work done in [39] for the local postprocessing technique
of a HDG discretization for the 3D time-harmonic Maxwell’s equations. We recall the
definition of the postprocessed solution and present numerical results for the cubic
cavity test case in which the postprocessed solutions converge with an order k + 1, in
the H(curl)-norm instead of k.

• Section 4.3 describes our novel postprocessing done for the first time in the context of
time-domain Maxwell’s equations. First we define our postprocessing technique that
hinges on element-wise finite-element saddle-point problems. Then, we show that there
exists a unique solution for the postprocessed variables in Theorem 5. Second, we write
all the details needed to obtain the space discretization of this postprocessing method
in 4.3.4.

• Finally, in section 4.4 the superconvergence property is validated with the same numer-
ical cases considered in chapter 3. Where, in the case of propagation of a standing wave



in a cubic PEC cavity, we will show in Figures 4.1 and 4.2 the behavior of the error for
the original and postprocessed discrete solutions with respect to time on a fixed mesh.
The postprocessed solution is about 10 times more accurate than the original one, while
it is 5 times more accurate in the case of the propagation of a plane wave in a homogen-
eous domain (Figures 4.3 and 4.4). We submitted our work in the computational and
applied mathematics (COAM) journal. Tables 4.2 and 4.3 present in more detail our
results on a series of meshes and for different polynomial degrees. We see that in each
case, the curl of the postprocessed solution converges with the expected order, namely
k + 1. And finally, scattering of a plane wave by a dielectric sphere does not have an
analytical solution, so we will compute a reference solution with P4 elements on a fine
mesh. We will assess the impact of our novel postprocessing by considering a set of
evaluation points where we compute the relative errors between the reference solution
and the solution before and after postprocessing. Table 4.4 shows that error after post-
processing is less than the error before postprocessing for all the evaluation points that
we have selected. All the numerical results were simulated on the DIOGENeS software
suite. We added different routines to obtain these numerical results. First, on the cal-
culation of the H(curl) error and then on the definition of all the elementary matrices
mentioned in the implementation section 4.3.4 leading us to find the new approximated
solution locally in space and time. And finally on all the different routines needed for
the comparison between the solutions before and after postprocessing.

• Chapter 5 presents the ultimate goal of this thesis which is elaborating a hybrid implicit/ex-
plicit (IMEX) HDG method for Maxwell’s equations. We consider hybridized discontinuous
Galerkin time-domain (HDGTD) methods and propose efficient time integration methods
when using non-uniform (locally refined) meshes. However, locally refined meshes lead to
severe stability constraints when considering fully explicit time integration methods in com-
bination with high order HDG spatial discretization. If relatively few refined elements are
present in the grid, this time step restriction can be removed by blending an implicit and an
explicit (IMEX) time-integration schemes where only the degrees of freedom associated with
small elements are treated implicitly. This approach requires the solve of a linear system at
each time step, but the size of this system is limited, since it only corresponds to the finest
regions of the space grids where the implicit scheme is applied.

• Section 5.2 presents the first step towards elaborating the IMEX HDG method, which
is writing the semi-discrete formulation of the HDG method in terms of coarse and fine
elements of the mesh. Then, we will introduce some notations to obtain a compact
expression of the semi-discrete HDG global weak formulation. Later on in this section,
we will usher some preliminary results, as Lemmas 3-4 and Corollary 4.1 to find some
upperbounds leading us to the stability analysis studied later on in this chapter.

• In section 5.3, we will first give a quick overview on Runge-Kutta and IMEX Runge-
Kutta methods and show the way they are applied on the semi discrete HDG discret-
ization 5.3.1. Then we will consider three different hybrid implicit-explicit (IMEX)
HDG methods, which are based on the following time schemes: the first order Euler
implicit-explicit method in 5.3.2, a second order implicit-explicit Runge-Kutta method
in 5.3.2, and third order implicit-explicit SSP-LDIRK3 method, which is a mix between
the explicit strong stability preserving and the L-stable diagonally implicit Runge-Kutta
methods in 5.3.2. With the help of Lemmas 3-4 and Corollary 4.1, theorems 6-7 show



that for ∆t ≤ ηh2
T COh

(T COh is the coarse part of the mesh), the totally discrete hybrid
implicit-explicit Euler HDG and implicit-explicit Runge-Kutta 2 scheme are stable in
the sense that for all n ∈ N, there exists β > 0 (independent of h and ∆t) such that
Enh ≤ eβTE0

h.

• Finally, we present numerical results for four different numerical cases to assess the con-
vergence and accuracy of the method and to show her importance in terms of the gain
obtained for the CPU time, in the cases where the locally refined meshes is a must for
the accuracy of the approximated solution in section 5.4.
In order to validate and study the numerical convergence of the proposed IMEX HDG
methods, we first consider in 5.4.1 the propagation of an eigenmode in a source-free
closed cavity with perfectly metallic walls while considering a uniform mesh. It is clear
that in the case of uniform meshes, we have hT COh

= h. The goal of this section is just
to validate the hybrid implicit/explicit HDGTD scheme without seeing the gain this
method is designed for. While considering an arbitrary fine region, tables 5.3-5.4-5.7
present in more detail our results on a series of meshes and for the correspondent poly-
nomial degree, in the sense that for a time scheme of order k, it is sufficient to consider
a k − 1 polynomial degree.
In 5.4.2 we consider a model problem for which an analytical solution is available and
that consists in the propagation of a standing wave in a PEC disc sector. The solution
presents a singularity at the origin, as shown on the bottom image of Fig. 5.14. There-
fore, it is necessary to locally refine the mesh in this region to preserve the convergence
of the HDG scheme, see Fig. 5.15, 5.16, 5.17 and 5.18. For a mesh consisted of 28.75%
fine elements and a ratio of almost 31 between hT COh

and h (Fig.5.20) and without losing
any accuracy (Fig. 5.22), Tab. 5.8 shows that the third order IMEX HDGTD scheme
outperforms the third order fully explicit and implicit HDGTD schemes on CPU time
metrics.
Then, in 5.4.3 we will consider the propagation of an eigenmode in a source-free closed
cavity with ε = ε(x). In this case we have an important change in the velocity of the
wave between two different parts of the mesh corresponding to two different permittiv-
ities. To better catch the information of the wave, we have to increase the number of
elements per wave length in the region where the velocity of the wave is higher. For this
reason the locally refined mesh (Fig. 5.24 on the right) is a must in this case (Fig. 5.27).
For a mesh constituted of 82.66% fine elements and a ratio of almost 13.6 between hT COh

and h, Tab. 5.9 shows that the second order IMEX HDGTD scheme outperforms the
second order fully explicit HDGTD scheme and implicit HDGTD schemes on CPU time
metrics. Note that in this case, the percentage on the fine elements is very high, so the
global HDG matrix we are inverting at each time step will have a very few modifications
between IMEX and fully implicit scheme. Therefore, the CPU time metrics will lightly
change for these two time schemes.
Finally in 5.4.4, we will consider a prototype problem of a photonic crystal structure
in the emerging nanophotonics area [40]. The photonic crystal type represents a nano-
structuring device encapsulated in a square which is composed of cylindrical holes made
of silicium enclosed by a silica device (Fig.5.30). We use absorbing boundary conditions
with an incident plane wave. First we will test our third order fully explicit HDGTD
scheme. The simulation is presented in Fig.5.32. Then , we will consider the same
problem but with a smaller distance between the holes (Fig. 5.33) to test our third



order IMEX HDGTD scheme. For a mesh constituted of 8.3% fine elements and a ratio
of almost 3 between hT COh

and h, Tab. 5.10 shows that our third order IMEX HDGTD
scheme outperform both of the fully explicit and implicit HDGTD schemes on compu-
tational time while preserving the same accuracy (Fig. 5.38).
All the numerical results are simulated by our MATLAB code designed for the HDGTD
method for 2D Maxwell’s equations.

Figure 1.4 | A Locally refined mesh for the photonic crystal device, while the holes are very close to each others.

• Annex contains our conference paper on the fully explicit HDGTD method for Maxwell’s
equations [37] and our submitted paper on a postprocessing technique for a discontinuous
Galerkin discretization of time-dependent Maxwell’s equations.



2

The HDG method

2.1 Introduction

In recent years, hybrid (hybridized or hybridizable) discontinuous Galerkin (HDG) methods have
been investigated and applied to various problems. The usual discontinuous Galerkin (DG) method
utilizes two types of numerical fluxes to deal with the discontinuity of an approximate solution uh on
inter-element boundaries. In the HDG method, a numerical trace ûh is introduced to approximate
the trace of a solution besides uh, which is a new unknown and may be called the hybrid unknown.
The number of degrees of freedom (DOF) of the DGmethod is much larger than that of a continuous
finite element method. By static condensation, that is, eliminating the element unknown uh by
the hybrid unknown ûh, we obtain a discretized equation in terms of ûh only. As a result, the
number of DOF of the HDG method can be considerably reduced, which is the main advantage of
the HDG method over the DG method. We note that the HDG method has remarkable features
besides the above advantage, such as superconvergence properties and various connections with
other numerical methods (nonconforming and mixed finite element methods, etc). The HDG
method was firstly introduced by Cockburn et al. [32], in which the hybridization of the local
discontinuous Galerkin (LDG) method (cf. [41]) is successful to unify the formulations of various
hybrid methods. An overview of various HDG methods is already provided in [32], and we refer
to it as for an overview of the main achievements with such methods. This chapter is organized
as follow: The HDG method for the Poisson equation (section 2.3), for Maxwell’s equations in
frequency-domain (section 2.4) and for Maxwell’s equations in time-domain while using a fully
implicit time integration (section 2.5) .

2.2 Notations

We consider a partition Th of a Lipschitz polyhedral Ω ⊂ Rn(n = 2, 3) into a set of triangles or
tetraedra. Each non-empty intersection of two elements K+ and K− is called a face. We denote
by Fh the set of all faces of Th. Note that ∂Th represents all the faces ∂K for all K ∈ Th. As a
result, an interior face shared by two elements appears twice in ∂Th, unlike of Fh where this face
is counted once. For an interface F ∈ FIh , F = K

+ ∩K−. If v : Ω → R3 is a function admitting
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well-defined traces on F , v± denote the traces of v on F from the interior of K±. On this interior
face, we define mean values {·} and jumps J·K as




{v}F =

1

2
(v+ + v−),

JvKF = n+ × v+ + n− × v−,

where the unit outward normal vector to K is denoted by n±. For the boundary faces these
expressions are modified as {

{v}F = v+,

JvKF = n+ × v+,

since we assume v is single-valued on the boundaries. In the following, we introduce the discon-
tinuous finite element spaces and some basic operations on these spaces for later use. Let Pk(K)
denotes the space of polynomial functions of degree at most k on the element K ∈ Th. The
discontinuous finite element space is as usual defined as

V m
h =

{
v ∈

[
L2(Ω)

]m such that v|K ∈ [Pk(K)]m , ∀K ∈ Th
}
, (2.1)

where L2(Ω) is the space of square integrable functions on the domain Ω and m ∈ {1, 2, 3}. The
functions in V m

h are continuous inside each element and discontinuous across the interfaces between
elements. In addition, we introduce two traced finite element spaces, Mm

h and M t,m
h , where

Mm
h =

{
η ∈ [L2(Fh)]m such that η|F ∈ [Pk(F )]m, ∀F ∈ Fh

}
, (2.2)

and

M t,m
h =

{
η ∈

[
L2(Fh)

]m such that η|F ∈ [Pf (F )]m and (η · n) |F = 0, ∀F ∈ Fh
}
. (2.3)

Let us define D as a domain in R3. For two vectorial functions u and v in
[
L2(D)

]3, we denote

(u,v)D =

ˆ
D
u · v dx , and we denote < u,v >F=

ˆ
F
u · v ds if F is a two-dimensional face.

Note that in chapter 5, the computational mesh Th is split into two parts that we denote by T COh

and T FIh , where T FIh is the fine part which contains all the small elements of the mesh, and T COh

is the coarse part, and contains all the remaining elements, we denote by hT COh
= min

K∈T COh

hK .

Accordingly, for the mesh we have

(·, ·)Th =
∑

K∈Th
(·, ·)K , 〈·, ·〉∂Th =

∑

K∈Th
〈·, ·〉∂K ,

〈·, ·〉Fh =
∑

F∈Fh
〈·, ·〉F , 〈·, ·〉Γa =

∑

F∈Fh∩Γa

〈·, ·〉F .

(·, ·)T FIh
=

∑

K∈T FIh

(·, ·)K , 〈·, ·〉∂T FIh
=

∑

K∈T FIh

〈·, ·〉∂K ,

(·, ·)T COh
=

∑

K∈T COh

(·, ·)K , 〈·, ·〉∂T COh
=

∑

K∈T COh

〈·, ·〉∂K .

We set,
vt = −n× (n× v) , vn = n (n · v) ,



where vt and vn are the tangential and normal components of v such as v = vt + vn.
Note that M t,3

h consists of vector-valued functions whose normal component is zero on any face
F ∈ Fh. Thus, an element of M t,3

h can be characterized by two tangential vectors on the faces:
if tF1 and tF2 denote independent tangent vectors on F , the restriction of η ∈ M t,3

h on F can be
written as

η|F = ηF1 t
F
1 + ηF2 t

F
2 ,

where ηF1 ∈ Pf (F ) and ηF2 ∈ Pf (F ) are real-valued polynomials of degree at most f on F . Thus,
the vector-valued function η ∈M t,3

h is characterized by two scalar functions η1 and η2.
For a given K ∈ Th and F ∈ Fh we denote by hK and hF their diameter, ρK = min

1≤i≤4
ρi, ρi

being the diameter of the circle inscribed in the triangle formed by the three vertices (aj)j 6=i and
h = min

K∈Th
hK . We consider a shape-regular and a quasi-uniform mesh, i.e

∀h, ∀K ∈ Th, ∃η > 0 ;
hK
ρK

< η ( shape regular ),

and
∃η > 0;∀K,K ′ ∈ Th, hK ≤ ηhK′ ( quasi uniform ).

We recall the following definitions of Sobolev spaces,

H1(Ω) =
{
f ∈ L2(Ω); ∇f ∈ L2(Ω)

}
,

H1
0 (Ω) =

{
f ∈ H1(Ω); γ0(f) = 0

}
,

Hdiv(Ω) =
{
f ∈

[
L2(Ω)

]n
;∇ · f ∈ L2(Ω)

}
,

Hcurl(Ω) =
{
f ∈ L2(Ω); ∇× f ∈ L2(Ω)

}
,

L2
0(Fh) =

{
f ∈ L2(Fh); f = 0 on ∂Ω

}
.

(2.4)

Sobolev spaces

With, γ0 is the usual continuous trace operator for Sobolev spaces.

2.3 From DG to HDG for Poisson equation

In this section, we will review the DG method on a simple example, show the importance of
changing from DG to HDG discretization in terms of how the HDG method will reduce the number
of globally coupled DoFs without entering in details. The reader is referred to [32] to see the proof
in this case.

2.3.1 Problem statement

Let Ω ⊂ Rn(n = 2, 3) be a bounded domain and f ∈ L2(Ω) be a given function. We consider the
Poisson equation with homogeneous boundary condition,



−∆u = f, in Ω,

u = 0, on ∂Ω.
(2.5)

Poisson equation

We first rewrite the problem as a first-order system,

σ =∇u, in Ω,

−∇ · σ = f , in Ω,

u = 0 , on ∂Ω.

(2.6)

First-order Poisson equation

2.3.2 Weak formulation

It is now possible to write the weak formulation of problem (2.6) in the cell K. By taking the L2

scalar product of each term in the first two equations with the test functions v1 and v2 respectively,
one obtains the following variational problem:

Find (σ, u) ∈ Hdiv(Ω)×H1
0 (Ω) such that ∀(v1, v2) ∈ Hdiv(Ω)×H1

0 (Ω)





ˆ
K
σ · v1 −

ˆ
K
∇u · v1 = 0,

−
ˆ
K
∇ · σ v2 −

ˆ
K
f v2 = 0.

(2.7)

Note that if σ does not belong to Hdiv(Ω) then ∇ · σ is not a L2(Ω) function and the first term
of the second equation of (2.7) is not defined as well . Integrating by parts the two equations of
(2.7) gives 




ˆ
K
σ · v1 +

ˆ
K
u∇ · v1 −

ˆ
∂K

un · v1 = 0,

ˆ
K
σ ·∇v2 −

ˆ
K
f v2 −

ˆ
∂K
σ · n v2 = 0.

(2.8)

Hence, after summing over all the elements K in Th we obtain





(σ,v1)Th + (u,∇ · v1)Th − 〈u,n · v1〉∂Th = 0 ∀v1 ∈ Hdiv(Ω),

(σ,∇v2)Th − (f, v2)Th − 〈σ · n, v2〉∂Th = 0 ∀v2 ∈ H1
0 (Ω).

(2.9)

Weak formulation



Figure 2.1 | DoFs for the DG and HDG method with a P2 interpolation.

2.3.3 DG global formulation

Following the classical DG approach, approximate solutions (σh, uh), are seeked in the space
V 1
h × V 2

h satisfying for all K in Th,

{
(σh,v1)K + (uh,∇ · v1)K − 〈ûh,n · v1〉∂K = 0, ∀v1 ∈ V 2

h ,

(σh,∇v2)K − (f, v2)K − 〈σ̂h · n, v2〉∂K = 0, ∀v2 ∈ V 1
h .

(2.10)

DG formulation

where the numerical fluxes σ̂h and ûh are approximations to σ = ∇u and to u, respectively, on
the boundary of K. To complete the formulation of a DG method we must express the numerical
fluxes σ̂h and ûh in terms of σh and uh. The choice of the numerical fluxes is a crucial step, as it
can affect the stability and the accuracy of the method. Consider,

ûh = {uh}+ αJσhK and σ̂h = {σh}+ αJuhK, (2.11)

where α = 0 corresponds to a centered flux, α = 1 to an upwind flux. We can easily see from (2.10)
and (2.11) that, we have to solve a large global problem containing a large number of DoFs since
an important number of the DoFs are coupled (the blue dots in figure (2.1) (left)). Here comes the
concept of hybridizable discontinuous Galerkin (HDG) method in solving the problem by reducing
the number of the globally coupled unknowns to the approximate trace of the solution on element
boundaries, thereby leading to a significant reduction in the degrees of freedom (the red dots in
figure (2.1) (right)) and then we can find locally the solution of the element unknowns.

2.3.4 Derivation of the HDG scheme

To hybridize the DG method presented in (2.10), we have to consider the numerical flux ûh as a
new variable λh, so now the new approximate solutions (σh, uh, λh) are seeked in V 2

h ×V 1
h ×M

t,1
h

such that







(σh,v1)Th + (uh,∇ · v1)Th − 〈λh,n · v1〉∂Th = 0, ∀v1 ∈ V 2
h ,

(σh,∇v2)Th − (f, v2)Th − 〈σ̂h · n, v2〉∂Th = 0, ∀v2 ∈ V 1
h ,

〈σ̂h · n, η〉∂Th = 0, ∀η ∈M t,1
h .

(2.12)

HDG formulation

while,

σ̂h · n = σh · n+ τ (ûh − uh) on ∂K. (2.13)

Numerical fluxes

The idea here is to create a global problem, that only depends on the degrees of freedom of λh,
from the third equation of (2.12) and the local form of the first two equations, and then deduce
locally uh and σh.

2.4 HDG method for 3D time-harmonic Maxwell’s equations

2.4.1 Problem statement

In this section, we will focus on devising a HDG method for the Maxwell’s equations in frequency-
domain [42]-[34]. The time-harmonic Maxwell’s equations in a bounded domain Ω ⊂ R3 is con-
sidered as

{
iωεrE − curlH = −J , in Ω,

iωµrH + curlE = 0, in Ω.
(2.14)

Time-harmonic Maxwell’s equations

where i is the imaginary unit, ω is the angular frequency, εr and µr are the relative permittivity
and permeability. J is a known current density, E and H are the electric and magnetic fields.
The boundary of Ω is defined as ∂Ω = Γm ∪ Γa with Γm ∩ Γa = ∅. The boundary conditions are
choosen as





n×E = 0, on Γm,

n×E + n× (n×H) = n×Einc + n× (n×H inc),

= ginc, on Γa.

(2.15)

Boundary conditions



Here n denotes the unit outward normal to ∂Ω and (Einc,H inc) a given incident field. The first
boundary condition is often referred as a metallic boundary condition and is applied on a perfectly
conducting surface. The second relation is an absorbing boundary condition and takes here the form
of the Silver-Müller condition. It is applied on a surface corresponding to an artificial truncature
of a theoretically unbounded propagation domain.

2.4.2 Global formulation

Following the classical DG approach, approximate solutions (Eh,Hh), are seeked in the space
V 3
h × V 3

h satisfying for all K in Th
{

(iωεrEh,v)K − (curlHh,v)K = 0, ∀v ∈ V 3
h ,

(iωµrHh,v)K + (curlEh,v)K = 0, ∀v ∈ V 3
h .

(2.16)

Applying Green’s formula, on both equations of (2.16) introduces boundary terms which are re-
placed by numerical traces Êh and Ĥh in order to ensure the connection between element-wise
solutions and global consistency of the discretization. This leads to the formulation





(iωεrEh,v)K − (Hh, curlv)K +
〈
Ĥh,n× v

〉
∂K

= 0, ∀v ∈ V 3
h ,

(iωµrHh,v)K + (Eh, curlv)K −
〈
Êh,n× v

〉
∂K

= 0, ∀v ∈ V 3
h .

(2.17)

It is straightforward to verify that n×v = n×vt and <H,n×v >= − < n×H,v >. Therefore,
using numerical traces defined in terms of the tangential components Ĥt

h and Êt
h, we can rewrite

(2.17) as 



(iωεrEh,v)K − (Hh, curlv)K +
〈
Ĥt
h,n× v

〉
∂K

= 0, ∀v ∈ V 3
h ,

(iωµrHh,v)K + (Eh, curlv)K −
〈
Êt
h,n× v

〉
∂K

= 0, ∀v ∈ V 3
h .

(2.18)

The hybrid variable Λh introduced in the setting of a HDG method [32] is here defined for all the
interfaces of Fh as

Λh := Ĥt
h, ∀F ∈ Fh. (2.19)

We want to determine the fields Ĥt
h and Êt

h in each element K of Th by solving system (2.18) and
assuming that Λh is known on all the faces of an element K. We consider a numerical trace Êt

h

for all K given by
Êt
h = Et

h + τKn× (Λh −Ht
h) on ∂K, (2.20)

where τK is a local stabilization parameter which is assumed to be strictly positive. We recall that
n×Ht

h = n×Hh.

Remark 1. In a classical DG method the traces of the local fields Eh andHh between neighboring
elements are defined as

Êh = {Eh}+ αHJHhK and Ĥh = {Hh}+ αEJEhK,

where αH and αE are positive penalty parameters.



Remark 2. Following the HDG approach, when the hybrid variable Λh is known for all the faces
of the element K, the electromagnetic field can be determined by solving the local system (2.18)
using (2.19) and (2.20).

For the sake of simplicity, we denote by ginc the L2 projection of ginc on Mh. Summing
the contributions of (2.18) over all the elements and enforcing the continuity of the tangential
component of Êh, we can formulate a problem which is to find (Eh,Hh,Λh) ∈ V 3

h × V 3
h ×M

t,3
h

such that





(iωεrEh,v)Th − (Hh, curlv)Th + 〈Λh,n× v〉∂Th = 0, ∀v ∈ V 3
h ,

(iωµrHh,v)Th + (Eh, curlv)Th −
〈
Êt
h,n× v

〉
∂Th

= 0, ∀v ∈ V 3
h ,

〈
JÊhK,η

〉
Fh
− 〈Λh,η〉Γa −

〈
ginc,η

〉
Γa

= 0, ∀η ∈Mh.

(2.21)

HDG formulation 1

Where the last equation is called the conservativity condition with which we ask the tangential
component of Êh to be weakly continuous across any interface between two neighboring elements.
With the definition (2.20) of Êt

h, we employ again a Green formula with the second equation of
(2.21), in order to get the following formulation,





(iωεrEh,v)Th − (Hh, curlv)Th + 〈Λh,n× v〉∂Th = 0, ∀v ∈ V 3
h ,

(iωµrHh,v)Th + (curlEh,v)Th + 〈τn× (Hh −Λh) ,n× v〉∂Th = 0, ∀v ∈ V 3
h ,

〈n×Eh,η〉∂Th +
〈
τ
(
Ht
h −Λh

)
,η
〉
∂Th − 〈Λh,η〉Γa =

〈
ginc,η

〉
Γa
, ∀η ∈M t,3

h .

(2.22)

HDG formulation 2

Note that we have used
n× vt = n× v and n× (n× vt) = −vt (2.23)

to obtain (2.22). Indeed, the last relation of (2.21) together with the definition (2.20) of Êt
h yields

〈
n×Et

h,η
〉
∂Th +

〈
τn×

(
n×

(
Ht
h −Λh

))
,η
〉
∂Th − 〈Λh,η〉Γa =

〈
ginc,η

〉
Γa
,

which can be written, using (2.23)

〈n×Eh,η〉∂Th +
〈
τ
(
Ht
h −Λh

)
,η
〉
∂Th − 〈Λh,η〉Γa =

〈
ginc,η

〉
Γa
.

Moreover, we note that the last relation of (2.21) for a boundary face F on Γa is equivalent to,using
the fact that JÊt

hK = n× Êt
h,
〈
n× Êt

h,η
〉
Fh
−
〈
Ĥt
h,η
〉

Γa
=
〈
ginc,η

〉
Γa
,



that is, 〈(
n× Êh + n×

(
n× Ĥh

)
,η
)〉

F
=
〈
ginc,η

〉
F

which is nothing else than the Silver-Müller boundary condition in (2.15) with the numerical traces
Êh and Ĥh.

2.4.3 Main principles of the HDG method

The main principles of the HDG method can be summarized as

1. The DoFs (Degrees of Freedoms) of the hybrid variable are determined by solving a global lin-
ear system (from the discretization of the conservation condition) supported by the interfaces
of Fh;

2. The DoFs of the electromagnetic field in each element are evaluated by solving local linear
systems, more exactly for the DoFs of (Eh,Hh) in the considered element.

2.4.4 Implementation

In this section, we will present all the details elaborating the HDG method for the time-harmonic
Maxwell’s equations.

Discretization of the local equations

Let Th be the set of all Ke with e ∈ {1, · · · , |Th|}, and let N e
K be the number of degrees of freedom

in element Ke. We denote by σ(e, l) the face number l in the element Ke with l ∈ {1, · · · , |νe|} and
νe is the set of indices of all neighboring elements to the element Ke. Let Nσ(e,l)

F be the number

of DoFs in the face ∂K l
e. We define the restricted fields Ee = Eh|Ke

=



Eex
Eey
Eez


, He = Hh|Ke

=



He
x

He
y

He
z


 and Λσ(e,l) = Λh|

∂Kle

=

(
Λ
σ(e,l)
u

Λ
σ(e,l)
w

)
, while the vector (u,w)T constitute the basis of the

face ∂K l
e with u =



u
σ(e,l)
x

u
σ(e,l)
y

u
σ(e,l)
z


 and w =



w
σ(e,l)
x

w
σ(e,l)
y

w
σ(e,l)
z


. We will now develop the first equation of

(2.22) in order to exhibit the local matrices characterizing the HDG scheme. Let (ϕek)1≤k≤Ne
K

and(
ψ
σ(e,l)
p

)
1≤p≤Nσ(e,l)

F

be the set of scalar basis functions defined in Ke and ∂K l
e respectively. First

by setting v = ϕexk =



ϕek
0
0


 for 1 ≤ k ≤ N e

K in the first equation of (2.22) becomes

ˆ

Ke

iωεEexϕ
e
k −
ˆ

Ke

(
He
y∂zϕ

e
k −He

z∂yϕ
e
k

)
+

|νe|∑

l=1

ˆ

∂Kl
e

(
Λ
σ(e,l)
u u+ Λ

σ(e,l)
w w

)
·
(

0, nσ(e,l)
z ϕek,−nσ(e,l)

y ϕek

)T
= 0.

(2.24)



Note that we obtain N e
K equations of the form (2.24), one for each value of k. The different terms

appearing in (2.24) can be developed as follows.

• Mass matrix. Assuming that εr is constant on every Ke, we obtain

ˆ

Ke

iωεrE
e
xϕ

e
k = iωεr

ˆ

Ke

Ne
K∑

l=1

Eex[l]ϕelϕ
e
k

= iωεr

Ne
K∑

l=1

Eex[l]

ˆ

Ke

ϕelϕ
e
k

= iωεr (MeEex)k , 1 ≤ k ≤ N e
K ,

(2.25)

where Me is the mass matrix, of dimension N e
K ×N e

K

Me =



ˆ

Ke

ϕelϕ
e
k




1≤l,k≤Ne
k

,

and assuming that the vector of all the degrees of freedom of E in Ke has been ordered as

Ee =



Eex
Eey
Eez


 =




(Eex[l])T1≤l≤Ne
K(

Eey[l]
)T

1≤l≤Ne
K

(Eez [l])
T
1≤l≤Ne

K


 .

• Stiffness matrix.

ˆ

Ke

He
y∂zϕ

e
k −He

z∂yϕ
e
k =

ˆ

Ke

Ne
K∑

l=1

(
He
y [l]ϕel ∂zϕ

e
k −He

z [l]ϕel ∂yϕ
e
k

)

=

Ne
K∑

l=1

He
y [l]

ˆ

Ki

ϕel ∂zϕ
e
k −

Ne
K∑

l=1

He
z [l]

ˆ

Ki

ϕel ∂yϕ
e
k

=
(
DezHe

y − DeyHe
z

)
k
, 1 ≤ k ≤ N e

K .

(2.26)

Here, the stiffness matrices were introduced

(
Deξ
)

=



ˆ

Ke

ϕel ∂ξ ϕ
e
k




1≤l,k≤Ne
K

for ξ ∈ {x, y, z},

and

He =



He
x

He
y

He
z


 =




(He
x[l])T1≤l≤Ne

K(
He
y [l]
)T

1≤l≤Ne
K

(He
z [l])T1≤l≤Ne

K


 .



• Flux matrix.

|νe|∑

l=1

ˆ

∂Kl
e

(
Λ
σ(e,l)
u u+ Λ

σ(e,l)
w w

)
·
(

0, nσ(e,l)
z ϕek,−nσ(e,l)

y ϕek

)T

=

|νe|∑

l=1

ˆ

∂Kl
e

[
Λ
σ(e,l)
u nσ(e,l)

z uyϕ
e
k − Λ

σ(e,l)
u nσ(e,l)

y uzϕ
e
k

+ Λ
σ(e,l)
w nσ(e,l)

z wyϕ
e
k − Λ

σ(e,l)
w nσ(e,l)

y wzϕ
e
k

]

=

|νe|∑

l=1

ˆ

∂Kl
e

[
nσ(e,l)
z uy

N
σ(e,l)
F∑

i=1

Λ
σ(e,l)
u [i]ψ

(e,l)
i ϕek − nσ(e,l)

y uz

N
σ(e,l)
F∑

i=1

Λ
σ(e,l)
u [i]ψ

(e,l)
i ϕek

+ nσ(e,l)
z wy

N
σ(e,l)
F∑

i=1

Λ
σ(e,l)
w [i]ψ

(e,l)
i ϕek − nσ(e,l)

y wz

N
σ(e,l)
F∑

i=1

Λ
σ(e,l)
w [i]ψ

(e,l)
i ϕek

]

=

|νe|∑

l=1

[(
nσ(e,l)
z uy − nσ(e,l)

y uz

)Nσ(e,l)
F∑

i=1

Λ
σ(e,l)
u [i]

ˆ

∂Kl
e

ψ
(e,l)
i ϕek

+
(
nσ(e,l)
z wy − nσ(e,l)

y wz

)Nσ(e,l)
F∑

i=1

Λ
σ(e,l)
w [i]

ˆ

∂Kl
e

ψ
(e,l)
i ϕek

]

=

|νe|∑

l=1

[(
nσ(e,l)
z uy − nσ(e,l)

y uz

)(
F(e,l)Λ

σ(e,l)
u

)
k

+
(
nσ(e,l)
z wy − nσ(e,l)

y wz

)(
F(e,l)Λ

σ(e,l)
w

)
k

]
, 1 ≤ k ≤ N e

K ,

(2.27)

where F(e,l) is the flux matrix, of dimension N e
K ×N

σ(e,l)
F

F(e,l) =

(ˆ
∂Kl

e

ϕeiψ
σ(e,l)
j

)

1≤i≤NK
e , 1≤j≤N

σ(e,l)
F

.

By setting v = ϕeyk =




0
ϕek
0


 and then v = ϕezk =




0
0
ϕek


 for 1 ≤ k ≤ N e

K , in the first

equation of (2.22) and following the same procedure for the second equation of (2.22), the
discretization of the local equations can be written as,







iωεrMeEex − DezH
e
y + DeyH

e
z +

|νe|∑

l=1

[(
n(e,l)
z uσ(e,l)

y − n(e,l)
y uσ(e,l)

z

)
F(e,l)Λσ(e,l)

u

+
(
n(e,l)
z wσ(e,l)

y − n(e,l)
y wσ(e,l)

z

)
F(e,l)Λσ(e,l)

w

]
= 0,

iωεrMeEey + DezH
e
x − DexH

e
z +

|νe|∑

l=1

[(
n(e,l)
x uσ(e,l)

z − n(e,l)
z uσ(e,l)

x

)
F(e,l)Λσ(e,l)

u

+
(
n(e,l)
x wσ(e,l)

z − n(e,l)
z wσ(e,l)

x

)
F(e,l)Λσ(e,l)

w

]
= 0,

iωεrMeEez − DeyH
e
x + DexH

e
y +

|νe|∑

l=1

[(
n(e,l)
y uσ(e,l)

x − n(e,l)
x uσ(e,l)

y

)
F(e,l)Λσ(e,l)

u

+
(
n(e,l)
y wσ(e,l)

x − n(e,l)
x wσ(e,l)

y

)
F(e,l)Λσ(e,l)

w

]
= 0,

iωµrMeHe
x − (Dez)TE

e
y + (Dey)TEez −

|νe|∑

l=1

τ (e,l)
(
uσ(e,l)
x F(e,l)Λσ(e,l)

u + wσ(e,l)
x F(e,l)Λσ(e,l)

w

)

+

|νe|∑

l=1

τ (e,l)
[(

1− (n(e,l)
x )2

)
E(e,l)He

x − n(e,l)
x n(e,l)

y E(e,l)He
y − n(e,l)

x n(e,l)
z E(e,l)He

z

]
= 0,

iωµrMeHe
y + (Dez)TE

e
x − (Dex)TEez −

|νe|∑

l=1

τ (e,l)
(
uσ(e,l)
y F(e,l)Λσ(e,l)

u + wσ(e,l)
y F(e,l)Λσ(e,l)

w

)

+

|νe|∑

l=1

τ (e,l)
[(

1− (n(e,l)
y )2

)
E(e,l)He

y − n(e,l)
x n(e,l)

y E(e,l)He
x − n(e,l)

y n(e,l)
z E(e,l)He

z

]
= 0,

iωµrMeHe
z − (Dey)TEex + (Dex)TEey −

|νe|∑

l=1

τ (e,l)
(
uσ(e,l)
z F(e,l)Λσ(e,l)

u + wσ(e,l)
z F(e,l)Λσ(e,l)

w

)

+

|νe|∑

l=1

τ (e,l)
[(

1− (n(e,l)
z )2

)
E(e,l)He

z − n(e,l)
x n(e,l)

z E(e,l)He
x − n(e,l)

y n(e,l)
z E(e,l)He

y

]
= 0,

(2.28)

Where

E(e,l) =

(ˆ
∂Kl

e

ϕeiϕ
e
j

)

1≤i,j≤Ne
K

,

Now we can write the local linear system associated to the element Ke as

Ae




Eex
Eey
Eez
He
x

He
y

He
z




+

|νe|∑

l=1

C(e,l)

[
Λ
σ(e,l)
u

Λ
σ(e,l)
w

]
= 0, (2.29)

where



KgKe

Ke Kg

∂K3
e

∂K2
e ∂K1

g

∂K2
g

∂K1
e

∂K3
g

σ(e, 1) = f

Ff

σ(g, 3) = f

Figure 2.2 | Illustration presenting the notation of the faces

• Ae matrix of size 6N e
K × 6N e

K , defined by

Ae =




iωεrMe 0 0 0 −Dez Dey
0 iωεrMe 0 Dez 0 −Dex
0 0 iωεrMe −Dey Dex 0

0 − [Dez]
T [

Dey
]T

iωµrMe + Eex −Eexy −Eexz
[Dez]

T 0 − [Dex]T −Eexy iωµrMe + Eey −Eeyz
−
[
Dey
]T

[Dex]T 0 −Eexz −Eeyz iωµrMe + Eez



,

with 



Eeξ =

|νe|∑

l=1

τ (e,l)((1− (n
(e,l)
ξ )2))E(e,l),

Eeξζ =

|νe|∑

l=1

τ (e,l)n
(e,l)
ξ n

(e,l)
ζ E(e,l),

ξ, ζ ∈ {x, y, z},

• C(e,l) matrix of size 6N e
K × 2N

σ(e,l)
F , defined by

C(e,l) =




(n
(e,l)
z u

σ(e,l)
y − n(e,l)

y u
σ(e,l)
z )F(e,l) (n

(e,l)
z w

σ(e,l)
y − n(e,l)

y w
σ(e,l)
z )F(e,l)

(n
(e,l)
x u

σ(e,l)
z − n(e,l)

z u
σ(e,l)
x )F(e,l) (n

(e,l)
x w

σ(e,l)
z − n(e,l)

z w
σ(e,l)
x )F(e,l)

(n
(e,l)
y u

σ(e,l)
x − n(e,l)

x u
σ(e,l)
y )F(e,l) (n

(e,l)
y w

σ(e,l)
x − n(e,l)

x w
σ(e,l)
y )F(e,l)

−τ (e,l)u
σ(e,l)
x F(e,l) −τ (e,l)w

σ(e,l)
x F(e,l)

−τ (e,l)u
σ(e,l)
y F(e,l) −τ (e,l)w

σ(e,l)
y F(e,l)

−τ (e,l)u
σ(e,l)
z F(e,l) −τ (e,l)w

σ(e,l)
z F(e,l)




.

Discretisation of the global problem for Λ

Let Ff ∈ FIh , the conservativity condition for Ff and for all η ∈M t,3
h

〈n×Eh,η〉∂Kl
e
− τ (e,l) 〈n× (n×Hh),η〉∂Kl

e
− τ (e,l) 〈Λh,η〉∂Kl

e

+ 〈n×Eh,η〉∂Kk
g
− τ (g,k) 〈n× (n×Hh),η〉∂Kk

g
− τ (g,k) 〈Λh,η〉∂Kk

g
= 0.

(2.30)



For a boundary face Ff ∈ Γa, the conservativity condition for all η ∈M t,3
h

〈n×Eh,η〉∂Kl
e
− τ (e,l) 〈n× (n×Hh),η〉∂Kl

e
− (1 + τ (e,l)) 〈Λh,η〉∂Kl

e
=
〈
ginc,η

〉
∂Kl

e
(2.31)

For (2.30) we have




(
n(e,l)
z uσ(e,l)

y − n(e,l)
y uσ(e,l)

z

) [
F(e,l)

]T
Eex +

(
n(e,l)
x uσ(e,l)

z − n(e,l)
z uσ(e,l)

x

) [
F(e,l)

]T
Eey

+
(
n(e,l)
z uσ(e,l)

y − n(e,l)
y uσ(e,l)

z

) [
F(e,l)

]T
Eez + τ (e,l)uσ(e,l)

x

[
F(e,l)

]T
He
x + τ (e,l)uσ(e,l)

y

[
F(e,l)

]T
He
y

+τ (e,l)uσ(e,l)
z

[
F(e,l)

]T
He
z − τ (e,l)G(e,l)Λσ(e,l)

u − τ (e,l)
(
uσ(e,l) ·wσ(e,l)

)
G(e,l)Λσ(e,l)

w +R(g,k)
u = 0,

(
n(e,l)
z wσ(e,l)

y − n(e,l)
y wσ(e,l)

z

) [
F(e,l)

]T
Eex +

(
n(e,l)
x wσ(e,l)

z − n(e,l)
z wσ(e,l)

x

) [
F(e,l)

]T
Eey

+
(
n(e,l)
z wσ(e,l)

y − n(e,l)
y wσ(e,l)

z

) [
F(e,l)

]T
Eez + τ (e,l)wσ(e,l)

x

[
F(e,l)

]T
He
x + τ (e,l)wσ(e,l)

y

[
F(e,l)

]T
He
y

+τ (e,l)wσ(e,l)
z

[
F(e,l)

]T
He
z − τ (e,l)

(
uσ(e,l) ·wσ(e,l)

)
G(e,l)Λσ(e,l)

u − τ (e,l)G(e,l)Λσ(e,l)
w +R(g,k)

w = 0,

(2.32)

where

G(e,l) =

(ˆ
∂Kl

e

ψ
σ(e,l)
i ψ

σ(e,l)
j

)

1≤i,j≤Nσ(e,l)
F

,

For (2.31) we have




(
n(e,l)
z uσ(e,l)

y − n(e,l)
y uσ(e,l)

z

) [
F(e,l)

]T
Eex +

(
n(e,l)
x uσ(e,l)

z − n(e,l)
z uσ(e,l)

x

) [
F(e,l)

]T
Eey

+
(
n(e,l)
z uσ(e,l)

y − n(e,l)
y uσ(e,l)

z

) [
F(e,l)

]T
Eez + τ (e,l)

x

[
F(e,l)

]T
He
x + τ (e,l)uσ(e,l)

y

[
F(e,l)

]T
He
y

+ τ (e,l)uσ(e,l)
z

[
F(e,l)

]T
He
z −

(
1 + τ (e,l)

)
G(e,l)Λσ(e,l)

u −
(

1 + τ (e,l)
)(
uσ(e,l) ·wσ(e,l)

)
G(e,l)Λσ(e,l)

w

= G(e,l)ginc,σ(e,l)

u
,

(
n(e,l)
z wσ(e,l)

y − n(e,l)
y wσ(e,l)

z

) [
F(e,l)

]T
Eex +

(
n(e,l)
x wσ(e,l)

z − n(e,l)
z wσ(e,l)

x

) [
F(e,l)

]T
Eey

+
(
n(e,l)
z wσ(e,l)

y − n(e,l)
y wσ(e,l)

z

) [
F(e,l)

]T
Eez + τ (e,l)wσ(e,l)

x

[
F(e,l)

]T
He
x + τ (e,l)wσ(e,l)

y

[
F(e,l)

]T
He
y

+ τ (e,l)wσ(e,l)
z

[
F(e,l)

]T
He
z −

(
1 + τ (e,l)

)(
uσ(e,l) ·wσ(e,l)

)
G(e,l)Λσ(e,l)

u −
(

1 + τ (e,l)
)
G(e,l)Λσ(e,l)

w

= G(e,l)ginc,σ(e,l)

w
,

(2.33)

with
ginc,σ(e,l)
ν

=
[
ginc,σ(e,l)
ν

[1], · · · , ginc,σ(e,l)
ν

[N
σ(e,l)
F ]

]T
, ν ∈ {u,w}.

We define a matrix AeHDG of size

|νe|∑

l=1

2N
σ(e,l)
F ×

|Fh|∑

f=1

2Nf
F ,

such that
AeHDG Λ =

[
Λσ(e,1), · · · ,Λσ(e,|νe|)

]T
.



Adding all equations involving interior faces (2.32) and every boundary face (2.33) element-by-
element we have

|Th|∑

e=1

[AeHDG]T (BeW e + GeAeHDGΛ) =

|Th|∑

e=1

[AeHDG]T ge, (2.34)

where
• W e the column vector of size 6N e

K , defined by W e =
[
Eex, E

e
y, E

e
z, H

e
x, H

e
y, H

e
z

]T ,

• Be the matrix of size
|νe|∑

l=1

2N
σ(e,l)
F × 6N e

K , defined by

Be =



F(e,1)
zy,u F(e,1)

xz,u F(e,1)
yx,u τ (e,1)u

σ(e,1)
x

[
F(e,1)

]T
τ (e,1)u

σ(e,1)
y

[
F(e,1)

]T
τ (e,1)u

σ(e,1)
z

[
F(e,1)

]T
F(e,1)
zy,w F(e,1)

xz,w F(e,1)
yx,w τ (e,1)w

σ(e,1)
x

[
F(e,1)

]T
τ (e,1)w

σ(e,1)
y

[
F(e,1)

]T
τ (e,1)w

σ(e,1)
z

[
F(e,1)

]T
F(e,2)
zy,u F(e,2)

xz,u F(e,2)
yx,u τ (e,2)u

σ(e,2)
x

[
F(e,2)

]T
τ (e,2)u

σ(e,2)
y

[
F(e,2)

]T
τ (e,2)u

σ(e,2)
z

[
F(e,2)

]T
· · · · · · · · · · · · · · · · · ·

F(e,|νe|)
zy,w F(e,|νe|)

xz,w F(e,|νe|)
yx,w τ (e,|νe|)wσ(e,|νe|)

x

[
F(e,|νe|)

]T
τ (e,|νe|)wσ(e,|νe|)

y

[
F(e,|νe|)

]T
τ (e,|νe|)wσ(e,|νe|)

z

[
F(e,|νe|)

]T



,

with

F(e,l)
ξζ,ν =

(
n

(e,l)
ξ ν

σ(e,l)
ζ − n(e,l)

ζ ν
σ(e,l)
ξ

) [
F(e,l)

]T
, l = 1, · · · , |νe|, ξ, ζ ∈ {x, y, z}, ν ∈ {u,w},

• Ge the matrix of size
|νe|∑

l=1

2N
σ(e,l)
F ×

|νe|∑

l=1

2N
σ(e,l)
F , defined by

Ge =




−κ(e,1)G(e,1) −κ(e,1)(uσ(e,1) ·wσ(e,1))G(e,1) · · · 0

−κ(e,1)(uσ(e,1) ·wσ(e,1))G(e,1) −κ(e,1)G(e,1) · · · 0
· · · · · · · · · · · ·
0 0 · · · −κ(e,|νe|)(uσ(e,|νe|) ·wσ(e,|νe|))G(e,|νe|)

0 0 · · · −κ(e,|νe|)G(e,|νe|)


 ,

with

κ(e,l) =

{
τ (e,l), if the face Fσ(e,l) ∈ Fh r Γa,

1 + τ (e,l), if the face Fσ(e,l) ∈ FBh ∩ Γa,
l = 1, · · · , |νe|,

• ge the column vector of size
|νe|∑

l=1

2N
σ(e,l)
F , defined by

ge =
[
gσ(e,1), · · · , gσ(e,|νe|)

]T
with gσ(e,l) =

[
gσ(e,l)
u

, gσ(e,l)
w

]T
, l = 1, · · · , |νe|,

where

gσ(e,l) =

{
G(e,l) gσ(e,l)

u

G(e,l) gσ(e,l)
w

and gσ(e,l)
ν

=

{
0 if Fσ(e,l) ∈ Fh r Γa

ginc,σ(e,l)
ν

if Fσ(e,l) ∈ FBh ∩ Γa
ν ∈ {u,w}.

Now we can rewrite the equation for the local solver (2.29) as

AeW e + CeAeHDGΛ = 0, (2.35)



where Ce is the matrix of size 6N e
K ×

|νe|∑

l=1

N
σ(e,l)
F , defined by Ce =

[
C(e,1) · · · C(e,|νe|)].

Finally we substitute W e by the solution of the local system (2.35) in to obtain (2.34)



|Th|∑

e=1

[AeHDG]T
(
−Be [Ae]−1 Ce + Ge

)
AeHDG


Λ =

|Th|∑

e=1

[AeHDG]T ge.

Thus we write the following linear system for the global trace Λ

KΛ = g, (2.36)

where

• K the matrix of size
|Fh|∑

f=1

2Nf
F ×

|Fh|∑

f=1

2Nf
F , defined by

K =

|Th|∑

e=1

[AeHDG]T KeAeHDG =

|Th|∑

e=1

[AeHDG]T
(
Ge − Be [Ae]−1 Ce

)
AeHDG,

• g the column vector
|Fh|∑

f=1

2Nf
F , defined by g =

|Th|∑

e=1

[AeHDG]T ge.

2.5 HDG method for the 3D time-domain Maxwell’s equations
with a fully implicit time discretization

2.5.1 Introduction

In this section, we are considering the 3D time-domain Maxwell’s equations with a hybrid discon-
tinuous Galerkin (HDG) space discretization where we have to choose a specific time discretization
to obtain the fully discrete scheme. The interest of HDGTD methods with respect to those of
DGTD, turns out with an implicit time integration. This is what has been done in [43] whose
results are recalled in this section. We rewrote the proofs of that paper with some clarifications,
then we elaborate all the details in the implementation of the fully discrete scheme with a Cranck-
Nicholson time integration and finally rewrote the same test case used in this paper to show the
interest of using the HDG method compared to a classical DG discretization. Note that the defin-
itions of the hybrid variable and numerical trace are exactly those adopted in the context of the
formulation of HDG methods for the 3D time-harmonic Maxwell equations 2.4.

2.5.2 Problem statement

We consider the system of 3D time-domain Maxwell’s equations on a bounded polyhedral domain
Ω ⊂ R3



{
ε∂tE − curlH = −J , in Ω× [0, T ],

µ∂tH + curlE = 0, in Ω× [0, T ],
(2.37)

Time-domain Maxwell’s equations

where the symbol ∂t denotes a time derivate, J the current density, T a final time, E(x, t) and
H(x, t) are the electric and magnetic fields. The relative dielectric permittivity ε and the relative
magnetic permeability µ are varying in space, time-invariant and both strictly positive functions.
The boundary of Ω is defined as ∂Ω = Γm ∪ Γa with Γm ∩ Γa = ∅. The boundary conditions are
the same as in the frequency-domain (2.15).





n×E = 0, on Γm × [0, T ],

n×E + n× (n×H) = n×Einc + n× (n×H inc)

= ginc, on Γa × [0, T ].

Boundary conditions

Here n denotes the unit outward normal to ∂Ω and (Einc,H inc) a given incident field. The first
boundary condition is often referred as a metallic boundary condition and is applied on a perfectly
conducting surface. The second relation is an absorbing boundary condition and takes here the form
of the Silver-Müller condition. It is applied on a surface corresponding to an artificial truncature
of a theoretically unbounded propagation domain. Finally, the system is supplemented with initial
conditions: E0(x) = E(x, 0) and H0(x) = H(x, 0). For sake of simplicity, we omit the volume
source term J in what follows.

2.5.3 Global formulation

Following the classical DG approach, approximate solutions (Eh,Hh), for all t ∈ [0, T ], are seeked
in the space V 3

h × V 3
h satisfying for all K in Th

{
(ε∂tEh,v)K − (curlHh,v)K = 0, ∀v ∈ V 3

h ,

(µ∂tHh,v)K + (curlEh,v)K = 0, ∀v ∈ V 3
h .

(2.38)

Applying Green’s formula, on both equations of (2.38) introduces boundary terms which are re-
placed by numerical traces Êh and Ĥh in order to ensure the connection between element-wise
solutions and global consistency of the discretization. This leads to the formulation for all t ∈ [0, T ]





(ε∂tEh,v)K − (Hh, curlv)K +
〈
Ĥh,n× v

〉
∂K

= 0, ∀v ∈ V 3
h ,

(µ∂tHh,v)K + (Eh, curlv)K −
〈
Êh,n× v

〉
∂K

= 0, ∀v ∈ V 3
h .

(2.39)

It is straightforward to verify that n×v = n×vt and <H,n×v >= − < n×H,v >. Therefore,
using numerical traces defined in terms of the tangential components Ĥt

h and Êt
h, we can rewrite



(2.39) as 



(ε∂tEh,v)K − (Hh, curlv)K +
〈
Ĥt
h,n× v

〉
∂K

= 0, ∀v ∈ V 3
h ,

(µ∂tHh,v)K + (Eh, curlv)K −
〈
Êt
h,n× v

〉
∂K

= 0, ∀v ∈ V 3
h .

(2.40)

The hybrid variable Λh is here defined for all the interfaces of Fh as

Λh := Ĥt
h, ∀F ∈ Fh. (2.41)

We want to determine the fields Ĥt
h and Êt

h in each element K of Th by solving system (2.40) and
assuming that Λh is known on all the faces of an element K. We consider a numerical trace Êt

h

for all K given by
Êt
h = Et

h + τKn× (Λh −Ht
h) on ∂K, (2.42)

where τK is a local stabilization parameter which is assumed to be strictly positive. We recall that
n ×Ht

h = n ×Hh. Note that the definitions of the hybrid variable (2.41) and numerical trace
(2.42) are exactly those adopted in the context of the formulation of HDG methods for the 3D
time-harmonic Maxwell equations 2.4. Summing the contributions of (2.40) over all the elements
and enforcing the continuity of the tangential component of Êh, we can formulate a problem which
is to find (Eh,Hh,Λh) ∈ V 3

h × V 3
h ×M

t,3
h such that for all t in [0, T ]

(ε∂tEh,v)Th − (Hh, curlv)Th + 〈Λh,n× v〉∂Th = 0, ∀v ∈ V 3
h ,

(µ∂tHh,v)Th + (Eh, curlv)Th −
〈
Êt
h,n× v

〉
∂Th

= 0, ∀v ∈ V 3
h ,〈

JÊhK,η
〉
Fh
− 〈Λh,η〉Γa −

〈
ginc,η

〉
Γa

= 0, ∀η ∈M t,3
h ,

(2.43)

HDG formulation 1

where the last equation is called the conservativity condition with which we ask the tangential
component of Êh to be weakly continuous across any interface between two neighboring elements.
With the definition of the numerical trace (2.42) and after applying a Green formula on the second
equation of (2.43), we can get for all t ∈ [0, T ]





(ε∂tEh,v)Th − (Hh, curlv)Th + 〈Λh,n× v〉∂Th = 0, ∀v ∈ V 3
h ,

(µ∂tHh,v)Th + (curlEh,v)Th + 〈τn× (Hh −Λh) ,n× v〉∂Th = 0, ∀v ∈ V 3
h ,

〈n×Eh,η〉∂Th +
〈
τ
(
Ht
h −Λh

)
,η
〉
∂Th − 〈Λh,η〉Γa

=
〈
ginc,η

〉
Γa
, ∀η ∈M t,3

h .

(2.44)

HDG formulation 2

2.5.4 Semi-discrete stability when Γa = ∅
We introduce the energy function defined on [0, T ] by



Eh(t) =
1

2

(
ε||Eh(t)||2 + µ||Hh(t)||2

)
.

The electromagnetic energy

Theorem 1. For all τ > 0 the energy function Eh(t) decreases in time and Eh(t) ≤ Eh(0) for all
t > 0.

Proof. Taking v = Eh(t) in the first equation, v = Hh(t) in the second equation and η = Λh in
the third equation of (2.44) we obtain





(ε∂tEh,Eh)Th − (Hh, curlEh)Th + 〈Λh,n×Eh〉∂Th = 0,

(µ∂tHh,Hh)Th + (curlEh,Hh)Th + 〈τn× (Hh −Λh) ,n×Hh〉∂Th = 0,

〈n×Eh,Λh〉∂Th +
〈
τ
(
Ht
h −Λh

)
,Λh

〉
∂Th = 0.

By the formula ∂t||v||2 = 2 (∂tv,v) and after summing the first two equations of the above system
we obtain

1

2

d

dt

(
ε||Eh(t)||2 + µ||Hh(t)||2

)
= −〈Λh,n×Eh〉∂Th − 〈τn× (Hh −Λh) ,n×Hh〉∂Th .

The third equation gives us that

−〈Λh,n×Eh〉∂Th =
〈
τ
(
Ht
h −Λh

)
,Λh

〉
∂Th = 〈τn× (Hh −Λh) ,n×Λh〉∂Th ,

implies that

1

2

d

dt

(
ε||Eh(t)||2 + µ||Hh(t)||2

)
= −〈τn× (Hh −Λh) ,n× (Hh −Λh)〉∂Th ≤ 0,

since τ > 0. Thus the energy function Eh(t) decreases in time and Eh(t) ≤ Eh(0), for all t > 0. This
result shows the L2-stability of the semi-discrete method. In particular, this method is dissipative
for the considered numerical trace for Êt

h in (2.42).

2.5.5 Time integration

The system of equations (2.44) can be written in the form of a differential algebraic equation (DAE)
such as

F (Eh(t),Hh(t),Λh(t)) = 0, (2.45)

while F is defined for all v in V 3
h and for all η in M t,3

h by



(ε∂tEh,v)Th − (Hh, curlv)Th + 〈Λh,n× v〉∂Th
(µ∂tHh,v)Th + (curlEh,v)Th + 〈τn× (Hh −Λh) ,n× v〉∂Th

〈n×Eh,η〉∂Th +
〈
τ
(
Ht
h −Λh

)
,η
〉
∂Th − 〈Λh,η〉Γa −

〈
ginc,η

〉
Γa




As detailed in [44], the defined system is considered as a semi-explicit DAE, where the third
equation of (2.45) is called algebraic equation and is considered as a constraint on the global system.
The idea here is to transform the DAE into an ODE which can be straightforward solved using
numerical methods. As a first step, the perturbation problem is considered as for all t ∈ [0, T ]







(ε∂tEh,v)Th − (Hh, curlv)Th + 〈Λh,n× v〉∂Th = 0, ∀v ∈ V 3
h ,

(µ∂tHh,v)Th + (curlEh,v)Th + 〈τn× (Hh −Λh) ,n× v〉∂Th = 0, ∀v ∈ V 3
h ,

γ∂tΛh + 〈n×Eh,η〉∂Th +
〈
τ
(
Ht
h −Λh

)
,η
〉
∂Th
− 〈Λh,η〉Γa

=
〈
ginc,η

〉
Γa

, ∀η ∈M t,3
h .

(2.46)

where 0 < γ << 1.

Perturbation problem

Now, the problem can be discretized in time. A sequence of time steps is considered as

0 = t0 < t1 · · · < tn = T.

For 0 ≤ n ≤ N − 1,
(
En+1
h ,Hn+1

h ,Λn+1
h

)
is denoted by the numerical approximations to(

Eh
(
tn+1

)
,Hh

(
tn+1

)
,Λh

(
tn+1

))
at time tn+1 = (n + 1)∆t. Using Cranck-Nicolson scheme on

each equation of (2.46), the obtained system is written as,

find (En+1
h ,Hn+1

h ,Λn+1
h ) ∈ V 3

h × V 3
h ×M

t,3
h such as





(
ε̄En+1

h ,v
)
Th
−
(
Hn+1
h , curlv

)
Th

+
〈
Λn+1
h ,n× v

〉
∂Th

= bE , ∀v ∈ Vh,(
µ̄Hn+1

h ,v
)
Th

+
(
curlEn+1

h ,v
)
Th

+
〈
τn×

(
Hn+1
h −Λn+1

h

)
,n× v

〉
∂Th

= bH , ∀v ∈ Vh,

2γ

∆t

(
Λn+1
h −Λn

h

)
+
〈
n×En+1

h ,η
〉
∂Th

+
〈
τ
(
Ht,n+1
h −Λn+1

h

)
,η
〉
∂Th
−
〈
Λn+1
h ,η

〉
Γa

= bΛ, ∀η ∈M t,3
h .

(2.47)

Where

• ε̄ = 2ε
∆t , µ̄ = 2µ

∆t

• bE = (ε̄En
h ,v)Th + (Hn

h , curlv)Th − 〈Λ
n
h,n× v〉∂Th

• bH = (µ̄Hn
h ,v)Th − (curlEn

h ,v)Th − 〈τn× (Hn
h −Λn

h) ,n× v〉∂Th

• bΛ = −〈n×En
h ,η〉∂Th −

〈
τ
(
Ht,n
h −Λn

h

)
,η
〉
∂Th

+
〈
Λn
h + ginc,n + ginc,n+1,η

〉
Γa

By the DAE theory

lim
γ→0

2γ

∆t

(
Λn+1
h −Λn

h

)
= 0.

Then, the system is finally given by





(
ε̄En+1

h ,v
)
Th
−
(
Hn+1
h , curlv

)
Th

+
〈
Λn+1
h ,n× v

〉
∂Th

= bE , ∀v ∈ V 3
h ,(

µ̄Hn+1
h ,v

)
Th

+
(
curlEn+1

h ,v
)
Th

+
〈
τn×

(
Hn+1
h −Λn+1

h

)
,n× v

〉
∂Th

= bH , ∀v ∈ V 3
h ,〈

n×En+1
h ,η

〉
∂Th

+
〈
τ
(
Ht,n+1
h −Λn+1

h

)
,η
〉
∂Th
−
〈
Λn+1
h ,η

〉
Γa

= bΛ, ∀η ∈M t,3
h .

(2.48)

HDG Cranck-Nicolson scheme



2.5.6 Well-posedness of the local solver

Definition 1. For α ∈ M t,3
h , (Eα

h ,H
α
h ) denotes the approximate solution at time n + 1 whose

restriction to an element K ∈ Th is the solution to the local problem

(ε̄Eα
h ,v1)K − (Hα

h , curlv1)K + 〈α,n× v1〉∂K = bE , ∀v1 ∈ V 3
h ,

(µ̄Hα
h ,v2)K + (curlEα

h ,v2)K + 〈τn× (Hα
h −α) ,n× v2〉∂K = bH , ∀v2 ∈ V 3

h .
(2.49)

Theorem 2. For α ∈ M t,3
h , there exists a unique solution (Eα

h ,H
α
h ) ∈ V 3

h × V 3
h for the local

solver (2.49) .

Proof. Summing the two equations of (2.49), we obtain for all (v1,v2) ∈ V 3
h × V 3

h ,

(ε̄Eα
h ,v1)K − (Hα

h , curlv1)K + 〈α,n× v1〉∂K
+ (µ̄Hα

h ,v2)K + (curlEα
h ,v2)K + 〈τn× (Hα

h −α) ,n× v2〉∂K = bE + bH

Since α is fixed, all the terms containing α will be moved to the right hand side to obtain

Ah(Eα
h ,H

α
h ;v1,v2) = L(v1,v2) ∀(v1,v2) ∈ V 3

h × V 3
h , (2.50)

where

Ah(Eα
h ,H

α
h ;v1,v2) = (ε̄Eα

h ,v1)K − (Hα
h , curlv1)K

+ (µ̄Hα
h ,v2)K + (curlEα

h ,v2)K + 〈τn×Hα
h ,n× v2〉∂K ,

and
L(v1,v2) = bE + bH − 〈α,n× v1〉∂K + 〈τn× α,n× v2〉∂K .

Since V 3
h is a finite dimensional space, proving the existence and the uniqueness of the solution

for (2.50) requires proving the injectivity of Ah. To do so, we will set v1 = Eα
h and v2 = Hα

h to
obtain

Ah(Eα
h ,H

α
h ;Eα

h ,H
α
h ) = (ε̄Eα

h ,E
α
h )K + (µ̄Hα

h ,H
α
h )K + 〈τn×Hα

h ,n×Hα
h 〉∂K .

Assuming that τ > 0, and since ε̄ and µ̄ are strictly positive real numbers, the last equation implies
that Ah(Eα

h ,H
α
h ;Eα

h ,H
α
h ) = 0 ⇒ Eα

h = Hα
h = 0 on K, so Ah is injective and we have a unique

solution for the local solver (2.49).

2.5.7 Characterization of the reduced problem

Theorem 3. If we assume τ > 0, then the implicit HDGTD method (2.48) has a unique solution(
EΛh
h ,HΛh

h ,Λh

)
for any time iteration n ≥ 1.

Proof. For all η ∈M t,3
h , we set

• v = Eηh in the first equation of (2.48),

• v = Hη
h in the second equation of (2.48),



and we obtain




(
ε̄EΛh

h ,Eηh

)
Th
−
(
HΛh
h , curlEηh

)
Th

+
〈
Λh,n×Eηh

〉
∂Th = bE ,

(
µ̄HΛh

h ,Hη
h

)
Th

+
(
curlEΛh

h ,Hη
h

)
Th

+
〈
τn×

(
HΛh
h −Λh

)
,n×Hη

h

〉
∂Th

= bH .
〈
n×EΛh

h ,η
〉
∂Th

+
〈
τn×

(
HΛh
h −Λh

)
,n× η

〉
∂Th
− 〈Λh,η〉Γa = bΛ,

Summing the first two equations and substracting the result from the third equation, we obtain

Ah (Λh,η) = L(η), ∀η ∈M t,3
h , (2.51)

where,

Ah (Λh,η) =
(
ε̄EΛh

h ,Eηh

)
Th
−
(
HΛh
h , curlEηh

)
Th

+
〈
Λh,n×Eηh

〉
∂Th

+
(
µ̄HΛh

h ,Hη
h

)
Th

+
(
curlEΛh

h ,Hη
h

)
Th

+
〈
τn×

(
HΛh
h −Λh

)
,n×

(
Hη
h − η

)〉
∂Th

−
〈
n×EΛh

h ,η
〉
∂Th

+ 〈Λh,η〉Γa ,

and
L(η) = bE + bH − bΛ.

Since M t,3
h is a finite dimensional space, proving the existence and the uniqueness of the solution

requires proving the injectivity of Ah. To do so, we must show that the kernel of Ah is null.

Ah (Λh,Λh) = ε̄
∥∥∥EΛh

h

∥∥∥
2

Th
+ µ̄

∥∥∥HΛh
h

∥∥∥
2

Th
+
∥∥∥τn×

(
HΛh
h −Λh

)∥∥∥
2

∂Th
+ ‖Λh‖2Γa = 0

implies that all the terms are zero since ε̄ = µ̄ = τ > 0.
The first two terms give us that EΛh

h = HΛh
h = 0 while the third and the fourth terms gives us

that Λh = 0 on ∂Th and on Γa, so Λh = 0 everywhere.

2.5.8 Energy variation and unconditional stability when Γa = ∅
The total discrete electromagnetic energy in Th at time tn is given by

Enh =
1

2

(
ε̄||En

h ||2 + µ̄||Hn
h ||2

)
.

The total discrete electromagnetic energy

Lemma 1. The total discrete electromagnetic energy defined above is non-increasing in time i.e
En+1 ≤ En. Then, the totally discretized problem (2.48) is unconditionally stable.

Proof. Choosing

• v =
En+1
h +En

h

2
∈ V 3

h in the first equation of (2.48)



• v =
Hn+1
h +Hn

h

2
∈ V 3

h in the second equation of (2.48)

and summing the two equations we obtain

1

2

(
ε̄||En+1

h ||2 + µ̄||Hn+1
h ||2

)
+

〈
Λn+1
h ,n×

(
En+1
h +En

h

2

)〉

∂Th

+

〈
τn×

(
Hn+1
h −Λn+1

h

)
,n×

(
Hn+1
h +Hn

h

2

)〉

=
1

2

(
ε̄||En

h ||2 + µ̄||Hn
h ||2

)
−
〈

Λn
h,n×

(
En+1
h +En

h

2

)〉

∂Th

−
〈
τn× (Hn

h −Λn
h) ,n×

(
Hn+1
h +Hn

h

2

)〉
.

From the last equation, we can see that the energy variation is given by

En+1
h − Enh = −

〈(
Λn+1
h + Λn

h

)
,n×

(
En+1
h +En

h

2

)〉

∂Th

−
〈
τn×

(
Hn+1
h +Hn

h

)
,n×

(
Hn+1
h +Hn

h

2

)〉

∂Th

+

〈
τn×

(
Λn+1
h + Λn

h

)
,n×

(
Hn+1
h +Hn

h

2

)〉

∂Th
.

Taking now η =
(
Λn+1
h + Λn

h

)
∈M t,3

h in the third equation of (2.48), we obtain

〈
n×

(
En+1
h +En

h

2

)
,Λn+1

h + Λn
h

〉

∂Th
= −

〈
τn×

(
Λn+1
h + Λn

h

)
,n×

(
Hn+1
h +Hn

h

2

)〉

∂Th

+ τ
∥∥n×

(
Λn+1
h + Λn

h

)∥∥2

We can deduce that

En+1
h − Enh =

〈
τn×

(
Λn+1
h + Λn

h

)
,n×

(
Hn+1
h +Hn

h

)〉
∂Th

− τ

2

∥∥n×
(
Hn+1
h +Hn

h

)∥∥2 − τ
∥∥n×

(
Λn+1
h + Λn

h

)∥∥2
.

Since
〈
τn×

(
Λn+1
h + Λn

h

)
,n×

(
Hn+1
h +Hn

h

)〉
∂Th ≤

τ

2

∥∥n×
(
Hn+1
h +Hn

h

)∥∥2
+
τ

2

∥∥n×
(
Λn+1
h + Λn

h

)∥∥2
,

finally we obtain
En+1
h − Enh ≤ −

τ

2

∥∥n×
(
Λn+1
h + Λn

h

)∥∥2 ≤ 0.

2.5.9 Implementation

Following the same notations of section 2.4.4, we develop the HDG formulation presented in (2.48)
for the Maxwell’s equations with a Cranck-Nicholson time discretization.



Discretization of the local equations

For the right hand side we have

• bE,1 = ε̄MeEn,ex + DezH
n,e
y − DeyH

n,e
z −

|νe|∑

l=1

[(
n(e,l)
z uσ(e,l)

y − n(e,l)
y uσ(e,l)

z

)
F(e,l)Λn,σ(e,l)

u

+
(
n(e,l)
z wσ(e,l)

y − n(e,l)
y wσ(e,l)

z

)
F(e,l)Λn,σ(e,l)

w

]

• bE,2 = ε̄MeEn,ey − DezH
n,e
x + DexH

n,e
z −

|νe|∑

l=1

[(
n(e,l)
x uσ(e,l)

z − n(e,l)
z uσ(e,l)

x

)
F(e,l)Λn,σ(e,l)

u

+
(
n(e,l)
x wσ(e,l)

z − n(e,l)
z wσ(e,l)

x

)
F(e,l)Λn,σ(e,l)

w

]

• bE,3 = ε̄MeEn,ez + DeyH
n,e
x − DexH

n,e
y −

|νe|∑

l=1

[(
n(e,l)
y uσ(e,l)

x − n(e,l)
x uσ(e,l)

y

)
F(e,l)Λn,σ(e,l)

u

+
(
n(e,l)
y wσ(e,l)

x − n(e,l)
x wσ(e,l)

y

)
F(e,l)Λn,σ(e,l)

w

]

• bH,1 = µ̄MeHn,e
x + (Dez)TE

n,e
y − (Dey)TEn,ez +

|νe|∑

l=1

τ (e,l)
(
uσ(e,l)
x F(e,l)Λn,σ(e,l)

u + wσ(e,l)
x F(e,l)Λn,σ(e,l)

w

)

−
|νe|∑

l=1

τ (e,l)
[(

1− (n(e,l)
x )2

)
E(e,l)Hn,e

x − n(e,l)
x n(e,l)

y E(e,l)Hn,e
y − n(e,l)

x n(e,l)
z E(e,l)Hn,e

z

]

• bH,2 = µ̄MeHn,e
y − (Dez)TE

n,e
x + (Dex)TEn,ez +

|νe|∑

l=1

τ (e,l)
(
uσ(e,l)
y F(e,l)Λn,σ(e,l)

u + wσ(e,l)
y F(e,l)Λn,σ(e,l)

w

)

−
|νe|∑

l=1

τ (e,l)
[(

1− (n(e,l)
y )2

)
E(e,l)Hn,e

y − n(e,l)
x n(e,l)

y E(e,l)Hn,e
x − n(e,l)

y n(e,l)
z E(e,l)Hn,e

z

]

• bH,3 = µ̄MeHn,e
z + (Dey)TEn,ex − (Dex)TEn,ey +

|νe|∑

l=1

τ (e,l)
(
uσ(e,l)
z F(e,l)Λn,σ(e,l)

u + wσ(e,l)
z F(e,l)Λn,σ(e,l)

w

)

−
|νe|∑

l=1

τ (e,l)
[(

1− (n(e,l)
z )2

)
E(e,l)Hn,e

z − n(e,l)
x n(e,l)

z E(e,l)Hn,e
x − n(e,l)

y n(e,l)
z E(e,l)Hn,e

y

]
.



For the left hand side we have



ε̄MeEn+1,e
x − DezH

n+1,e
y + DeyH

n+1,e
z

+

|νe|∑

l=1

[(
n(e,l)
z uσ(e,l)

y − n(e,l)
y uσ(e,l)

z

)
F(e,l)Λn+1,σ(e,l)

u

+
(
n(e,l)
z wσ(e,l)

y − n(e,l)
y wσ(e,l)

z

)
F(e,l)Λn+1,σ(e,l)

w

]
= bE,1,

ε̄MeEn+1,e
y + DezH

n+1,e
x − DexH

n+1,e
z

+

|νe|∑

l=1

[(
n(e,l)
x uσ(e,l)

z − n(e,l)
z uσ(e,l)

x

)
F(e,l)Λn+1,σ(e,l)

u

+
(
n(e,l)
x wσ(e,l)

z − n(e,l)
z wσ(e,l)

x

)
F(e,l)Λn+1,σ(e,l)

w

]
= bE,2

ε̄MeEn+1,e
z − DeyH

n+1,e
x + DexH

n+1,e
y

+

|νe|∑

l=1

[(
n(e,l)
y uσ(e,l)

x − n(e,l)
x uσ(e,l)

y

)
F(e,l)Λn+1,σ(e,l)

u

+
(
n(e,l)
y wσ(e,l)

x − n(e,l)
x wσ(e,l)

y

)
F(e,l)Λn+1,σ(e,l)

w

]
= bE,3,

µ̄MeHn+1,e
x − (Dez)TE

n+1,e
y + (Dey)TEn+1,e

z

−
|νe|∑

l=1

τ (e,l)
(
uσ(e,l)
x F(e,l)Λn+1,σ(e,l)

u + wσ(e,l)
x F(e,l)Λn+1,σ(e,l)

w

)

+

|νe|∑

l=1

τ (e,l)

[(
1− (n(e,l)

x )2
)
E(e,l)Hn+1,e

x

−n(e,l)
x n(e,l)

y E(e,l)Hn+1,e
y − n(e,l)

x n(e,l)
z E(e,l)Hn+1,e

z

]
= bH,1,

µ̄MeHn+1,e
y + (Dez)TE

n+1,e
x − (Dex)TEn+1,e

z

−
|νe|∑

l=1

τ (e,l)
(
uσ(e,l)
y F(e,l)Λn+1,σ(e,l)

u + wσ(e,l)
y F(e,l)Λn+1,σ(e,l)

w

)

+

|νe|∑

l=1

τ (e,l)

[(
1− (n(e,l)

y )2
)
E(e,l)Hn+1,e

y

−n(e,l)
x n(e,l)

y E(e,l)Hn+1,e
x − n(e,l)

y n(e,l)
z E(e,l)Hn+1,e

z

]
= bH,2,

µ̄MeHn+1,e
z − (Dey)TEn+1,e

x + (Dex)TEn+1,e
y

−
|νe|∑

l=1

τ (e,l)
(
uσ(e,l)
z F(e,l)Λn+1,σ(e,l)

u + wσ(e,l)
z F(e,l)Λn+1,σ(e,l)

w

)

+

|νe|∑

l=1

τ (e,l)

[(
1− (n(e,l)

z )2
)
E(e,l)Hn+1,e

z

−n(e,l)
x n(e,l)

z E(e,l)Hn+1,e
x − n(e,l)

y n(e,l)
z E(e,l)Hn+1,e

y

]
= bH,3,

(2.52)



Where 



En+1,e
ξ =

[
En+1,e
ξ [1] , · · · , En+1,e

ξ [N e
K ]
]T
, ξ ∈ {x, y, z},

Hn+1,e
ξ =

[
Hn+1,e
ξ [1] , · · · , Hn+1,e

ξ [N e
K ]
]T
, ξ ∈ {x, y, z},

Λ
n+1,σ(e,l)
ν =

[
Λ
n+1,σ(e,l)
ν [1], · · · ,Λn+1,σ(e,l)

ν [N
σ(e,l)
F ]

]T
, ν ∈ {u,w},

Me[i, j] =

ˆ
Ke

ϕeiϕ
e
j dx, 1 ≤ i, j ≤ N e

K ,

Deξ[i, j] =

ˆ
Ke

(∂ξϕ
e
i )ϕ

e
j dx, 1 ≤ i, j ≤ N e

K et ξ ∈ {x, y, z},

E(e,l)[i, j] =

ˆ
∂Kl

e

ϕeiϕ
e
j ds, 1 ≤ i, j ≤ N e

K ,

F(e,l)[i, j] =

ˆ
∂Kl

e

ϕeiψ
σ(e,l)
j ds, 1 ≤ i ≤ NK

e et 1 ≤ j ≤ Nσ(e,l)
F .

Now we can write the local linear system associated to the element Ke as

Ae




En+1,e
x

En+1,e
y

En+1,e
z

Hn+1,e
x

Hn+1,e
y

Hn+1,e
z




+

|νe|∑

l=1

C(e,l)

[
Λ
n+1,σ(e,l)
u

Λ
n+1,σ(e,l)
w

]
= Pn,e, (2.53)

where
• Ae matrix of size 6N e

K × 6N e
K , defined by

Ae =




ε̄Me 0 0 0 −Dez Dey
0 ε̄Me 0 Dez 0 −Dex
0 0 ε̄Me −Dey Dex 0

0 − [Dez]
T [

Dey
]T

µ̄Me + Eex −Eexy −Eexz
[Dez]

T 0 − [Dex]T −Eexy µ̄Me + Eey −Eeyz
−
[
Dey
]T

[Dex]T 0 −Eexz −Eeyz µ̄Me + Eez



,

• C(e,l) matrix of size 6N e
K × 2N

σ(e,l)
F , defined by

C(e,l) =




(n
(e,l)
z u

σ(e,l)
y − n(e,l)

y u
σ(e,l)
z )F(e,l) (n

(e,l)
z w

σ(e,l)
y − n(e,l)

y w
σ(e,l)
z )F(e,l)

(n
(e,l)
x u

σ(e,l)
z − n(e,l)

z u
σ(e,l)
x )F(e,l) (n

(e,l)
x w

σ(e,l)
z − n(e,l)

z w
σ(e,l)
x )F(e,l)

(n
(e,l)
y u

σ(e,l)
x − n(e,l)

x u
σ(e,l)
y )F(e,l) (n

(e,l)
y w

σ(e,l)
x − n(e,l)

x w
σ(e,l)
y )F(e,l)

−τ (e,l)u
σ(e,l)
x F(e,l) −τ (e,l)w

σ(e,l)
x F(e,l)

−τ (e,l)u
σ(e,l)
y F(e,l) −τ (e,l)w

σ(e,l)
y F(e,l)

−τ (e,l)u
σ(e,l)
z F(e,l) −τ (e,l)w

σ(e,l)
z F(e,l)




.

• Pe = [bE,1, bE,2, bE,3, bH,1, bH,2, bH,3]T



Discretisation of the global problem for Λ

Let Ff ∈ FIh , the conservativity condition for Ff and for all η ∈M t,3
h

〈
n×En+1

h ,η
〉
∂Kl

e
− τ (e,l)

〈
n× (n×Hn+1

h ),η
〉
∂Kl

e
− τ (e,l)

〈
Λn+1
h ,η

〉
∂Kl

e

+
〈
n×En+1

h ,η
〉
∂Kk

g
− τ (g,k)

〈
n× (n×Hn+1

h ),η
〉
∂Kk

g
− τ (g,k)

〈
Λn+1
h ,η

〉
∂Kk

g

=

− 〈n×En
h ,η〉∂Kl

e
+ τ (e,l) 〈n× (n×Hn

h ),η〉∂Kl
e

+ τ (e,l) 〈Λn
h,η〉∂Kl

e

− 〈n×En
h ,η〉∂Kk

g
+ τ (g,k) 〈n× (n×Hn

h ),η〉∂Kk
g

+ τ (g,k) 〈Λn
h,η〉∂Kk

g
.

(2.54)

For a boundary face Ff ∈ Γa, the conservativity condition for all η ∈M t,3
h

〈
n×En+1

h ,η
〉
∂Kl

e
− τ (e,l)

〈
n× (n×Hn+1

h ),η
〉
∂Kl

e

− (1 + τ (e,l))
〈
Λn+1
h ,η

〉
∂Kl

e
=
〈
Λn
h + ginc,n + ginc,n+1,η

〉
∂Kl

e
.

(2.55)

For (2.54) we have





(
n

(e,l)
z u

σ(e,l)
y − n(e,l)

y u
σ(e,l)
z

) [
F(e,l)

]T
En+1,e
x +

(
n

(e,l)
x u

σ(e,l)
z − n(e,l)

z u
σ(e,l)
x

) [
F(e,l)

]T
En+1,e
y

+
(
n

(e,l)
z u

σ(e,l)
y − n(e,l)

y u
σ(e,l)
z

) [
F(e,l)

]T
En+1,e
z + τ

(e,l)
x

[
F(e,l)

]T
Hn,e
x + τ (e,l)u

σ(e,l)
y

[
F(e,l)

]T
Hn+1,e
y

+τ (e,l)u
σ(e,l)
z

[
F(e,l)

]T
Hn+1,e
z − τ (e,l)G(e,l)Λn+1,σ(e,l)

u − τ (e,l)
(
uσ(e,l) ·wσ(e,l)

)
G(e,l)Λn+1,σ(e,l)

w +R
n+1,(g,k)
u

= −Rn,(e,l)u −Rn,(g,k)
u ,

(
n

(e,l)
z w

σ(e,l)
y − n(e,l)

y w
σ(e,l)
z

) [
F(e,l)

]T
En+1,e
x +

(
n

(e,l)
x w

σ(e,l)
z − n(e,l)

z w
σ(e,l)
x

) [
F(e,l)

]T
En+1,e
y

+
(
n

(e,l)
z w

σ(e,l)
y − n(e,l)

y w
σ(e,l)
z

) [
F(e,l)

]T
En+1,e
z + τ (e,l)w

σ(e,l)
x

[
F(e,l)

]T
Hn+1,e
x + τ (e,l)w

σ(e,l)
y

[
F(e,l)

]T
Hn+1,e
y

+τ (e,l)w
σ(e,l)
z

[
F(e,l)

]T
Hn+1,e
z − τ (e,l)

(
uσ(e,l) ·wσ(e,l)

)
G(e,l)Λn+1,σ(e,l)

u − τ (e,l)G(e,l)Λn+1,σ(e,l)
w +R

n+1,(g,k)
w

= −Rn,(e,l)w −Rn,(g,k)
w ,

(2.56)

where

G(e,l)[i, j] =

ˆ
∂Kl

e

ψ
σ(e,l)
i ψ

σ(e,l)
j ds, 1 ≤ i, j ≤ Nσ(e,l)

F .



For (2.55) we have




(
n

(e,l)
z u

σ(e,l)
y − n(e,l)

y u
σ(e,l)
z

) [
F(e,l)

]T
En+1,e
x +

(
n

(e,l)
x u

σ(e,l)
z − n(e,l)

z u
σ(e,l)
x

) [
F(e,l)

]T
En+1,e
y

+
(
n

(e,l)
z u

σ(e,l)
y − n(e,l)

y u
σ(e,l)
z

) [
F(e,l)

]T
En+1,e
z + τ

(e,l)
x

[
F(e,l)

]T
Hn+1,e
x + τ (e,l)u

σ(e,l)
y

[
F(e,l)

]T
Hn+1,e
y

+ τ (e,l)u
σ(e,l)
z

[
F(e,l)

]T
Hn+1,e
z −

(
1 + τ (e,l)

)
G(e,l)Λn+1,σ(e,l)

u −
(

1 + τ (e,l)
)(
uσ(e,l) ·wσ(e,l)

)
G(e,l)Λn+1,σ(e,l)

w

= −Rn,(e,l)u + G(e,l)gσ(e,l)
u

,

(
n

(e,l)
z w

σ(e,l)
y − n(e,l)

y w
σ(e,l)
z

) [
F(e,l)

]T
En+1,e
x +

(
n

(e,l)
x w

σ(e,l)
z − n(e,l)

z w
σ(e,l)
x

) [
F(e,l)

]T
En+1,e
y

+
(
n

(e,l)
z w

σ(e,l)
y − n(e,l)

y w
σ(e,l)
z

) [
F(e,l)

]T
En+1,e
z + τ (e,l)w

σ(e,l)
x

[
F(e,l)

]T
Hn+1,e
x + τ (e,l)w

σ(e,l)
y

[
F(e,l)

]T
Hn+1,e
y

+ τ (e,l)w
σ(e,l)
z

[
F(e,l)

]T
Hn+1,e
z −

(
1 + τ (e,l)

)(
uσ(e,l) ·wσ(e,l)

)
G(e,l)Λn+1,σ(e,l)

u −
(

1 + τ (e,l)
)
G(e,l)Λn+1,σ(e,l)

w

= −Rn,(e,l)w + G(e,l)gσ(e,l)
w

,

(2.57)

with

gσ(e,l)
ν

=
[
(gn,inc,σ(e,l)
ν

+ gn+1,inc,σ(e,l)
ν

)[1], · · · , (gn,inc,σ(e,l)
ν

+ gn+1,inc,σ(e,l)
ν

)[N
σ(e,l)
F ]

]T
,ν ∈ {u,w}.

we define a matrix AeHDG of size

|νe|∑

l=1

2N
σ(e,l)
F ×

|Fh|∑

f=1

2Nf
F ,

such that
AeHDG Λ =

[
Λσ(e,1), · · · ,Λσ(e,|νe|)

]T
.

adding all equations involving interior face (2.56) and every boundary face (2.57) element-by-
element we have

|Th|∑

e=1

[AeHDG]T
(
BeWn+1,e + GeAeHDGΛn+1

)
=

|Th|∑

e=1

[AeHDG]T
(
−BeWn,e −GeAeHDGΛn + ge,n

)
,

(2.58)
where
• Wn+1,e the column vector of size 6N e

K , defined by W e =
[
En+1,e,Hn+1,e

]T ,

• Be the matrix of size
|νe|∑

l=1

2N
σ(e,l)
F × 6N e

K , defined by

Be =



F(e,1)
zy,u F(e,1)

xz,u F(e,1)
yx,u τ (e,1)u

σ(e,1)
x

[
F(e,1)

]T
τ (e,1)u

σ(e,1)
y

[
F(e,1)

]T
τ (e,1)u

σ(e,1)
z

[
F(e,1)

]T
F(e,1)
zy,w F(e,1)

xz,w F(e,1)
yx,w τ (e,1)w

σ(e,1)
x

[
F(e,1)

]T
τ (e,1)w

σ(e,1)
y

[
F(e,1)

]T
τ (e,1)w

σ(e,1)
z

[
F(e,1)

]T
F(e,2)
zy,u F(e,2)

xz,u F(e,2)
yx,u τ (e,2)u

σ(e,2)
x

[
F(e,2)

]T
τ (e,2)u

σ(e,2)
y

[
F(e,2)

]T
τ (e,2)u

σ(e,2)
z

[
F(e,2)

]T
· · · · · · · · · · · · · · · · · ·

F(e,|νe|)
zy,w F(e,|νe|)

xz,w F(e,|νe|)
yx,w τ (e,|νe|)wσ(e,|νe|)

x

[
F(e,|νe|)

]T
τ (e,|νe|)wσ(e,|νe|)

y

[
F(e,|νe|)

]T
τ (e,|νe|)wσ(e,|νe|)

z

[
F(e,|νe|)

]T



,



with

F(e,l)
ξζ,ν =

(
n

(e,l)
ξ ν

σ(e,l)
ζ − n(e,l)

ζ ν
σ(e,l)
ξ

) [
F(e,l)

]T
, l = 1, · · · , |νe|, ξ, ζ ∈ {x, y, z}, ν ∈ {u,w},

• Ge the matrix of size
|νe|∑

l=1

2N
σ(e,l)
F ×

|νe|∑

l=1

2N
σ(e,l)
F , defined by

Ge =




−κ(e,1)G(e,1) −κ(e,1)(uσ(e,1) ·wσ(e,1))G(e,1) · · · 0

−κ(e,1)(uσ(e,1) ·wσ(e,1))G(e,1) −κ(e,1)G(e,1) · · · 0
· · · · · · · · · · · ·
0 0 · · · −κ(e,|νe|)(uσ(e,|νe|) ·wσ(e,|νe|))G(e,|νe|)

0 0 · · · −κ(e,|νe|)G(e,|νe|)


 ,

with

κ(e,l) =

{
τ (e,l), if the face Fσ(e,l) ∈ Fh r Γa,

1 + τ (e,l), if the face Fσ(e,l) ∈ FBh ∩ Γa,
l = 1, · · · , |νe|,

• ge the column vector of size
|νe|∑

l=1

2N
σ(e,l)
F , defined by

ge =
[
gσ(e,1), · · · , gσ(e,|νe|)

]T
,

where

gσ(e,l) =

{
G(e,l) ggσ(e,l)

u

G(e,l) ggσ(e,l)

w

and ggσ(e,l)
ν

=

{
0 if Fσ(e,l) ∈ Fh r Γa

gn,inc,σ(e,l)

ν
+ gn+1,inc,σ(e,l)

ν
if Fσ(e,l) ∈ FBh ∩ Γa

ν ∈ {u,w}.

Now we can rewrite the equation for the local solver (2.53) as

AeWn+1,e + CeAeHDGΛn+1 = Pn,e, (2.59)

where Ce is the matrix of size 6N e
K ×

|νe|∑

l=1

N
σ(e,l)
F , defined by Ce =

[
C(e,1) · · · C(e,|νe|)].

Finally we substitute Wn+1,e by the solution of the local system (2.59) in (2.58) to obtain

|Th|∑
e=1

[AeHDG]T
(
Be [Ae]−1 [Pn,e − CeAeHDGΛn+1]+ GeAeHDGΛn+1

)
=

|Th|∑
e=1

[AeHDG]T
(
−BeWn,e −GeAeHDGΛn + ge,n

)
.

⇒

|Th|∑
e=1

[AeHDG]T
(
−Be [Ae]−1 Ce + Ge

)
AeHDG

Λn+1 =

|Th|∑
e=1

[AeHDG]T
(
−BeWn,e −GeAeHDGΛn − Be [Ae]−1 Pn,e + ge,n

)
.

Thus we write the following linear system for the global trace Λn+1

KΛn+1 = gn, (2.60)

where



• K the matrix of size
|Fh|∑

f=1

2Nf
F ×

|Fh|∑

f=1

2Nf
F , defined by

K =

|Th|∑

e=1

[AeHDG]T KeAeHDG =

|Th|∑

e=1

[AeHDG]T
(
Ge − Be [Ae]−1 Ce

)
AeHDG,

• gn the column vector
|Fh|∑

f=1

2Nf
F , defined by

gn =

|Th|∑

e=1

[AeHDG]T
(
−BeWn,e −GeAeHDGΛn − Be [Ae]−1 Pn,e + ge,n

)
.

Remark 3. If we consider a uniform degree of interpolation for elements and faces, then the total
numbers of globally coupled DoFs are

• DG method: (p+ 1)(p+ 2)(p+ 3)|Th|

• HDG method: (p+ 1)(p+ 2)|Fh|

For |Fh| ≈ 2|Th|,
2

p+ 3
is the ratio of the number of globally coupled DoFs of HDG method to DG

method.

Remark 4. For the numerical results we can see in [43] that, as expected, we have a k + 1
convergence order in space while we have a convergence of second order in time. And we can
obviously see that the HDG method outperforms the DG method both on the memory requirement
and CPU time metrics, especially at higher interpolation orders.

2.5.10 Numerical results

In this section, we will present the numerical results for the fully implicit HDGTDmethod described
above for the propagation of a standing wave in a cubic PEC cavity [43].

Propagation of a standing wave in a cubic PEC cavity

In order to validate and study the numerical convergence of the proposed HDG method, we consider
the propagation of an eigenmode in a source-free i.e J = 0 closed cavity (the unit cube Ω := (0, L)3,
L := 1m) with perfectly metallic walls. The frequency of the wave is ω =

√
3πc0/L where c0 is the

speed of light in vacuum. The electric permittivity and the magnetic permeability are set to the
constant vacuum values. The exact time-domain solution is given by





Ex(x, y, z, t) = − cos(πx) sin(πy) sin(πz) cos(ωt),
Ey(x, y, z, t) = 0,
Ez(x, y, z, t) = sin(πx) sin(πy) cos(πz) cos(ωt),

Hx(x, y, z, t) = −π
ω

sin(πx) cos(πy) cos(πz) sin(ωt),

Hy(x, y, z, t) =
2π

ω
cos(πx) sin(πy) cos(πz) sin(ωt),

Hz(x, y, z, t) = −π
ω

cos(πx) cos(πy) sin(πz) sin(ωt),

(2.61)



The electromagnetic field is initialized at t = 0 as Ey = Hx = Hy = Hz = 0 and
{
Ex(x, y, z, t = 0) = − cos(πx) sin(πy) sin(πz),
Ez(x, y, z, t = 0) = sin(πx) sin(πy) cos(πz).

(2.62)

The parameter τ in the HDG traces is taken equal to 1. The time step is chosen as ∆t = cCFL∆tmin
where ∆tmin is the global minimal time step over the whole mesh. The value of the time step is
chosen such that the accuracy does not affect the accuracy in space. The maximal L2-norm of the
error is measure for a sequence of successively refined tetrahedral meshes starting from a uniform
coarse mesh. The latter is obtained by subdividing a finite difference grid of the unit cube. An
optimal convergence order is observed for the electromagnetic field, namely k+ 1. A comparison is
made between the proposed time-implicit HDG and a classical centered flux time-implicit DGTD
method [31] in terms of memory occupation and CPU time for the same problem. The coefficient
cCFL is set to 1. Simulations are performed on a workstation equipped with an Intel Xeon E5-
2630@2.60 GHz processor. The obtained results are summarized in Table (2.1) for two interpolation
orders. We clearly see that the HDG method outperforms the DG method both on the memory
requirement and CPU time metrics, especially at higher interpolation orders.

P1 P3

DG HDG DG HDG

Number of non-zero entries 2 988 320 1 562 112 64 448 080 17 356 800

Factorization time (s) 46 3 8308 143

L2 error 4.68e-02 4.22e-02 3.61e-02 3.60e-02

Table 2.1 | Standing wave in a PEC cavity: comparaison between the time-implicit DGTD method and the
time-implicit HDGTD method.





3

An explicit HDGTD
method for Maxwell

equations

3.1 Introduction

As mentioned previously, HDG methods were essentially created for stationary problems and un-
steady problems treated with time implicit schemes. Our ultimate goal is to devise a high order
hybrid explicit-implicit HDG method. A preliminary step considered in this chapter is therefore
to elaborate on the principles of a fully explicit HDG formulation. It happens that fully explicit
HDG methods have been studied recently for the acoustic wave equation by Kronbichler al. [45]
and Stanglmeier al. [38]. The work reported in [45] is in fact a comparison of implicit and explicit
HDG formulations. In the explicit HDG scheme, the trace of the acoustic pressure on a face is
computed from the solution of the two elements adjacent to the face at the previous time step. The
adopted time integration schemes are diagonally implicit and explicit Runge-Kutta schemes. The
conclusion of this study is that for the considered acoustic wave propagation problems, the com-
puting time per time step is much lower for the explicit scheme, despite the stability restriction on
the time step of the explicit scheme. In [38] the authors present a fully explicit, high order accurate
in both space and time HDG method. The method coincides with the classical upwind flux-based
DG method for a particular choice of the stabilization parameter in the HDG numerical traces.
Time integration is obtained by a strong stability preserving Runge-Kutta scheme. This HDG
method provides an optimal convergence rate for the solution and its gradient and is amenable to
local post-processing to obtain a superconvergence property with a rate k + 2 if k, k ≥ 1, is the
interpolation order in the L2-norm, depending on the form of the numerical fluxes.

In this chapter we propose a fully explicit high order accurate HDG method for the solution of
the system of time-domain Maxwell equations. We adopt a low storage Runge-Kutta scheme [46] for
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the time integration of the semi-discrete HDG equations. It also provides an optimal convergence
rate for the solution and is amenable to local post-processing to obtain a superconvergence property
with a rate k+1 if k ≥ 1 is the interpolation order in theHcurl-norm instead of k. As in [38], we show
that for a particular choice of the stabilization parameter in the definition of the HDG numerical
traces, we recover the classical upwind flux-based DG method [8]. This work is a first step towards
the construction of a hybrid explicit-implicit HDG method for time-domain electromagnetics.

3.2 Global formulation

Our starting point for this chapter is the HDG formulation proposed in chapter 2 for the Maxwell
equations in time-domain (2.43).

(ε∂tEh,v)Th − (Hh, curlv)Th + 〈Λh,n× v〉∂Th = 0, ∀v ∈ V 3
h ,

(µ∂tHh,v)Th + (Eh, curlv)Th −
〈
Êt
h,n× v

〉
∂Th

= 0, ∀v ∈ V 3
h ,〈

JÊhK,η
〉
Fh
− 〈Λh,η〉Γa −

〈
ginc,η

〉
Γa

= 0, ∀η ∈M t,3
h ,

HDG formulation

The idea here is to use the third equation of the HDG formulation above, to calculate for every
F , Λh|F and Êt

h|F in terms of Ht,+
h|K+ , H

t,−
h|K− , E

t,+
h|K+ and Et,−

h|K− . Next step is to inject the new

expressions of Λh and Êt
h in the first two equations. This HDGTD method can be seen as a

generalization of the classical DGTD scheme based on upwind fluxes. In particular, it coincides
with the latter scheme for a particular choice of the stabilization parameter introduced in the
definition of numerical traces in the HDG framework.

3.2.1 Reformulation with numerical fluxes

From the third equation of (2.43) we have
〈
JÊt

hK,η
〉
FIh

= 0 ∀η ∈Mh ∩ {η = 0 on (Fh ∩ Γm) ∪ (Fh ∩ Γa)}.

Now, let us prove that the function

η1 =

{
JÊt

hK on FIh
0 on (Fh ∩ Γm) ∪ (Fh ∩ Γa) ,

belongs to the spaceMh ∩ {η = 0 on (Fh ∩ Γm)∪ (Fh ∩ Γa)}. First it is clear that n · η1|F = 0 for
all F in FIh and we have

JÊt
hK = n+ × Êt,+

h + n− × Êt,−
h

= n+ ×E+
h|K+ + τK+n+ × n+ × (Λh −H+

h|K+)

+ n− ×E−
h|K− + τK−n

− × n− × (Λh −H−h|K−).



Since K is a bounded domain and n is constant on every face we have that
(
n×Eh|K

)
|F and

(
n×Hh|K

)
|F are bounded polynoms in [PpF (F )]3 for all F in ∂K, which implies that η1 ∈

[
L2 (Fh)

]3 and η1|F ∈ [PpF (F )]3 for all F in ∂K. We obtain
〈
JÊt

hK,η1

〉
FIh

= ||JÊt
hK||2 = 0, which

is equivalent to JÊt
hKFIh = 0. From (2.42), we have

JEt
h + τn× (Λh −Ht

h)KFIh = 0,

by expanding we obtain

JEt
hKF − (τK+ + τK−) Λh + τK+Ht,+

h + τK−H
t,−
h = 0 ∀F ∈ FIh ,

yielding

Λh =
1

τK+ + τK−

(
JEt

hKF + τK+Ht,+
h + τK−H

t,−
h

)
∀F ∈ FIh . (3.1)

Proceeding similarly for an absorbing boundary face and for a metalic boundary face, the conser-
vativity condition writes

〈
n× Êt

h −Λh − ginc,η
〉

Γa
= 0 and

〈
n× Êt

h,η
〉

Γm
= 0. In particular,

for an absorbing boundary face

n× Êt
h −Λh − ginc = 0 on Γa,

and by (2.42) we have

n×Et
h − (τK + 1)Λh + τKH

t
h − ginc = 0 on Γa.

Proceeding similarly for the metalic boundary and summarizing, we obtain

Λh =





1

τK+ + τK−

(
2
{
τKH

t
h

}
F

+ JEt
hKF
)
, if F ∈ FIh ,

1

τK
n×Et

h +Ht
h, if F ∈ Fh ∩ Γm,

1

τK + 1

(
τKH

t
h + n×Et

h − ginc) . if F ∈ Fh ∩ Γa.

(3.2)

By replacing (3.2) in (2.42) we obtain Êt
h = Êt,+

h = Êt,−
h with

Êt
h =





τK+τK−

τK+ + τK−

(
2

{
1

τK
Et
h

}

F

− JHt
hKF
)
, if F ∈ FIh ,

0, if F ∈ Fh ∩ Γm,

1

τK + 1

(
Et
h − τKn×Ht

h − τKn× ginc) . if F ∈ Fh ∩ Γa.

(3.3)

Thus, the numerical traces (2.41) and (2.42) have been reformulated from the conservativity con-
dition. This means that the conservativity condition is now included in the new formulation of the
numerical fluxes and can be omitted in the global system of equations. Hence, the local system
(2.39) takes the form of a classical DG formulation, for all v ∈ Vh





(ε∂tEh,v)K − (Hh, curlv)K +
〈
Ĥt
h,n× v

〉
∂K

= 0,

(µ∂tHh,v)K + (Eh, curlv)K −
〈
Êt
h,n× v

〉
∂K

= 0,
(3.4)

where the numerical fluxes are defined by (3.2) and (3.3).



Remark 5. Let YK =
√
εK/
√
µK be the local admittance associated to cell K and ZK = 1/YK

the corresponding local impedance. If we set τK = ZK in (3.2) and 1/τK = YK in (3.3), the
obtained numerical traces coincide with those adopted in the classical upwind flux DGTD method
[8].

3.3 Stability and conservation properties

3.3.1 Formulation

Let us introduce

υh =

(
Hh

Eh

)
,

λ = diag(µ, ε) and for all K in Th, all υ in Vh

ζK (υ) =

(
curl

(
υ2|K

)

− curl
(
υ1|K

)
)
.

After summing the two equations of the local formulation (3.4) we obtain ∀υ′h ∈ Vh = Vh × Vh
(
λ∂tυh,υ

′
h

)
K

=
(
υh, ζK(υ′h)

)
K
−
〈
F τ
K,h(υh),υ′h

〉
∂K

. (3.5)

Assuming τ is constant in Th and ginc = 0, the numerical flux F τ
K,h is defined on ∂K by

F τ
K,h(υ)|∂K∩FIh =




τ

2

(
2

τ
n× {υ2} − n× Jυ1K

)

− 1

2τ
(2τn× {υ1}+ n× Jυ2K)


 ,

and

F τ
K,h(υ)|∂K∩Γm =

(
0

1

τ
(n× n× υ2) + n× υ1

)
,

F τ
K,h(υ)|∂K∩Γa =



− 1

τ + 1
(n× υ2) +

τ

τ + 1
(n× n× υ1)

τ

τ + 1
(n× υ1) +

1

τ + 1
(n× n× υ2)


 .

For the global weak formulation we define for all υ in Vh

ζh (υ) =

(
curlh (υ2)
− curlh (υ1)

)
,

with curlh is the piecewise curl operator defined on each K and for all bh as
(curlh (bh))|K = curl

(
bh|K

)
. Intrducing the bilinear forms m, a, bτ defined on Vh×Vh such that,



for all (υ,υ′) ∈ Vh × Vh





m(υ,υ′) = (υ,υ′)λ = (λυ,υ′)Th
a(υ,υ′) = (υ, ζh(υ′))Th

bτ (υ,υ′) =
〈
{υ2} , Jυ′1K

〉
FIh
− τ

2

〈
Jυ1K, Jυ′1K

〉
FIh
−
〈
{υ1} , Jυ′2K

〉
FIh

− 1

2τ

〈
Jυ2K, Jυ′2K

〉
FIh
− 1

τ

ˆ
Γm

(n× υ2) ·
(
n× υ′2

)

+

ˆ
Γm

(n× υ1) · υ′2 −
1

τ + 1

ˆ
Γa

(n× υ2) · υ′1

− τ

τ + 1

ˆ
Γa

(n× υ1) ·
(
n× υ′1

)
+

τ

τ + 1

ˆ
Γa

(n× υ1) · υ′2

− 1

τ + 1

ˆ
Γa

(n× υ2) ·
(
n× υ′2

)
.

(3.6)

Then, the global formulation of the semi-discrete HDG scheme writes as

m(∂tυh,υ
′
h) = a(υh,υ

′
h) + bτ (υh,υ

′
h). (3.7)

3.3.2 Semi-discrete stability

We introduce the energy function defined on [0, T ] by

Eh(t) =
1

2

(
ε||Eh(t)||2 + µ||Hh(t)||2

)
=

1

2
m(υh,υh) =

1

2
||υh||2λ.

The total discrete electromagnetic energy

Theorem 4. For all τ > 0 the energy function Eh(t) decreases in time and Eh(t) ≤ Eh(0) for all
t > 0.

Proof. By the formula ∂t||v||2 = 2 (∂tv,v) we have ∂tEh(t) = m(∂tυh,υh) and, using the formulaˆ
K

curl u · v =

ˆ
K

curl v · u +

ˆ
∂K

(n× u) · v, we deduce from (3.7) that

∂tEh(t) = a(υh,υh) + bτ (υh,υh).

We have

a(υh,υh) = (υ1, curlυ2)Th − (υ1, curlυ2)Th = 0,



and for all τ > 0,

bτ (υh,υh) =−
〈
n× υ+

1 ,υ
+
2

〉
FIh

+
〈
n× υ−1 ,υ−2

〉
FIh
−
ˆ
∂Ω

(n× υ1) · υ2

+
1

2

〈
υ+

2 ,n× υ+
1

〉
FIh
− 1

2

〈
υ+

2 ,n× υ−1
〉
FIh

+
1

2

〈
υ−2 ,n× υ+

1

〉
FIh

− 1

2

〈
υ−2 ,n× υ−1

〉
FIh
− 1

2

〈
υ+

1 ,n× υ+
2

〉
FIh
− 1

2

〈
υ+

1 ,n× υ−2
〉
FIh

− 1

2

〈
υ−1 ,n× υ+

2

〉
FIh

+
1

2

〈
υ−1 ,n× υ−2

〉
FIh

− τ

2
||Jυ1K||2FIh −

1

2τ
||Jυ2K||2FIh +

1

τ + 1

ˆ
Γa

(n× υ1) · υ2

+

ˆ
Γm

(n× υ1) · υ2 +
τ

τ + 1

ˆ
Γa

(n× υ1) · υ2

− τ

τ + 1
||n× υ1||2Γa −

1

τ
||n× υ2||2Γm −

1

τ + 1
||n× υ2||2Γa

=− τ

2
||Jυ1K||2FIh −

1

2τ
||Jυ2K||2FIh −

τ

τ + 1
||n× υ1||2Γa

− 1

τ
||n× υ2||2Γm −

1

τ + 1
||n× υ2||2Γa

≤0.

This result shows the L2-stability of the semi-discrete HDG method. In particular, this method is
dissipative for the considered numerical trace for Êt

h in (2.42).

3.3.3 Fully discrete stability

For the sake of simplicity, we will consider Γa = ∅ in this section. We introduce the linear operator
Lh : Vh → Vh defined for all (ι,ν) in Vh × Vh by

(Lhι,ν) = a(ι,ν) + bτ (ι,ν).

We infer from (3.7) that

λ
d

dt
υh = Lh(υh).

We also recall the following inverse estimates from [47] : For all i in {1, · · · , |Th|}, there exist
c1,i > 0 and c2,i > 0 such that

|| curl(u)||L2(K) ≤ c1,i h
−1
K ||u||L2(K),

||u||L2(∂Ki) ≤ c2,i h
− 1

2 ||u||L2(Ki).
(3.8)

With these inverse estimates we can prove the following lemma.

Lemma 2. For all ι in Vh, there exists c(τ) > 0 such that

sup
ν∈Vh

| (Lhι,ν) |
||ν||Th

≤ c(τ)h−1||ι||Th . (3.9)



Proof. The proof is classical. Inverse estimations are used to upper bound the operator Lh. First
an upper bound for the bilinear form a is found, and then we show how to upper bound the first
term of bτ . The other terms of bτ can be treated in the same way. For all ι in Vh we have

sup
ν∈Vh

| (Lhι,ν) |
||ν||Th

= sup
ν∈Vh

|a(ι,ν) + bτ (ι,ν)|
||ν||Th

≤ sup
ν∈Vh

|a(ι,ν)|
||ν||Th

+ sup
ν∈Vh

|bτ (ι,ν)|
||ν||Th

.

On one hand we have for all ι in Vh,

|a(ι,ν)| =

∣∣∣∣∣∣

|Th|∑

i=1

(ι, ζKi(ν))Ki

∣∣∣∣∣∣

≤
|Th|∑

i=1

∣∣∣(ι, ζKi(ν))Ki

∣∣∣

≤
|Th|∑

i=1

||ι||Ki ||ζK(ν)||Ki

≤
|Th|∑

i=1

||ι||Ki
(
||curl(ν2/Ki)||2Ki + ||curl(ν1/Ki)||2Ki

) 1
2

≤
|Th|∑

i=1

||ι||Ki
([
c1,ih

−1||ν2/Ki ||Ki
]2

+
[
c1,ih

−1||ν1/Ki ||Ki
]2) 1

2
.

Introducing c1 = maxi∈{1,··· ,|Th|} c1,i, we obtain

|a(ι,ν)| ≤ c1h
−1

|Th|∑

i=1

||ι||Ki ||ν||Ki

≤ c1h
−1



|Th|∑

i=1

||ι||2Ki




1
2


|Th|∑

i=1

||ν||2Ki




1
2

,

≤ c1h
−1||ι||Th ||ν||Th ,

therefore
sup
ν∈Vh

|a(ι,ν)|
||ν||Th

≤ c1h
−1||ι||Th . (3.10)

On the other hand we have for all ι in Vh,

|bτ (ι,ν)| =| 〈{ι2} , Jν1K〉FI
h
− τ

2
〈Jι1K, Jν1K〉FI

h
− 〈{ι1} , Jν2K〉FI

h

− 1

2τ
〈Jι2K, Jν2K〉FI

h
− 1

τ

ˆ
Γm

(n× ι2) · (n× ν2)

+

ˆ
Γm

(n× ι1) · ν2|

≤
∣∣∣〈{ι2} , Jν1K〉FI

h

∣∣∣+
τ

2

∣∣∣〈Jι1K, Jν1K〉FI
h

∣∣∣+
∣∣∣〈{ι1} , Jν2K〉FI

h

∣∣∣

+
1

2τ

∣∣∣〈Jι2K, Jν2K〉FI
h

∣∣∣+
1

τ

ˆ
Γm

|(n× ι2) · (n× ν2)|

+

ˆ
Γm

| (n× ι1) · ν2|.



We want to expand the first term and all others terms are treated similarly:

∣∣∣〈{ι2} , Jν1K〉FI
h

∣∣∣ =

∣∣∣∣∣∣
∑

F∈FI
h

1

2

〈
ι+2 + ι−2 ,n× (ν+

1 − ν−1 )
〉
F

∣∣∣∣∣∣

≤
∑

F∈FI
h

1

2
(||ι+2 ||F + ||ι−2 ||F )(||ν+

1 ||F + ||ν−1 ||F )

≤
|Th|∑

i=1

∑

F∈∂Ki

1

2
(||ι+2 ||F + ||ι−2 ||F )(||ν+

1 ||F + ||ν−1 ||F ),

then
∣∣∣〈{ι2} , Jν1K〉FI

h

∣∣∣ ≤ 1

2

|Th|∑

i=1

∑

F∈∂Ki

[
||ι+2 ||F ||ν+

1 ||F + ||ι+2 ||F ||ν−1 ||F +

||ι−2 ||F ||ν+
1 ||F + ||ι−2 ||F ||ν−1 ||F

]

≤ 1

2

|Th|∑

i=1

[
4||ι2||∂Ki

||ν1||∂Ki
+
∑

j∈νi

(
||ι2||∂Kj

||ν1||∂Kj
+

||ι2||∂Kj ||ν1||∂Ki + ||ι2||∂Ki ||ν1||∂Kj

)]

≤ 1

2

|Th|∑

i=1

[
4||ι2||∂Ki

||ν1||∂Ki
+
∑

j∈νi
||ι2||∂Kj

||ν1||∂Kj
+

||ν1||∂Ki

∑

j∈νi
||ι2||∂Kj

+ ||ι2||∂Ki

∑

j∈νi
||ν1||∂Kj

]

≤ 2

|Th|∑

i=1

||ι2||∂Ki
||ν1||∂Ki

+
1

2

|Th|∑

i=1

∑

j∈νi
||ι2||∂Kj

||ν1||∂Kj

+
1

2

|Th|∑

i=1


||ν1||∂Ki

∑

j∈νi
||ι2||∂Kj




+
1

2

|Th|∑

i=1


||ι2||∂Ki

∑

j∈νi
||ν1||∂Kj


 .

Since we are in R3 every Ki has 4 neighbours except the cells on the boundary (i.e |νi| ≤ 4)

1

2

|Th|∑

i=1

∑

j∈νi
||ι2||∂Kj ||ν1||∂Kj ≤ 2

|Th|∑

i=1

||ι2||∂Ki ||ν1||∂Ki ,

and we also have

1

2

|Th|∑

i=1


||ν1||∂Ki

∑

j∈νi
||ι2||∂Kj


 ≤ 1

2



|Th|∑

i=1

||ν1||2∂Ki




1
2

×



|Th|∑

i=1


∑

j∈νi
||ι2||∂Kj




2


1
2

.



By using the well known formula (a1 + a2)2 ≤ 2(a2
1 + a2

2) so by induction we have

(
4∑

i=1

ai

)2

≤ 8a2
1 + 8a2

2 + 4a2
3 + 2a2

4 ≤ 8
4∑

i=1

a2
i ,

then 

|Th|∑

i=1


∑

j∈νi
||ι2||∂Kj




2


1
2

≤ 4
√

2



|Th|∑

i=1

||ι2||2∂Ki




1
2

,

which implies

1

2

|Th|∑

i=1


||ν1||∂Ki

∑

j∈νi
||ι2||∂Kj


 ≤ 2

√
2



|Th|∑

i=1

||ν1||2∂Ki




1
2


|Th|∑

i=1

||ι2||2∂Ki




1
2

.

So for now we have

∣∣∣〈{ι2} , Jν1K〉FIh
∣∣∣ ≤ 4

|Th|∑

i=1

||ι2||∂Ki ||ν1||∂Ki

+ 4
√

2



|Th|∑

i=1

||ν1||2∂Ki




1
2


|Th|∑

i=1

||ι2||2∂Ki




1
2

≤ 4(1 +
√

2)



|Th|∑

i=1

||ν1||2∂Ki




1
2


|Th|∑

i=1

||ι2||2∂Ki




1
2

.

From the inverse estimates (3.8) we deduce

≤ 4c2
2(1 +

√
2)h−1



|Th|∑

i=1

||ν1||2Ki




1
2


|Th|∑

i=1

||ι2||2Ki




1
2

≤ c3h
−1||ι2||Th ||ν1||Th .

Since ||ι||Th =
(
||ι1||2Th + ||ι2||2Th

) 1
2 and the same for ||ν||Th finally we have

∣∣∣〈{ι2} , Jν1K〉FIh
∣∣∣ ≤ c3h

−1||ι||Th ||ν||Th .

Back to bτ we deduce that

|bτ (ι,ν)| ≤ c3 max

(
1,

1

τ
,
τ

2

)
h−1||ι||Th ||ν||Th ,

then

sup
ν∈Vh

|bτ (ι,ν)|
||ν||Th

≤ c3 max

(
1,

1

τ
,
τ

2

)
h−1||ι||Th . (3.11)



Finally with (3.10) and (3.11)

sup
ν∈Vh

| (Lhι,ν) |
||ν||Th

≤
[
c1 + c3 max

(
1,
τ

2
,

1

τ

)]
h−1||ι||Th .

This concludes the proof of lemma 2.

Remark 6. The proof is valid in the case of a uniform mesh. For the case of a quasi uniform mesh,
i.e. there exists η > 0, independent of h, such that for all Ki in Th and for all j in νi, hi/hj ≤ η,
the constant c(τ) of the lemma 2 will be replaced by c(τ)η.

In the next proposition we prove the stability of the fully explicit scheme obtained by using a
Runge-Kutta RK2 scheme. The RK2 scheme can be expressed in its two steps version as follows
for all n in N [48]

ωn = υnh + ∆tλ−1Lh(υnh) (3.12)

and
υn+1
h =

1

2
(υnh + ωn) +

1

2
∆tλ−1Lh(ωn). (3.13)

Two steps version of the RK2 scheme

Proposition 1. Let τ ≥ 0, under a 4
3 − CFL condition, i.e ∆t ≤ c(τ)h

4
3 , the explicit HDGTD

scheme with a RK2 discretization in time is stable in finite time.

Proof. Let us study the variation of the energy defined by Enh = 1
2 ||υnh ||2λ. We have

λ
d

dt
υh = Lh(υh).

We start by proving the following formula

||υn+1
h ||2λ − ||υnh ||2λ = ||υn+1

h − ωn||2λ + ∆t((Lh(υnh),υnh)Th + (Lh(ωn),ωn)Th). (3.14)

We have
||υn+1

h − ωn||2λ = (υn+1
h − ωn,υn+1

h − ωn)λ

= ||υn+1
h ||2λ − 2(υn+1

h ,ωn)λ + (ωn,ωn)λ

= ||υn+1
h ||2λ

− (υnh + ωn + ∆tλ−1Lh(ωn),υnh + ∆tλ−1Lh(υnh))λ

+ (ωn,ωn)λ

= ||υn+1
h ||2λ − ||υnh ||2λ − (υnh ,∆tλ

−1Lh(υnh))λ − (ωn,υnh)λ

− (ωn,∆tλ−1Lh(υnh))λ − (υnh ,∆tλ
−1Lh(ωn))λ

− (∆tλ−1Lh(ωn),∆tλ−1Lh(υnh))λ + (ωn,ωn)λ.

We notice that
(υnh ,∆tλ

−1Lh(υnh))λ = ∆t(Lh(υnh),υnh)Th ,



furthermore (∆tλ−1Lh(ωn),υnh + ∆tλ−1Lh(υnh))λ = ∆t(Lh(ωn),ωn)Th then

(υnh , λ
−1Lh(ωn))λ + (∆tλ−1Lh(ωn), λ−1Lh(υnh))λ = (Lh(ωn),ωn)Th .

Finally
−(ωn,υnh)λ − (ωn,∆tλ−1Lh(υnh))λ + (ωn,ωn)λ = (ωn,−ωn + ωn)λ

= 0.

We then obtain

||υn+1
h ||2λ − ||υnh ||2λ = ||υn+1

h − ωn||2λ
+ ∆t((Lh(υnh),υnh)Th + (Lh(ωn),ωn)Th)

≤ ||υn+1
h − ωn||2λ.

Furthermore from (3.13) we obtain

υn+1
h − ωn =

1

2
υnh −

1

2
ωn +

1

2
∆tλ−1Lh(ωn)

= −1

2
∆tλ−1Lh(υnh) +

1

2
∆tλ−1Lh(ωn)

= −1

2
∆tλ−1Lh(υnh − ωn).

So we can deduce that

||υn+1
h − ωn||2λ =

∥∥∥∥
1

2
∆tλ−1Lh(υnh − ωn)

∥∥∥∥
2

λ

=
1

4
∆t2(λ−1Lh(υnh − ωn), λ−1Lh(υnh − ωn))λ

=
1

4
∆t2||Lh(υnh − ωn)||2λ−1

≤ 1

4
∆t2||Lh(υnh − ωn)||2λ.

We infer from Lemma 2 that

||υn+1
h − ωn||2λ ≤

1

4
(∆tc1h

−1η)2||υnh − ωn||2λ

and with the help of (3.12)

||υn+1
h − ωn||2λ ≤

1

4
(∆t2c1h

−1η)2(λ−1Lh(υnh), λ−1Lh(υnh))λ

≤ 1

4
(∆t2c1h

−1η)2||Lh(υnh)||2λ−1

≤ 1

4
(∆t2c1h

−1η)2||Lh(υnh)||2λ

≤ 1

4
(∆t2c1h

−1η)2(c2h
−1η)2||υnh ||2λ

≤ 1

4
∆t4c3h

−4||υnh ||2λ.



We now deduce from (3.14) that

1

2
||υn+1

h ||2λ −
1

2
||υnh ||2λ ≤

1

8
∆t4c3h

−4||υnh ||2λ,

then
En+1
h − Enh ≤

1

4
∆t4c3h

−4Enh ,

so for ∆t ≤ c4h
4
3 we obtain by Gronwall’s lemma the existence of a constant c5 ≥ 0 such that for

all n ≥ 0
En+1
h − Enh ≤ c5∆tEnh ,

and then
Enh ≤ ec5TE0

h.

This concludes the proof of Proposition 1.

3.4 Implementation aspects

In this section we will present all the details elaborating the explicit HDGTD method.

3.4.1 Local HDG weak form

We assume that for an internal interface F = K
+ ∩ K−, the normal vector n = n+ = −n− is

directed from K+ to K−. For a boundary interface, we implicitly have that n = n+ and we simply
denote by K in place of K+ the element attached to the interface. Replacing the numerical traces
(3.2) and (3.3) in (3.4) we obtain





(ε∂tEh,v)K − (Hh, curlv)K

+
∑

F∈∂K∩FIh

〈
1

τK+ + τK−

(
τK+Ht,+

h + τK−H
t,−
h

)
n× v

〉

F

+
∑

F∈∂K∩FIh

〈
1

τK+ + τK−

(
n+ ×Et,+

h + n− ×Et,−
h

)
,n× v

〉

F

+
∑

F∈∂K∩Γm

〈
1

τK
n×Et

h +Ht
h,n× v

〉

F

+
∑

F∈∂K∩Γa

〈
1

τK + 1

(
τKH

t
h + n×Et

h − ginc
)
,n× v

〉

F

= 0,

(µ∂tHh,v)K + (Eh, curlv)K −
∑

F∈∂K∩FIh

〈
τK+τK−

τK+ + τK−

(
Et,+
h

τK+

+
Et,−
h

τK−
− n+ ×Ht,+

h − n− ×Ht,−
h

)
,n× v

〉

F

−
∑

F∈∂K∩Γa

〈
1

τK + 1

(
Et
h − τKn×Ht

h − τKn× ginc
)
,n× v

〉

F

= 0,

(3.15)

where Ht,+
h and Et,+

h

(
respectively Ht,−

h and Et,−
h

)
are the tagential traces of Hh and Eh from

element K+ (respectively K−).



3.4.2 Local HDG matrices

Let Th be the set of all Ki with i ∈ {1, · · · , |Th|}, and let di be the number of degrees of freedom in
element Ki. From now on, for a given element Ki ∈ Th, we consider that K+ ≡ Ki and K− ≡ Kj .

We define the restricted fields Ei = Eh|Ki
=



Exi
Eyi
Ezi


 and Hi = Hh|Ki

=



Hx
i

Hy
i

Hz
i


. We will now

develop the equation for Exi in (3.15) in order to exhibit the local matrices characterizing the
semi-discrete HDG scheme. Let (Φik)1≤k≤di be the set of scalar basis functions defined in Ki. By

setting v = Φx
ik =




Φik

0
0


 for 1 ≤ k ≤ di the equation for Exi in (3.15) becomes

ˆ

Ki

ε∂tE
x
i Φik −

ˆ

Ki

(Hy
i ∂zΦik −Hz

i ∂yΦik) +

∑

F∈∂Ki∩FIh

ˆ

F

1

τKi + τKj

[
τKiH

t,y
i + τKjH

t,y
j +

(
n+ ×Et

i

)y
+
(
n− ×Et

j

)y
]
nzΦik −

1

τKi + τKj

[
τKiH

t,z
i + τKjH

t,z
j +

(
n+ ×Et

i

)z
+
(
n− ×Et

j

)z
]
nyΦik +

∑

F∈∂Ki∩Γm

ˆ

F

(
1

τ

(
n×Et

i

)y
+Ht,y

i

)
nzΦik−

(
1

τ

(
n×Et

i

)z
+Ht,z

i

)
nyΦik +

∑

F∈∂Ki∩Γa

ˆ

F

1

τKi + 1

(
τKiH

t,y
i +

(
n×Et

i

)y − ginc,y
)
nzΦik−

1

τKi + 1

(
τKiH

t,z
i +

(
n×Et

i

)z − ginc,z
)
nyΦik = 0.

(3.16)

Note that we obtain di equations of the form (3.16), one for each value of k. The different terms
appearing in (3.16) can be developed as follows:

• Mass matrix. Assuming that ε is constant on every Ki, we obtain
ˆ

Ki

εi∂tE
x
i Φik = εi

ˆ

Ki

di∑

l=1

∂tE
x
ilΦilΦik

= εi

di∑

l=1

∂tE
x
il

ˆ

Ki

ΦilΦik

= εi
(
Mi∂tE

x
i

)
k
, 1 ≤ k ≤ di,

(3.17)



where Mi is the mass matrix, of dimension di × di

Mi =



ˆ

Ki

ΦilΦik




1≤l,k≤di

,

and assuming that the vector of all the degrees of freedom of E in Ki has been ordered as

Ei =



E
x
i

E
y
i

E
z
i


 =




(Exil)1≤l≤di(
Eyil
)

1≤l≤di
(Ezil)1≤l≤di


 .

• Stiffness matrix

ˆ

Ki

Hy
i ∂zΦik −Hz

i ∂yΦik =

ˆ

Ki

di∑

l=1

(
Hy
ilΦil ∂zΦik −Hz

ilΦil ∂yΦik

)

=

di∑

l=1

Hy
il

ˆ

Ki

Φil ∂zΦik −
di∑

l=1

Hz
il

ˆ

Ki

Φil ∂yΦik

=
(
Kz
iH

y
i −Ky

iH
z
i

)
k

= −
(
Ki ×H i

)x
k
, 1 ≤ k ≤ di.

(3.18)

Here, the three stiffness matrices were introduced

(Kν
i ) =



ˆ

Ki

Φil ∂ν Φik




1≤l,k≤di

for ν ∈ {x, y, z},

and where we have introduced the 3di × di stiffness matrix that will be used in the final
system

Ki =




Kx
i

Ky
i

Kz
i


 ,

and

H i =



H

x
i

H
y
i

H
z
i


 =




(Hx
il)1≤l≤di(

Hy
il

)
1≤l≤di

(Hz
il)1≤l≤di


 .



• Flux matrix. For simplicity of the presentation, we assume that the mesh is a conforming
mesh (i.e. without hanging nodes). We know that n = n+ = −n−, therefore, for an interior
face we have

FEx,1ik ≡
ˆ

F

1

τKi + τKj

[
τKiH

t,y
i + τKjH

t,y
j +

(
n+ ×Et

i

)y
+
(
n− ×Et

j

)y]
nzΦik −

1

τKi + τKj

[
τKiH

t,z
i + τKjH

t,z
j +

(
n+ ×Et

i

)z
+
(
n− ×Et

j

)z]
nyΦik

=

ˆ

F

1

τKi + τKj






di∑

l=1

τKiH
t,y
il Φil +

dj∑

m=1

τKjH
t,y
jmΦjm


 +

(
n+
z

di∑

l=1

Et,xil Φil − n+
x

di∑

l=1

Et,zil Φil

)
+


n−z

dj∑

m=1

Et,xjmΦjm − n−x
dj∑

m=1

Et,zjmΦjm




nzΦik −

1

τKi + τKj






di∑

l=1

τKiH
t,z
il Φil +

dj∑

m=1

τKjH
t,z
jmΦjm


 +

(
n+
x

di∑

l=1

Et,yil Φil − n+
y

di∑

l=1

Et,xil Φil

)
+


n−x

dj∑

m=1

Et,yjmΦjm − n−y
dj∑

m=1

Et,xjmΦjm




nyΦik

=
1

τKi + τKj


nz

di∑

l=1

(
τKiH

t,y
il + n+

z E
t,x
il − n+

xE
t,z
il

)ˆ

F

ΦilΦik +

nz

dj∑

m=1

(
τKjH

t,y
jm + n−z E

t,x
jm − n−xE

t,z
jm

)ˆ

F

ΦjmΦik +

ny

di∑

l=1

(
−τKiHt,z

il − n+
xE

t,y
il + n+

y E
t,x
il

)ˆ

F

ΦilΦik +

ny

dj∑

m=1

(
−τKjHt,z

jm − n−xE
t,y
jm + n−y E

t,x
jm

)ˆ

F

ΦjmΦik


 ,



FEx,1ik =
1

τKi + τKj




di∑

l=1

τKi

(
nzH

t,y
il − nyH

t,z
il

) ˆ

F

ΦilΦik +

dj∑

m=1

τKj

(
nzH

t,y
jm − nyH

t,z
jm

)ˆ

F

ΦjmΦik +

(
n+
z

2
+ n+

y
2
)

︸ ︷︷ ︸(
1−n+

x
2
)




di∑

l=1

Et,xil

ˆ

F

ΦilΦik −
dj∑

m=1

Et,xjm

ˆ

F

ΦjmΦik


 +

n+
x n

+
z




dj∑

m=1

Et,zjm

ˆ

F

ΦjmΦik −
di∑

l=1

Et,zil

ˆ

F

ΦilΦik


 +

n+
x n

+
y




dj∑

m=1

Et,yjm

ˆ

F

ΦjmΦik −
di∑

l=1

Et,yil

ˆ

F

ΦilΦik




 ,

that is

FEx,1ik =
1

τKi + τKj




di∑

l=1

τKi
(
Ht
il × n

)x
ˆ

F

ΦilΦik +

dj∑

m=1

τKj
(
Ht
jm × n

)x
ˆ

F

ΦjmΦik +

dj∑

m=1

V x
F ·Et

jm

ˆ

F

ΦjmΦik −
di∑

l=1

V x
F ·Et

il

ˆ

F

ΦilΦik


 ,

if we further assume that the interpolation degree is the same for each element Ki, i.e.

di = dj = d, then
ˆ

F

ΦilΦik =

ˆ

F

ΦjmΦik and we get

FEx,1ik =
1

τKi + τKj

(
SF,iV 1,i,x

)
k
, 1 ≤ k ≤ d,

where

V x
F =



n2
x − 1
nxny
nxnz


 , SF,i =



ˆ

F

ΦilΦik




1≤l,k≤d

,

and
V 1,i,x =

(
τKi

(
Ht
il × n

)x
+ τKj

(
Ht
jl × n

)x
+ V x

F ·
(
Et
jl −Et

il

))
1≤l≤d ,

where we have introduced the vectors

Eil =



Exil
Eyil
Ezil


 and Hil =



Hx
il

Hy
il

Hz
il


 .



Proceeding similarly for the last two terms of (3.16), we obatin

FEx,2ik =
1

τKi

(
SF,iV 2,i,x

)
k
, FEx,3ik =

1

τKi + 1
SF,i

(
V 2,i,x +

(
n× ginci

)x)
k
, 1 ≤ k ≤ d,

where
V 2,i,x =

(
τKi

(
Ht
il × n

)x − V x
F ·Et

il

)
1≤l≤d ,

and (
n× ginci

)x
=
((
n× gincil

)x)
1≤l≤d

.

Now, by setting v = Φx
ik =




Φik

0
0


 for 1 ≤ k ≤ d the equation for Hx

i in (3.15) becomes

ˆ

Ki

µi∂tH
x
i Φik +

ˆ

Ki

(Eyi ∂zΦik − Ezi ∂yΦik) −

∑

F∈∂Ki∩FIh

ˆ

F

τKiτKj
τKi + τKj

[
Et,yi
τKi

+
Et,yj
τKj
−

(
n+ ×Ht

i

)y −
(
n− ×Ht

j

)y
]
nzΦik −

τKiτKj
τKi + τKj

[
Et,zi
τKi

+
Et,zj
τKj
−

(
n+ ×Ht

i

)z
+
(
n− ×Ht

j

)z
]
nyΦik −

∑

F∈∂Ki∩Γa

ˆ

F

1

τKi + 1

[(
Et,yi − τKi

(
n×Ht

i

)y − τKi
(
n× ginc

)y)
nzΦik−

1

τKi + 1

(
Et,zi − τKi

(
n×Ht

i

)z − τKi
(
n× ginc

)z)
nyΦik

]
= 0.

(3.19)

Developing the different terms in (3.19) with obtain similar expressions. In particular for the
boundary terms, we have

FHx,1ik =
τKiτKj
τKi + τKj

(
SF,i V 3,i,x

)
k
, 1 ≤ k ≤ nd,

where
V 3,i,x =

(
1

τKi

(
Et
il × n

)x
+

1

τKj

(
Et
jl × n

)x
+ V x

F ·
(
Ht
il −Ht

jl

))

1≤l≤d
,

and
FHx,2ik =

τKi
τKi + 1

SF,i
(
V 4,i,x + V x

F · ginci

)
k
, 1 ≤ k ≤ d,

where
V 4,i,x =

(
1

τKi

(
Et
il × n

)x
+ V x

F ·Ht
il

)

1≤l≤d
.



and

V x
F · ginci =

(
V x
F · gincil

)
1≤l≤d .

We can easily see that if Et
il = Ht

il = 0 , Ejl = Einc
jl and Hjl = H inc

jl we have

(
n× ginci

)x
= V 1,i,x and V x

F · ginci = V 2,i,x,

so for a given Ki and for v = Φx
ik, 1 ≤ k ≤ d we have





εi
(
Mi∂tE

x
i

)
+

(
Ki ×H i

)x
+

∑

F∈∂Ki∩FIh

1

τKi + τKj
SF,iV 1,i,x

+
∑

F∈∂Ki∩Γm

1

τKi

(
SF,iV 2,i,x

)

+
∑

F∈∂Ki∩Γa

1

τKi + 1
SF,i

(
V 2,i,x +

(
n× ginci

)x)
= 0,

µi
(
Mi∂tH

x
i

)
−

(
Ki ×Ei

)x −
∑

F∈∂Ki∩FIh

τKiτKj
τKi + τKj

SF,iV 3,i,x

−
∑

F∈∂Ki∩Γa

τKi
τKi + 1

SF,i
(
V 4,i,x + V x

F · ginci

)
= 0.

(3.20)

By doing the same calculations with v = Φy
ik =




0
Φik

0




and v = Φz
ik =




0
0

Φik


 for a fixed Ki we obtain for the first system of equations of (3.20)

εi




Mi 0d×d 0d×d
0d×d Mi 0d×d
0d×d 0d×d Mi





∂tE

x
i

∂tE
y
i

∂tE
z
i


+



(
Ki ×H i

)x
(
Ki ×H i

)y
(
Ki ×H i

)z




+
∑

F∈∂Ki∩FIh

1

τKi + τKj




SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i





V 1,i,x

V 1,i,y

V 1,i,z




+
∑

F∈∂Ki∩Γm

1

τKi




SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i





V 2,i,x

V 2,i,y

V 2,i,z




+
∑

F∈∂Ki∩Γa

1

τKi + 1




SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i





V 2,i,x

V 2,i,y

V 2,i,z




+
1

τKi + 1




SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i





(
n× ginci

)x
(
n× ginci

)y
(
n× ginci

)z


 = 0,

(3.21)



and

µi




Mi 0d×d 0d×d
0d×d Mi 0d×d
0d×d 0d×d Mi





∂tH

x
i

∂tH
y
i

∂tH
z
i


−



(
Ki ×Ei

)x
(
Ki ×Ei

)y
(
Ki ×Ei

)z




−
∑

F∈∂Ki∩FIh

τKiτKj
τKi + τKj




SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i





V 3,i,x

V 3,i,y

V 3,i,z




−
∑

F∈∂Ki∩Γa

1

τKi + 1




SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i





V 4,i,x

V 4,i,y

V 4,i,z




+
τKi

τKi + 1




SF,i 0d×d 0d×d
0d×d SF,i 0d×d
0d×d 0d×d SF,i





V x
F · ginci

V y
F · ginci

V z
F · ginci


 = 0

(3.22)

where

V y
F =



nynx
n2
y − 1

nynz


 ,V z

F =



nznx
nzny
n2
z − 1


 ,

so for every Ki we have




εi
(
Mi∂tEi

)
+
(
Ki ×H i

)
+

∑

F∈∂Ki∩FIh

1

τKi + τKj
SF,iV 1,i +

∑

F∈∂Ki∩Γm

1

τKi

(
SF,iV 2,i

)
+

∑

F∈∂Ki∩Γa

1

τKi + 1
SF,i

(
V 2,i + n× ginc

)
= 0,

µi
(
Mi∂tH i

)
−
(
Ki ×Ei

)
−

∑

F∈∂Ki∩FIh

τKiτKj
τKi + τKj

SF,iV 3,i −

∑

F∈∂Ki∩Γa

1

τKi + 1
SF,i

(
V 4,i + τKiV

inc
F

)
= 0,

(3.23)

where

V inc
F =



V x
F · ginc
V y
F · ginc
V z
F · ginc


 .

3.4.3 Time integration: Low-Storage Runge-Kutta (LSRK) method

In this section, we are using a time scheme which is more efficient than the RK2 scheme studied in
section 3.3.3, even we are not going to prove its stability. We can rewrite problem (3.23) obtained
after space discretization as

MU̇h(t) +KUh(t) = B(t), Uh(0) = Uh,0 (3.24)

where for each t ∈ [0, T ], the vector Uh(t) contains the coefficients defining Eh(t) and Hh(t) in the
nodal basis of Vh, M and K are the usual mass and stiffness matrices associated with (3.23), and
Uh,0 is the interpolation of the initial conditions in the discretization space.



Classically, the key asset of DG schemes is that the mass matrix is block-diagonal, and hence,
easy to invert. Thus, we may safely rewrite (3.24) as

U̇h(t) = −GUh(t) + F (t), Uh(0) = Uh,0, (3.25)

where G := M−1K and F (t) := M−1B(t). At this point, we recognize in (3.25) a system of
ordinary differential equation, that can be discretized with a time marching scheme. For equation
(3.24), the standard s-stage Runge-Kutta scheme writes





K1 = −GUnh + F (tn),

Ki = −G


Unh + ∆t

i−1∑

j=1

ai,jKj


+ F (tn + ci∆t), for i = 2, · · · , s,

Un+1
h = Unh + ∆t

s∑

j=1

bjKj .

Runge-Kutta scheme

We can easily see that this scheme is a sN -storage scheme where N is the number of equations.
In this situation the memory consumption can quickly become a constraining factor for large
problems. A possible solution is given by Williamson [49], who shows that the RK scheme can be
cast in 2N -storage format that we will refer to a LSRK(s,p) scheme. After fixing a time-step ∆t,
we iteratively construct approximations Unh of Uh(tn), tn := n∆t. Specifically, we let U0

h := Uh,0,
and for n ≥ 0, Un+1

h is deduced from Unh through the following algorithm





V 1
h = Unh

V 2
h = akV

2
h + ∆t

(
GV 1

h + F (tn + ck∆T )
)

V 1
h = V 1

h + bkV
2
h

}
for k = 1, · · · , s

Un+1
h = V 1

h ,

Low Storage Runge-Kutta scheme

Since Williamson [49] has demonstrated that the four-stage fourth-order (4,4) RK scheme could not,
in general, be implemented in the 2N -storage format, we will use in this chapter the LSRK(s = 5
, p = 4) proposed by Carpenter and Kennedy [46]. The coefficients ak, bk and ck are described in
Table 3.1.



Table 3.1 | The values of the coefficients of the LSRK(5,4) scheme.

Coeff Value Coeff Value Coeff Value

A1 0 B1
1432997174477

9575080441755
c1 0

A2 − 567301805773

1357537059087
B2

5161836677717

1361206829357
c2

1432997174477

9575080441755

A3 −2404267990393

2016746695238
B3

1720146321549

2090206949498
c3

2526269341429

6820363962896

A4 −3550918686646

2091501179385
B4

3134564353537

4481467310338
c4

2006345519317

3224310063776

A5 −1275806237668

842570457699
B5

2277821191437

14882151754819
c5

2802321613138

2924317926251

Classically, as this time integration scheme is explicit, it is stable under a CFL condition linking
together the mesh size h and the selected time step ∆t. Specifically, given a mesh Th, we fix the
time step by

∆t := αk min
K∈Th

1

cK

VK
AK

, (3.26)

where, cK := 1/
√
εKµK is the wave speed in the element K, and VK and AK are respectively

the volume and the area of K. The constant αk is selected according to the polynomial degree k.
Here, we use the values listed in Table 3.2, that we obtained after testing the scheme on simple
test-cases.

k 1 2 3 4
αk 0.70 0.46 0.30 0.21

Table 3.2 | Values of αk in CFL condition (3.26).

3.5 Numerical results

The time explicit HDG method presented in the previous section has been implemented in the 3D
case considering conforming tetrahedral meshes with DIOGENeS software suite described below
in section 3.5.1.

3.5.1 DIOGENeS (DIscOntinuous GalErkin Nanoscale Solvers)

Diogenes is a software suite dedicated to computational nanophotonics/nanoplasmonics, which is
developed by Inria. This software suite integrates several variants of the Discontinuous Galer-
kin (DG) method, which is particularly well adapted to accurately and efficiently deal with the
multiscale characteristics of nanoscale light/matter interaction problems. DIOGENeS relies on an
object-oriented architecture implemented in Fortran 2008. There are two main components in this
software suite.

On the one hand, a library of structures and module, referred as the core library named
DIOGENeS-common, giving access to all the functionalities needed to devise DG type methods
formulated on unstructured or hybrid structured/unstructured meshes. On the other hand, a set



of dedicated simulators (i.e. solvers), which are designed on top of the core library, for dealing with
applications relevant to nanophotonics/nanoplasmonics. Numerical kernels of the core library and
dedicated solvers are adapted to high-performance computing thanks to a classical SPMD strategy
combining a partitioning of the underlying mesh with a message-passing programming paradigm
implemented with the MPI standard. The purpose of using Diogenes to code the fully explicit
HDG method is that this method is similar to the classical DG method, but with generalized
fluxes. So we updated all the routines treating the numerical fluxes on the interior faces, also on
the perfectly metallic boundary and the absorbing boundary faces.

3.5.2 Propagation of a standing wave in a cubic PEC cavity

In order to validate and study the numerical convergence of the proposed HDG method, we consider
the propagation of an eigenmode in a source-free i.e J = 0 closed cavity (the unit cube Ω := (0, L)3,
L := 1m) with perfectly metallic walls. The frequency of the wave is ω =

√
3πc0/L where c0 is the

speed of light in vacuum. The electric permittivity and the magnetic permeability are set to the
constant vacuum values. The exact time-domain solution is given by (2.61) and the electromagnetic
field is initialized at t = 0 as in (2.62).

Uniform τ = 1

In order to ensure the stability of the method, numerical CFL conditions are determined for each
value of the interpolation order pK . For the present test case, the relative εK and µk are constant
and equal to 1 for all K in Th, so we have verified that, as we said in Remark 3, for τ = 1, the
values of the CFL number correspond to those obained for the classical upwind flux-based DG
method. In Table 3.3 we summarize the maximum value of ∆t to ensure the stability of the HDG
scheme

Interpolation order P1 P2

∆t max (s.) 0.32× 10−9 0.19× 10−9

Interpolation order P3 P4

∆t max (s.) 0.13× 10−9 0.94× 10−10

Table 3.3 | Numerically obtained values of maximum ∆t.

Given these values of ∆t, the L2-norm of the error is calculated for a uniform tetrahedral mesh
with 3072 elements which is constructed from a finite difference grid with nx = ny = nz = 9 points,
each cell of this grid yielding 6 tetrahedra. The wave is propagated in the cavity during a physical
time tmax corresponding to 8 periods. Figure 3.1 shows the time evolution of the exact and the
numerical solution of Ex at a fixed point in the mesh. Figures 3.2 and 3.3 depicts a comparison of
the time evolution of the L2-norm of the error between the solution obtained with an HDG method
and a classical upwind flux-based DG method for different values of the interpolation order. An
optimal convergence with order pK + 1 is obtained as shown in Figure 3.4.
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Figure 3.1 | Time evolution of the exact and the numerical solution of Ex at point A(0.25, 0.25, 0.25) with a P3

interpolation.
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Figure 3.2 | Time evolution of the L2-norm of the error for P1 and P2.
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Figure 3.3 | Time evolution of the L2-norm of the error for P3 and P4.
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Figure 3.4 | Numerical convergence order of the time explicit HDG method for τ = 1.

Influence of τ

We keep the same case than previously and we assess the behavior of the HDG method for various
values of the penalization parameter τ . We have seen in the fully discrete stability analysis that
the CFL number depends on τ . Numerically when we fixed ∆t to the value shown in Table 3.3
(corresponding to τ = 1) and change the value of τ we observed that the time evolution of the
electromagnetic energy increases in time for any interpolation order. In fact, it is necessary to
reevaluate the ∆t max for each value of τ (see Figure 3.5). In Figure 3.6, we show the time
evolution of the L2-error for several values of τ with respect to the maximal ∆t for the considered
parameters. In addition, Table 3.5 summarizes the numerical results in terms of maximum L2-
errors and convergence rates. It appears that the order of convergence is not affected when we
change the value of the stabilization parameter (with their associated CFL conditions).

Tau 0.1 1.0 2.0
∆t max (sec) 0.31×10−10 0.32×10−9 0.17×10−9

Tau 5.0 10.0
∆t max (sec) 0.66×10−10 0.32×10−10

Table 3.4 | Numerically obtained values of the CFL number as a function of the stabilization parameter τ for a P1
interpolation.
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Figure 3.5 | Variation of the ∆t max as a function of τ .
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Figure 3.6 | Time evolution of the L2-error as a function of τ with a P3 interpolation.

τ = 1.0
1/h P1, ∆t = 0.16× 10−09 P2, ∆t = 0.99× 10−10 P3, ∆t = 0.66× 10−10

1/4 8.29e-02 - 9.87e-03 - 9.34e-04 -
1/8 1.90e-02 2.13 1.34e-03 2.88 5.68e-05 4.04
1/16 4.74e-03 2.00 1.72e-04 2.97 3.46e-06 4.04

τ = 0.1
1/h P1, ∆t = 0.16× 10−10 P2, ∆t = 0.96× 10−11 P3, ∆t = 0.66× 10−11

1/4 2.14e-01 - 1.78e-02 - 2.19e-03 -
1/8 5.46e-02 1.97 2.85e-03 2.65 1.68e-04 3.70
1/16 1.18e-02 2.21 4.06e-04 2.81 1.14e-05 3.88

τ = 10.0
1/h P1, ∆t = 0.16× 10−10 P2, ∆t = 0.96× 10−11 P3, ∆t = 0.68× 10−11

1/6 1.74e-01 - 1.53e-02 - 1.68e-03 -
1/12 4.24e-02 2.04 2.23e-03 2.76 1.17e-04 3.84
1/24 9.4e-03 2.16 3.10e-04 2.87 7.81e-06 3.91

Table 3.5 | Maximum L2-errors and convergence orders.



3.5.3 Propagation of a plane wave in a homogeneous domain

We now consider the propagation of a plane wave in a homogeneous domain. Specifically, we
consider Maxwell’s equations (2.37) with Ω := (0, L)3, L := 1m, Γa = ∂Ω. The right-hand side
J = 0, and ginc is defined by (2.15) with

Einc(t,x) := Ep cos

(
ω

(
t−√µrεr

k · x
|k|

))
, H inc(t,x) :=

√
εr
µr

k

|k| ×E(t,x),

where Ep := (1, 0, 0)T is the polarization and k := (0, 0, 1)T is the direction of propagation and
ω = c0/L is the angular frequency. The relative electric permittivity and the relative magnetic
permeability are set to the constant vacuum value 1.0. We impose the initial conditions with E0 :=
Einc|t=0 and H0 := H inc|t=0. Then, since the medium under consideration is homogeneous, no
reflection and/or diffraction occur, and the analytical solution is simply E = Einc and H = H inc.
As for the cubic cavity test, we consider structured meshes Th, that we obtain by first splitting Ω
into n × n × n cubes (n := L/h and h := 1/12), and then splitting each cube into 6 tetrahedra.
The time step is selected using (3.26). Figure 3.7 shows the time evolution of the exact and the
numerical solution of Ex at a fixed point in the domain. An optimal convergence with order pK +1
is obtained as shown in Figure 3.8. Figure 3.9 shows the time evolution of the L2-norm of the error
with different polynomial orders.
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Figure 3.7 | Time evolution of the exact and the numerical solution of Ex at point A(0.25, 0.25, 0.25) with a P3

interpolation.
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Figure 3.8 | Numerical convergence order of the time explicit HDG method for τ = 1.
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Figure 3.9 | Time evolution of the L2-norm of the error for P1, P2 and P3.

3.5.4 Scattering of a plane wave by a dielectric sphere

We now consider a problem involving a dielectric sphere of radius 0.15 meter, with εr = 2 and
µr = 1. The computational domain is bounded by a cube of side 1 meter on which the Silver-Muller
absorbing condition is applied and the simulation time is T = 3 ns. A plane wave traveling in the z
direction is considered, impinging in normal incidence from the bottom. The numerical simulation
is computed for polynomial order P1 on a coarse mesh and P4 on a fine mesh (Figure 3.10) with the
particular stabilization parameter τK =

√
µK/
√
εK . The right-hand sides J and ginc are the same

as in section 3.5.3. The numerical simulation is computed firstly on an unstructured tetrahedral
mesh consisting of 9227 elements with 96 elements in the sphere with P1 elements (Figure 3.10



left) and secondly on another unstructured tetrahedral mesh consisting of 32602 elements with 565
elements in the sphere with P4 elements (Figure 3.10 right). The simulation is computed on 22
cores, it takes 1 minute and 42 seconds for 136 time steps in the case of P1 interpolation with the
first mesh, and takes 3 hours and 23 minutes for 699 time steps in the case of P4 interpolation with
the second mesh. The purpose of this section is to validate the fully explicit HDGTD formulation
in a heterogeneous domain, in other words the aim of this section is to validate the formulation
with a non uniform τ on the mesh. We can see in Figure 3.10 that the incident plane wave, when
meeting the dielectric sphere, is well scattered by it, and the value of the norm of the electric field
is clearly increased in that sphere.

Figure 3.10 | Snapshot of the 3D simulation of the norm of the the electric field at a fixed time on a coarse mesh
with P1 elements (left) and on a fine mesh with P4 elements (right).

3.6 Conclusion

We have formulated a fully explicit HDG method for the 3D time-domain Maxwell equations
and proved the semi and fully-discrete stability of the scheme. The method can be seen as a
generalization of the classical DGTD scheme based on upwind fluxes. It coincides with the latter
scheme for a particular choice of the stabilization parameter τ introduced in the definition of
numerical traces in the HDG framework . We have assessed numerically the influence of this
parameter on the scheme and we presented the numerical solution of Maxwell equations in the
case of propagation of a standing wave in a cubic PEC cavity, propagation of a plane wave in a
homogeneous domain and scattering of a plane wave by a dielectric sphere.



4

A postprocessing for the
fully explicit HDG

discretization of
time-dependent Maxwell

equations

4.1 Introduction

In this chapter, we present a novel postprocessing technique for a hybrid discontinuous Galerkin
discretization of time-dependent Maxwell’s equations that we couple with an explicit Runge-Kutta
time-marching scheme. The postprocessed electromagnetic field converges one order faster than the
unprocessed solution in the H(curl)-norm. The proposed approach is local, in the sense that the
enhanced solution is computed independently in each cell of the computational mesh, and at each
time step of interest. As a result, it is inexpensive to compute, especially if the region of interest is
localized, either in time or space. The key ideas behind this postprocessing stem for hybridizable
Galerkin methods, which are equivalent to the analyzed scheme for specific choices of penalization
parameters. We present several numerical experiments that highlight the super-convergence prop-
erties of the postprocessed electromagnetic fields. The numerical results presented in this chapter
are obtained with the DIOGENeS software suite described in section 3.5.1, that was extended to
include different routines for the purpose of calculating the H(curl)-norm of the solution first, and
then finding the postprocessed solution defined later in this chapter. Our postprocessing technique
is inspired by two recent works, namely, a postprocessing for an explicit HDG discretization of the

81



2D acoustic wave equation [38], and a postprocessing for a HDG discretization of the 3D time-
harmonic Maxwell’s equations [39]. Note that, before describing our novel local postprocessing
done for the Maxwell equations in time domain for the first time, we will represent first the work
done for the local postprocessing of the 3D time-harmonic Maxwell’s equations. We rewrite the
results for a test-case showing that the convergence of the electromagnetic field is one order faster
than the unprocessed solution in the H(curl)-norm, while this order remains the same in the case
of the L2-norm.

4.2 Local postprocessing for a HDG discretization of the 3D time-
harmonic Maxwell’s equations

A new local postprocessing method is proposed in [39] to obtain new approximations of the electric
and magnetic fields, with an additional order in the Hcurl(Th). In other words, we expect that the
post processed solution E?

h and H?
h converge with order k + 1 in the Hcurl(Th)-norm, whereas Eh

and Hh described in section 2.4 converge with order k in the Hcurl(Th)-norm.

Definition 2. The L2(Th) and Hcurl(Th) norms of a vector field are defined by

||.||L2(Th) =
∑

K∈Th
||.||L2(K),

||.||Hcurl(Th) =
∑

K∈Th
||.||L2(K) + ||∇ × .||L2(K).

Formulation

The new approximate electric field E∗h introduced in [39] as the element of [Pk+1(K)]3 such that
for all K ∈ Th,

{
(∇×E?

h,∇×W )K = −(iωµrHh,∇×W )K , ∀W ∈ [Pk+1(K)]3,

(E?
h,∇Y )K = (Eh,∇Y )K ∀Y ∈ Pk+2(K).

Local postprocessing of Eh

Similarly, the new approximate magnetic field H∗h introduced in [39] is found as the element of
[Pk+1(K)]3 such that for all K ∈ Th,

{
(∇×H?

h,∇×W )K = (iωεrEh + J ,∇×W )K , ∀W ∈ [Pk+1(K)]3,

(H?
h,∇Y )K = (Hh,∇Y )K ∀Y ∈ Pk+2(K).

Local postprocessing of Hh

It is obvious that ∇×E?
h and ∇×H?

h are nothing but the projection of iωµrHh and iωεrEh +J
onto the space of divergence-free functions in [Pk+1(K)]3. To show the efficiency of the method,



numerical results are presented in [39] that we resume them here. The time-harmonic Maxwell’s
equations (2.14) are considered on a unit cube Ω = (0, 1)3 with µ = 1, ε = 2 and ω = 1. For J = 0
the problem has the exact solution

Ex(x, y, z) = sin(ωy)sin(ωz), Hx(x, y, z) = isin(ωx) (cos(ωy)− cos(ωz)) ,
Ey(x, y, z) = sin(ωx)sin(ωz), Hy(x, y, z) = isin(ωy) (cos(ωz)− cos(ωx)) ,

Ez(x, y, z) = sin(ωy)sin(ωx), Hz(x, y, z) = isin(ωz) (cos(ωx)− cos(ωy)) .

(4.1)

The boundary data ginc in 2.15 is determined from the exact solution. The tetrahedral meshes
are constructed upon regular n × n × n cartesian grids (h = 1/n) by splitting each cube into six
tetrahedral.
The L2-errors and orders of convergence of the numerical approximations and the postprocessed
quantities for the electric field are presented in Table 4.1. We observe that the approximate electric
field converge with order k+ 1 in the L2-norm, but only with order k in the Hcurl-norm, while we
observe that the postprocessed electric field converge with order k+ 1 in the Hcurl-norm which are
one order higher than the original approximations.

τ = 1.0
||E − Eh||L2 ||E − E∗h||L2 ||E − Eh||Hcurl ||E − E∗h||Hcurl

Pk 1/h Error order Error order Error order Error order
1/4 7.77e-03 - 8.42e-03 - 4.46e-02 - 9.05e-03 -

P1 1/6 1.94e-03 2.00 2.10e-03 2.00 2.14e-02 1.06 2.27e-03 1.99
1/8 4.81e-04 2.01 5.23e-04 2.01 1.05e-02 1.02 5.68e-04 2.00
1/4 1.33e-04 - 1.34e-04 - 3.37e-03 - 2.07e-04 -

P2 1/6 1.90e-05 2.81 1.91e-05 2.81 3.37e-03 1.99 2.76e-05 2.91
1/8 2.87e-06 2.73 2.88e-06 2.73 8.47e-04 2.00 3.81e-06 2.86
1/4 5.59e-06 - 5.43e-06 - 1.73e-04 - 6.71e-06 -

P3 1/6 3.53e-07 3.99 3.44e-07 3.98 2.15e-05 3.01 4.26e-07 3.98
1/8 2.22e-08 3.99 2.17e-08 3.99 2.67e-06 3.00 2.69e-08 3.99

Table 4.1 | Maximum L2 &Hcurl-errors and convergence orders.

4.3 A novel postprocessing for a HDG discretization of the 3D
time-domain Maxwell’s equations with an explicit time scheme

The purpose of this section is to introduce postprocessed solutions En?
h and Hn?

h that are more
accurate representations of E(tn) and H(tn) than En

h and Hn
h described in chapter 3. This

postprocessing is purely local in time, in the sense that the computation of En?
h and Hn?

h only
involves En

h andHn
h . It is also local in space as the computation are local to each element K ∈ Th.

Actually, En?
h |K (resp. Hn?

h |K) only depends on En
h |K̃ (resp. Hn

h |K̃), where K̃ is the union of all
elements K ′ ∈ Th sharing (at least) one face with K.

Our approach closely follows previous works. Specifically, similar postprocessing strategies have
been derived for the time-harmonic Maxwell’s equations [39], as well as time-dependent acoustic
wave equation [38]. These works develop in the context of hybridizable discontinuous Galerkin
(HDG) methods, but can be easily applied to the DG scheme under consideration, as we depict
hereafter.



4.3.1 Definition of the postprocessed solution

Our postprocessing hinges on element-wise finite-element saddle-point problems. For each element
K ∈ Th, there exists a unique pair (En?

h , p) ∈ [Pk+1(K)]3 × Pk+2(K)/R such that





(∇×En?
h ,∇×w)K + (∇p,w)K = (∇×En

h ,∇×w)K
+ 〈En,t

h − Ê
n,t
h ,n×∇×w〉∂K ,

(En?
h ,∇v)K = (En

h ,∇v)K ,

(4.2)

Postprocessed electric field

for all w ∈ [Pk+1(K)]3 and v ∈ Pk+2(K)/R. Similarly, for the magnetic field, there exists a unique
pair (Hn?

h , q) ∈ [Pk+1(K)]3 × Pk+2(K)/R such that





(∇×Hn?
h ,∇×w)K + (∇q,w)K = (∇×Hn

h ,∇×w)K
+ 〈Hn,t

h − Ĥ
n,t
h ,n×∇×w〉∂K ,

(Hn?
h ,∇v)K = (Hn

h ,∇v)K ,

(4.3)

Postprocessed magnetic field

for all w ∈ [Pk+1(K)]3 and q ∈ Pk+2(K)/R. Ên,t
h and Ĥn,t

h are the numerical fluxes considered in
(3.2) and (3.3). En?

h and Hn?
h are then our postprocessed approximations to E(tn) and H(tn).

The left-hand sides of the above definition lead to solve symmetric linear systems of small
size. In addition, observing that the left-hand side is actually the same for the two postprocessing
schemes, we deduce that only one matrix factorization is required per element.

The right-hand sides further show that for each K ∈ Th, the postprocessed field En?
h |K only

depends on En
h |K and the value at the flux Ên,t

h |F on each face F ∈ FK . In turn, since the flux is
defined using the two elements sharing the face F , we see that En

h |K depends on the values taken
by En

h on all the elements K ′ sharing at least one face with K. A similar comment holds true for
Hn?
h .

4.3.2 Existence and uniqueness of the solution

Theorem 5. There exists a unique solution (En?
h , p) and (Hn?

h , q) for the problems (4.2) and (4.3).

Proof. We will prove the existence and uniqueness for the solution of the problem (4.2), and the
proof will be the same for (4.3). The spaces [Pk+1(K)]3 and Pk+2(K)/R are of finite dimension,
so the problem (4.2) can be written as the linear system below

K
[
Ex,n?h , Ey,n?h , Ez,n?h , p

]T
︸ ︷︷ ︸

X

= L (4.4)

while dim(K) = (3dim(Pk+1) + dim(Pk+2)− 1) × (3dim(Pk+1) + dim(Pk+2)− 1). X and L are
two vectors of dimension 3dim(Pk+1) + dim(Pk+2)− 1. Proving the existence and the uniqueness



of the solution for (4.4) will be nothing than proving the injectivity of the matrix K.
The proof is divided into two parts, the first part is to prove that p is always null and the second
one is to deduce that En?

h is equal to zero when KX = 0.
Back to (4.2) we have that p belongs to the space Pk+2(K)/R, so ∇p belongs to the space
[Pk+1(K)]3. The first equation of (4.2) holds for every w ∈ [Pk+1(K)]3. Thus, we can consider a
particular w =∇p and replace it in the equation to obtain

(∇×En?
h ,∇×∇p)K + (∇p,∇p)K = (∇×En

h ,∇×∇p)K ,+〈En,t
h − Ê

n,t
h ,n×∇×∇p〉∂K .

The curl of a gradient is always zero, so we can deduce that ‖∇p‖2K is zero and thus ∇p is null.
Finally, p belongs to Pk+2(K)/R and its gradient is null, we can deduce that p = 0.
For the second part of the proof, we have that En?

h belongs to the space [Pk+1(K)]3, thus we will
set w = En?

h to obtain ‖∇×En?
h ‖2K = 0, then ∇×En?

h = 0, so there exists φ in Pk+2(K)/R such
that En?

h =∇φ. Now we will set v = φ to obtain

(En?
h ,∇φ)K = (En?

h ,En?
h )K = ‖En?

h ‖2K = 0.

Finally, we have En?
h = 0, so the matrix K is injective and we have a unique solution for the

problem (4.2).

4.3.3 Compact formulation

In this section, we will introduce new variables and write the compact formulations of (4.2) and
(4.3) in terms of these variables. Let lnh and onh in V (K) such that,

(lnh,v)K = (En
h ,∇× v)K − 〈Êt,n

h ,n× v〉∂K ∀v ∈ V (K),

and
(onh,v)K = (Hn

h ,∇× v)K − 〈Ĥt,n
h ,n× v〉∂K ∀v ∈ V (K).

In other terms, we can consider lnh and onh in V (K) such that,

(lnh,∇×w)K = (En
h ,∇×∇×w)K − 〈Êt,n

h ,n×∇×w〉∂K ∀w ∈ [Pk+1(K)]3 ,

and

(onh,∇×w)K = (Hn
h ,∇×∇×w)K − 〈Ĥt,n

h ,n×∇×w〉∂K ∀w ∈ [Pk+1(K)]3 .

After integrating by parts (En
h ,∇ ×∇ ×w)K and (Hn

h ,∇ ×∇ ×w)K we obtain that for all w
in [Pk+1(K)]3

(lnh,∇×w)K = (∇×En
h ,∇×w)K ,+〈En,t

h − Ê
n,t
h ,n×∇×w〉∂K ,

and
(onh,∇×w)K = (∇×Hn

h ,∇×w)K ,+〈Hn,t
h − Ĥ

n,t
h ,n×∇×w〉∂K .

And finally {
(∇×En?

h ,∇×w)K = (lnh,∇×w)K , ∀w ∈ [Pk+1(K)]3 ,

(En?
h ,∇v)K = (En

h ,∇v)K ∀v ∈ Pk+2(K)/R,
(4.5)

and {
(∇×Hn?

h ,∇×w)K = (onh,∇×w)K , ∀w ∈ [Pk+1(K)]3 ,

(Hn?
h ,∇v)K = (Hn

h ,∇v)K ∀v ∈ Pk+2(K)/R.
(4.6)



4.3.4 Implementation

Firstly, we compute lnh and onh by locally solving the following system

{
(lnh,v)K = (En

h ,∇× v)K − 〈Êt,n
h ,n× v〉∂K ∀v ∈ V (K),

(onh,v)K = (Hn
h ,∇× v)K − 〈Ĥt,n

h ,n× v〉∂K ∀v ∈ V (K),

and then find (En?
h ,Hn?

h ) ∈ [Pk+1(K)]3 × [Pk+1(K)]3 such that

{
(∇×En?

h ,∇×w)K = (lnh,∇×w)K ∀w ∈ [Pk+1(K)]3 ,

(En?
h ,∇v)K = (En

h ,∇v)K ∀v ∈ Pk+2(K)/R,

and {
(∇×Hn?

h ,∇×w)K = (onh,∇×w)K ∀w ∈ [Pk+1(K)]3 ,

(Hn?
h ,∇v)K = (Hn

h ,∇v)K ∀v ∈ Pk+2(K)/R.

We now detail the discretization of E?.
Let (θl)1≤l≤dk , (Φj)1≤j≤dk+1

and (ψa)1≤a≤dk+2
be the polynomial basis of Pk, Pk+1 and Pk+2 re-

spectively.

Let us consider m ∈ [1, dk+1]. Then for w = Φ1
m =




Φm

0
0


,we have ∇×w =




0
∂zΦm

−∂yΦm


.

∇×En?
h =




dk+1∑

j=1

(
Ez,n?hj

)
∂yΦj −

dk+1∑

j=1

(
Ey,n?hj

)
∂zΦj

dk+1∑

j=1

(
Ex,n?hj

)
∂zΦj −

dk+1∑

j=1

(
Ez,n?hj

)
∂xΦj

dk+1∑

j=1

(
Ey,n?hj

)
∂xΦj −

dk+1∑

j=1

(
Ex,n?hj

)
∂yΦj




We deduce now that for all m ∈ [1, dk+1]

(∇×En?
h ,∇× Φ1

m)K

=

ˆ
K



dk+1∑

j=1

Ex,n?hj ∂zΦj −
dk+1∑

j=1

Ez,n?hj ∂xΦj


 ∂zΦm −



dk+1∑

j=1

Ey,n?hj ∂xΦj −
dk+1∑

j=1

Ex,n?hj ∂yΦj


 ∂yΦm

=

dk+1∑

j=1

Ex,n?hj

ˆ
K
∂zΦm∂zΦj −

dk+1∑

j=1

Ez,n?hj

ˆ
K
∂zΦm∂xΦj −

dk+1∑

j=1

Ey,n?hj

ˆ
K
∂yΦm∂xΦj

+

dk+1∑

j=1

Ex,n?hj

ˆ
K
∂yΦm∂yΦj



By considering all the values m ∈ [1, dk+1] we can form the following system




(∇×En?
h ,∇× Φ1

1)K
...

(∇×En?
h ,∇× Φ1

dk+1
)K


 =




ˆ
K
∂zΦ1∂zΦ1 · · ·

ˆ
K
∂zΦ1∂zΦdk+1

. . .ˆ
K
∂zΦdk+1

∂zΦ1 · · ·
ˆ
K
∂zΦdk+1

∂zΦdk+1







Ex,n?h1
...

Ex,n?hdk+1




−




ˆ
K
∂zΦ1∂xΦ1 · · ·

ˆ
K
∂zΦ1∂xΦdk+1

. . .ˆ
K
∂zΦdk+1

∂xΦ1 · · ·
ˆ
K
∂zΦdk+1

∂xΦdk+1







Ez,n?h1
...

Ez,n?hdk+1




−




ˆ
K
∂yΦ1∂xΦ1 · · ·

ˆ
K
∂yΦ1∂xΦdk+1

. . .ˆ
K
∂yΦdk+1

∂xΦ1 · · ·
ˆ
K
∂yΦdk+1

∂xΦdk+1







Ey,n?h1
...

Ey,n?hdk+1




+




ˆ
K
∂yΦ1∂yΦ1 · · ·

ˆ
K
∂yΦ1∂yΦdk+1

. . .ˆ
K
∂yΦdk+1

∂yΦ1 · · ·
ˆ
K
∂yΦdk+1

∂yΦdk+1







Ex,n?h1
...

Ex,n?hdk+1



.

For the RHS we have

(lnh,∇× Φ1
m)K =

ˆ
K



dk∑

j=1

ly,nh,j θj


 ∂zΦm −



dk∑

j=1

lz,nh,j θj


 ∂yΦm

=

dk∑

j=1

ly,nh,j

ˆ
K
∂zΦmθj −

dk∑

j=1

lz,nh,j

ˆ
K
∂yΦmθj




(lnh,∇× Φ1
1)K

...
(lnh,∇× Φ1

dk+1
)K


 =




ˆ
K
∂zΦ1θ1 · · ·

ˆ
K
∂zΦ1θdk

. . .ˆ
K
∂zΦdk+1

θ1 · · ·
ˆ
K
∂zΦdk+1

θdk







ly,nh,1
...

ly,nh,dk




−




ˆ
K
∂yΦ1θ1 · · ·

ˆ
K
∂yΦ1θdk

. . .ˆ
K
∂yΦdk+1

θ1 · · ·
ˆ
K
∂yΦdk+1

θdk







lz,nh,1
...

lz,nh,dk



.



By following the same ideas above, and by setting firstly w = Φ2
m =




0
Φm

0


 and secondly w =

Φ3
m =




0
0

Φm


 , we obtain




(∇×En?
h ,∇× Φ2

1)K
...

(∇×En?
h ,∇× Φ2

dk+1
)K


 =




ˆ
K
∂xΦ1∂xΦ1 · · ·

ˆ
K
∂xΦ1∂xΦdk+1

. . .ˆ
K
∂xΦdk+1

∂xΦ1 · · ·
ˆ
K
∂xΦdk+1

∂xΦdk+1







Ey,n?h1
...

Ey,n?hdk+1




−




ˆ
K
∂xΦ1∂yΦ1 · · ·

ˆ
K
∂xΦ1∂yΦdk+1

. . .ˆ
K
∂xΦdk+1

∂yΦ1 · · ·
ˆ
K
∂xΦdk+1

∂yΦdk+1







Ex,n?h1
...

Ex,n?hdk+1




−




ˆ
K
∂zΦ1∂yΦ1 · · ·

ˆ
K
∂zΦ1∂yΦdk+1

. . .ˆ
K
∂zΦdk+1

∂yΦ1 · · ·
ˆ
K
∂zΦdk+1

∂yΦdk+1







Ez,n?h1
...

Ez,n?hdk+1




+




ˆ
K
∂zΦ1∂zΦ1 · · ·

ˆ
K
∂zΦ1∂zΦdk+1

. . .ˆ
K
∂zΦdk+1

∂zΦ1 · · ·
ˆ
K
∂zΦdk+1

∂zΦdk+1







Ey,n?h1
...

Ey,n?hdk+1



,

and also




(∇×En?
h ,∇× Φ3

1)K
...

(∇×En?
h ,∇× Φ3

dk+1
)K


 =




ˆ
K
∂yΦ1∂yΦ1 · · ·

ˆ
K
∂yΦ1∂yΦdk+1

. . .ˆ
K
∂yΦdk+1

∂yΦ1 · · ·
ˆ
K
∂yΦdk+1

∂yΦdk+1







Ez,n?h1
...

Ez,n?hdk+1




−




ˆ
K
∂yΦ1∂zΦ1 · · ·

ˆ
K
∂yΦ1∂zΦdk+1

. . .ˆ
K
∂yΦdk+1

∂zΦ1 · · ·
ˆ
K
∂yΦdk+1

∂zΦdk+1







Ey,n?h1
...

Ey,n?hdk+1






−




ˆ
K
∂xΦ1∂zΦ1 · · ·

ˆ
K
∂xΦ1∂zΦdk+1

. . .ˆ
K
∂xΦdk+1

∂zΦ1 · · ·
ˆ
K
∂xΦdk+1

∂zΦdk+1







Ex,n?h1
...

Ex,n?hdk+1




+




ˆ
K
∂xΦ1∂xΦ1 · · ·

ˆ
K
∂xΦ1∂xΦdk+1

. . .ˆ
K
∂xΦdk+1

∂xΦ1 · · ·
ˆ
K
∂xΦdk+1

∂xΦdk+1







Ez,n?h1
...

Ez,n?hdk+1




For the right hand sides, we can write




(lnh,∇× Φ2
1)K

...
(lnh,∇× Φ2

dk+1
)K


 =




ˆ
K
∂xΦ1θ1 · · ·

ˆ
K
∂xΦ1θdk

. . .ˆ
K
∂xΦdk+1

θ1 · · ·
ˆ
K
∂xΦdk+1

θdk







lz,nh,1
...

lz,nh,dk




−




ˆ
K
∂zΦ1θ1 · · ·

ˆ
K
∂zΦ1θdk

. . .ˆ
K
∂zΦdk+1

θ1 · · ·
ˆ
K
∂zΦdk+1

θdk







lx,nh,1
...

lx,nh,dk



,

and



(lnh,∇× Φ3
1)K

...
(lnh,∇× Φ3

dk+1
)K


 =




ˆ
K
∂yΦ1θ1 · · ·

ˆ
K
∂yΦ1θdk

. . .ˆ
K
∂yΦdk+1

θ1 · · ·
ˆ
K
∂yΦdk+1

θdk







lx,nh,1
...

lx,nh,dk




−




ˆ
K
∂xΦ1θ1 · · ·

ˆ
K
∂xΦ1θdk

. . .ˆ
K
∂xΦdk+1

θ1 · · ·
ˆ
K
∂xΦdk+1

θdk







ly,nh,1
...

ly,nh,dk




For all a ∈ [1, dk+2], and for v = ψa, we have ∇v =



∂xψa
∂yψa
∂zψa


.

We deduce now that for all a ∈ [1, dk+2]

(En?
h ,∇ψa)K

=

ˆ
K



dk+1∑

j=1

Ex,n?hj Φj


 ∂xψa +



dk+1∑

j=1

Ey,n?hj Φj


 ∂yψa +



dk+1∑

j=1

Ez,n?hj Φj


 ∂zψa

=

dk+1∑

j=1

Ex,n?hj

ˆ
K
∂xψaΦj +

dk+1∑

j=1

Ey,n?hj

ˆ
K
∂yψaΦj +

dk+1∑

j=1

Ez,n?hj

ˆ
K
∂zψaΦj



By considering all the values a ∈ [1, dk+2] we can form the following system




(En?
h ,∇ψ1)K

...
(En?

h ,∇ψdk+2
)K


 =




ˆ
K
∂xψ1Φ1 · · ·

ˆ
K
∂xψ1Φdk+1

. . .ˆ
K
∂xψdk+2

Φ1 · · ·
ˆ
K
∂xψdk+2

Φdk+1







Ex,n?h1
...

Ex,n?hdk+1




+




ˆ
K
∂yψ1Φ1 · · ·

ˆ
K
∂yψ1Φdk+1

. . .ˆ
K
∂yψdk+2

Φ1 · · ·
ˆ
K
∂yψdk+2

Φdk+1







Ey,n?h1
...

Ey,n?hdk+1




+




ˆ
K
∂zψ1Φ1 · · ·

ˆ
K
∂zψ1Φdk+1

. . .ˆ
K
∂zψdk+2

Φ1 · · ·
ˆ
K
∂zψdk+2

Φdk+1







Ez,n?h1
...

Ez,n?hdk+1



.

For the RHS we have

(En
h ,∇ψa)K

=

ˆ
K



dk∑

j=1

Ex,nhj θj


 ∂xψa +



dk∑

j=1

Ey,nhj θj


 ∂yψa +



dk∑

j=1

Ez,nhj θj


 ∂zψa

=

dk∑

j=1

Ex,nhj

ˆ
K
∂xψaθj +

dk∑

j=1

Ey,nhj

ˆ
K
∂yψaθj +

dk∑

j=1

Ez,nhj

ˆ
K
∂zψaθj

While varying a ∈ [1, dk+2] we obtain the following system




(En
h ,∇ψ1)K

...
(En

h ,∇ψdk+2
)K


 =




ˆ
K
∂xψ1θ1 · · ·

ˆ
K
∂xψ1θdk

. . .ˆ
K
∂xψdk+2

θ1 · · ·
ˆ
K
∂xψdk+2

θdk







Ex,nh1
...

Ex,nhdk




+




ˆ
K
∂yψ1θ1 · · ·

ˆ
K
∂yψ1θdk

. . .ˆ
K
∂yψdk+2

θ1 · · ·
ˆ
K
∂yψdk+2

θdk







Ey,nh1
...

Ey,nhdk




+




ˆ
K
∂zψ1θ1 · · ·

ˆ
K
∂zψ1θdk

. . .ˆ
K
∂zψdk+2

θ1 · · ·
ˆ
K
∂zψdk+2

θdk







Ez,nh1
...

Ez,nhdk






Now we are ready to write the system leading us to find numerically E?





(
CΦ,Φ
zz + CΦ,Φ

yy

)
Ex,n? − CΦ,Φ

yx Ey,n? − CΦ,Φ
zx Ez,n? = KΦ,θ

z ly,n −KΦ,θ
y lz,n

−CΦ,Φ
xy Ex,n? +

(
CΦ,Φ
xx + CΦ,Φ

zz

)
Ey,n? − CΦ,Φ

zy Ez,n? = KΦ,θ
x lz,n −KΦ,θ

z lx,n

−CΦ,Φ
xz Ex,n? − CΦ,Φ

yz Ey,n? +
(
CΦ,Φ
xx + CΦ,Φ

yy

)
Ez,n? = KΦ,θ

y lx,n −KΦ,θ
x ly,n

Kψ,Φ
x Ex,n? +Kψ,Φ

y Ey,n? +Kψ,Φ
z Ez,n? = Kψ,θ

x Ex,n +Kψ,θ
y Ey,n +Kψ,θ

z Ez,n

With,

CΦ,Φ
ν1ν2

=

(ˆ
K
∂ν1Φj∂ν2Φk

)

jk

; ν1 & ν2 ∈ {x, y, z},

KΦ,θ
ν =

(ˆ
K
∂νΦjθk

)

jk

; ν ∈ {x, y, z},

Kψ,Φ
ν =

(ˆ
K
∂νψjΦk

)

jk

; ν ∈ {x, y, z},

Kψ,θ
ν =

(ˆ
K
∂νψjθk

)

jk

; ν ∈ {x, y, z}.

In matrix form



(
CΦ,Φ
zz + CΦ,Φ

yy

)
−CΦ,Φ

yx −CΦ,Φ
zx

−CΦ,Φ
xy

(
CΦ,Φ
xx + CΦ,Φ

zz

)
−CΦ,Φ

zy

−CΦ,Φ
xz −CΦ,Φ

yz

(
CΦ,Φ
xx + CΦ,Φ

yy

)

Kψ,Φ
x Kψ,Φ

y Kψ,Φ
z




︸ ︷︷ ︸
A




Ex,n?

Ey,n?

Ez,n?




=




0 KΦ,θ
z −KΦ,θ

y 0 0 0

−KΦ,θ
z 0 KΦ,θ

x 0 0 0

KΦ,θ
y −KΦ,θ

x 0 0 0 0

0 0 0 Kψ,θ
x Kψ,θ

y Kψ,θ
z







lx,n

ly,n

lz,n

Ex,n

Ey,n

Ez,n




︸ ︷︷ ︸
B

We have that
dim(A) = (3 dim(Pk+1) + dim(Pk+2))× 3 dim(Pk+1).

The matrix A is rectangular, and we know already the existence and the uniqueness of the solution
E?
h from Theorem 5. Note that the Moore-Penrose inverse or also called the pseudoinverse matrix

exists for any matrix A, but, when the latter has full rank (that is, the rank of A is min(m,n)),
then A+ can be expressed as a simple algebraic formula. We verified numerically that rank(A) =
3 dim(Pk+1) (number of columns) so the Moore-Penrose inverse (pseudoinverse) A+ of A is equal
to

A+ = (ATA)−1AT .



So finally we can deduce that


Ex,n?

Ey,n?

Ez,n?


 = A+B.

4.4 Numerical experiments

In this section, we are going to study the same numerical cases considered in chapter 3 section
3.5 and show that the postprocessed electromagnetic field converges one order faster than the
unprocessed solution in the H(curl)-norm.

4.4.1 Propagation of a standing wave in a cubic PEC cavity

We consider structured meshes Th, that we obtain by first splitting Ω into n×n×n cubes (n = L/h),
and then splitting each cube into 6 tetrahedra. The time step ∆t is selected following CFL condition
(3.26).

Figures 4.1 and 4.2 show the behavior of the error for the original and postprocessed discrete
solutions with respect to time on fixed mesh built from a 8 × 8 × 8 Cartesian partition. Both
the original and the postprocessed error exhibits an oscillatory behavior, which is typical of this
particular test case. The postprocessed solution is about 10 times more accurate than the original
one.

Table 4.2 presents in more detail our results on a series of meshes and for different polynomial
degrees. We see that in each case, the curl of the postprocessed solution converges with the expected
order, namely k + 1.
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Figure 4.1 | Time evolution of the electric field error for the cavity example.
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Figure 4.2 | Time evolution of the magnetic field error for the cavity example.

h
∥∥∇× (E(tN )−EN

h

)∥∥
Ω

∥∥∥∇×
(
E(tN )−EN,?

h

)∥∥∥
Ω

1/4 9.30e-01 6.83e-01
P1 1/6 5.84e-01 (eoc 1.14) 3.10e-01 (eoc 1.95)

1/8 4.34e-01 (eoc 1.03) 1.67e-01 (eoc 2.15)
1/4 1.67e-01 4.28e-02

P2 1/6 7.46e-02 (eoc 1.98) 1.19e-02 (eoc 3.16)
1/8 4.29e-02 (eoc 1.92) 4.90e-03 (eoc 3.06)
1/4 2.30e-02 5.00e-03

P3 1/6 7.10e-03 (eoc 2.90) 1.10e-03 (eoc 3.79)
1/8 3.00e-03 (eoc 2.99) 3.58e-04 (eoc 3.84)

h
∥∥∇× (H(tN )−HN

h

)∥∥
Ω

∥∥∥∇×
(
H(tN )−HN,?

h

)∥∥∥
Ω

1/4 8.86e-01 7.17e-01
P1 1/6 5.53e-01 (eoc 1.16) 3.03e-01 (eoc 2.12)

1/8 4.03e-01 (eoc 1.10) 1.60e-01 (eoc 2.22)
1/4 1.55e-01 3.62e-02

P2 1/6 6.97e-02 (eoc 1.96) 9.80e-03 (eoc 3.23)
1/8 3.94e-02 (eoc 1.98) 4.00e-03 (eoc 3.12)
1/4 2.14e-02 4.50e-03

P3 1/6 6.50e-03 (eoc 2.95) 9.64e-04 (eoc 3.77)
1/8 2.70e-03 (eoc 3.00) 3.30e-04 (eoc 3.73)

Table 4.2 | Convergence histories for the cavity examples.



4.4.2 Propagation of a plane wave in a homogeneous domain

As for the cubic cavity test, we consider structured meshes Th, that we obtain by first splitting
Ω into n × n × n cubes (n = L/h), and then splitting each cube into 6 tetrahedra. We select
the simulation time T = 10 ns, and as explained above, the time step is selected using (3.26).
Figures 4.3 and 4.4 show the behavior of the error for the original and postprocessed discrete
solutions with respect to time on a fixed mesh based on a 12 × 12 × 12 Cartesian partition. The
postprocessed solution is about 5 times more accurate than the oringial. Table 4.3 presents in more
detail our results on a series of meshes and for different polynomial degrees. We see that in each
cases the curl of the postprocessed solution converges with the expected order, namely k + 1.
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Figure 4.3 | Time evolution of the electric field error for the plane wave in free space example.
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Figure 4.4 | Time evolution of the magnetic field error for the plane wave in free space example.



h
∥∥∇× (E(tN )−EN

h

)∥∥
Ω

∥∥∥∇×
(
E(tN )−EN,?

h

)∥∥∥
Ω

1/8 5.37e-00 6.02e-00
P1 1/10 4.38e-00 (eoc 0.92) 3.99e-00 (eoc 1.84)

1/12 3.75e-00 (eoc 0.86) 2.73e-00 (eoc 2.08)
1/8 1.98e-00 7.92e-01

P2 1/10 1.36e-00 (eoc 1.70) 3.72e-01 (eoc 3.38)
1/12 9.77e-01 (eoc 1.81) 2.08e-01 (eoc 3.18)
1/8 4.63e-01 1.01e-01

P3 1/10 2.44e-01 (eoc 2.88) 4.25e-02 (eoc 3.87)
1/12 1.43e-01 (eoc 2.93) 2.22e-02 (eoc 3.56)

h
∥∥∇× (H(tN )−HN

h

)∥∥
Ω

∥∥∥∇×
(
H(tN )−HN,?

h

)∥∥∥
Ω

1/8 5.89e-00 6.01e-00
P1 1/10 4.68e-00 (eoc 1.03) 3.97e-00 (eoc 1.85)

1/12 4.00e-00 (eoc 0.86) 2.75e-00 (eoc 2.03)
1/8 2.16e-00 7.60e-01

P2 1/10 1.45e-00 (eoc 1.79) 3.71e-01 (eoc 3.21)
1/12 1.03e-00 (eoc 1.89) 2.11e-01 (eoc 3.10)
1/8 4.87e-01 1.01e-01

P3 1/10 2.54e-01 (eoc 2.93) 4.32e-02 (eoc 3.79)
1/12 1.48e-01 (eoc 2.96) 2.29e-02 (eoc 3.48)

Table 4.3 | Convergence histories for the plane wave in free space examples.

4.4.3 Scattering of a plane wave by a dielectric sphere

We now consider the same problem of scattering of a plane wave by a dielectric sphere described
in 3.5.4. The simulation time is T = 3 ns. We select P2 elements while ∆t is chosen via (3.26),
and denote by (Eh,Hh) and (E?

h,H
?
h) the original and postprocessed solutions. As the analytical

solution to the problem is unavailable, we compute a reference solution (Er,Hr) with P4 elements
on the fine mesh presented in 3.5.4 and the time step is ∆tr := ∆t/3. ∆tr is chosen as an integral
division of ∆t to facilitate comparisons. We chose to divide ∆t by 3 since, following Table 3.2,
it is the smallest integer for which CFL condition (3.26) holds true. To assess the impact of the
postprocessing, we consider a set of evaluation points A, and we compute relative errors

err(V )2 =

∑N
n=1 ||∇× (Vr(tn,A)− V n

h (A))||2
∑N

n=1 ||∇× (Vr)(tn,A)||2

and

err?(V )2 =

∑N
n=1 ||∇× (Vr(tn,A)− V n,?

h (A))||2
∑N

n=1 ||∇× (Vr)(tn,A)||2

with V := E or H and N := T/∆t. Table 4.4 shows that err? is less than err for the 9 evaluation
points that we have selected.



Point Field err err?

E 0.083 0.033
A1(0, 0, 0.45) H 0.103 0.048

E 0.008 0.005
A2(0.2,−0.3, 0.8) H 0.008 0.006

E 0.019 0.005
A3(0.2,−0.3, 0.2) H 0.020 0.006

E 0.015 0.004
A4(0.2, 0.3, 0.2) H 0.017 0.005

E 0.019 0.007
A5(0.2, 0.3, 0.8) H 0.027 0.007

E 0.015 0.008
A6(−0.2,−0.3, 0.8) H 0.014 0.008

E 0.027 0.008
A7(−0.2,−0.3, 0.2) H 0.028 0.008

E 0.021 0.007
A8(−0.2, 0.3, 0.2) H 0.024 0.007

E 0.010 0.005
A9(−0.2, 0.3, 0.8) H 0.011 0.005

Table 4.4 | Scattering of a plane wave by a dielectric sphere: L2 error between the reference solution and the
solution with a P2 interpolation with and without applying the postprocessing.

4.5 Conclusion

In this chapter we have presented a postprocessing approach for the fully explicit hybridizable
discretization of the time-dependent Maxwell’s equations in 3D. This postprocessing technique is
inexpensive, and can be computed independently in each mesh element of the mesh, and at every
time step of interest. It is thus well adapted to parallel computer architectures. Moreover, it is
particularly suited to applications requiring a higher accuracy in localized regions, either in time
or space. We have presented numerical examples, both with analytical solution and in complicated
geometries, that indicate that our postprocessing approach improves the convergence rate of the
discrete solution in the H(curl)-norm by one order. Overall, this contribution is to be employed
as an efficient way of reducing the H(curl)-norm error of discontinuous Galerkin discretizations.



5

Hybrid implicit/explicit
(IMEX) HDG methods for

Maxwell equations

5.1 Introduction

5.1.1 Motivations and objectives of the study

This chapter deals with the time-domain formulation of Maxwell equations. We consider hybrid-
ized discontinuous Galerkin time-domain (HDGTD) methods and propose efficient time integration
methods when using non-uniform (locally refined) meshes. Two attractive features of hybrid dis-
continuous Galerkin (HDG) spatial discretizations are, on one hand, their ability to handle locally
refined space grids to take into account geometrical details and, on the other hand, they reduced
requirement in term of the number of coupled degrees of freedom in the global problem as compared
to classical DG formulations. However, locally refined meshes lead to severe stability constraints
when considering fully explicit time integration methods in combination with high order HDG
spatial discretization. If relatively few refined elements are present in the grid, this time step re-
striction can be removed by blending an implicit and an explicit (IMEX) time-integration schemes
where only the degrees of freedom associated with small elements are treated implicitly. This
approach requires the solve of a linear system at each time step, but the size of this system is
limited, since it only corresponds to the finest regions of the space grids where the implicit scheme
is applied. Note that, Diogenes software only works with explicit time schemes. For the implicit
and hybrid implicit explicit time schemes we made a 2D code with MATLAB to obtain all the
numerical results needed for the validation of our formulation.
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5.1.2 Review of related works

HDGTD method is nowadays a very popular numerical method in the computational electromag-
netics community. Explicit time schemes [37]-[45] are very popular for providing integration process
cheap in memory since they let us to locally solve the problem. However, for stability purposes
the time step is restricted by the CFL (Courant-Friedrichs-Lewy) condition which depends on the
order of the space discretization method and the size of the smallest elements of the mesh. As
a consequence, even few small elements can make the value of the global time step so small that
the computational cost becomes prohibitive. Implicit time schemes [45]-[43] are known to have
better stability properties. In particular, most of the implicit schemes are unconditionally stable.
This means that there is no stability constraint for those schemes and the only constraint on the
time step depends on the accuracy level. However, for 3D realistic problems, using only implicit
methods is not always feasible, since they are extremely memory consuming and we have to inverse
a huge global matrix at each time-step. Combined with DGTD spatial discretization, an approach
has been considered in [30]-[31] is to use a hybrid explicit-implicit (or locally implicit) time in-
tegration strategy. Such a strategy relies on a component splitting deduced from a partitioning
of the mesh cells in two sets respectively gathering coarse and fine elements. In these works, a
second order explicit leap-frog scheme is combined with a second order implicit Crank-Nicolson
scheme in the framework of a non-dissipative (centered flux based) DG discretization in space. At
each time step, a large linear system must be solved whose structure is partly diagonal (for those
rows of the system associated to the explicit unknowns) and partly sparse (for those rows of the
system associated to the implicit unknowns). In [50] a locally implicit time integration is proposed
in the frame work of an upwind flux DG discretization in space. The computational efficiency of
this locally implicit DGTD method depends on the size of the set of fine elements that directly
influences the size of the sparse part of the matrix system. Therefore, an approach for reducing
the size of the subsystem of globally coupled (i.e. implicit) unknowns is worth considering if one
wants to solve very large-scale problems. A particularly appealing solution in this context is given
by the concept of combining hybridizable discontinuous Galerkin (HDG) method with IMEX time
schemes which is proposed and detailed in this chapter. An alternative solution has been proposed
in [51], where IMEX HDG-DG schemes is proposed for planar and spherical shallow water systems.
They split the governing system into a stiff part describing the gravity wave and a non-stiff part
associated with nonlinear advection. The former is discretized implicitly with the HDG method
while an explicit Runge-Kutta DG discretization is employed for the latter. In [52], several IMEX
time schemes with different orders were proposed for the purpose of solving an ODE, which its right
hand side can be written as the sum of two terms, a stiff one and a non stiff one. And finally, in
[53] and following the ideas of [26], locally implicit schemes with an arbitrary order of accuracy for
linear ODEs are constructed. The general rules for their development share same ideas as in [26]
(locally explicit time stepping methods in which we can choose different time steps while solving
the problem) except that they used implicit schemes in the region covered with a refined mesh.
In their work they proposed IMEX time schemes with a HDG discretization in space and show
numerical results for the acoustic wave equation. In this chapter we will present a different IMEX
HDGTD scheme. We will start by dividing the semi discrete scheme into sum over the coarse
and fine elements, and then we will apply different IMEX time schemes mentioned in [52] while
considering Λ as an intermediate variable computed globally on the skeleton of the mesh leading
us to find E and H locally in the mesh.



5.2 Semi-discrete HDG method

Our starting point for this chapter is the HDG formulation (2.44) proposed in chapter 2 for the
Maxwell’s equations in time-domain. After explicitly referencing the coarse and fine regions defined
in 2.2, we obtain the following system





(ε∂tEh,v)Th = (Hh, curlv)T FIh
− 〈Λh,n× v〉∂T FIh

+ (Hh, curlv)T COh
− 〈Λh,n× v〉∂T COh

, ∀v ∈ Vh,
(µ∂tHh,v)Th = − (curlEh,v)T FIh

− 〈τn× (Hh −Λh) ,n× v〉∂T FIh

− (curlEh,v)T COh

− 〈τn× (Hh −Λh) ,n× v〉∂T COh
, ∀v ∈ Vh,

〈n×Eh,η〉∂T FIh
= −

〈
τ
(
Ht
h −Λh

)
,η
〉
∂T FIh

− 〈n×Eh,η〉∂T COh

−
〈
τ
(
Ht
h −Λh

)
,η
〉
∂T COh

, ∀η ∈Mh.

(5.1)

Semi-discrete HDG method

5.2.1 Compact formulation

We now introduce some notations to obtain a compact expression of semi-discrete HDG global weak
formulation (5.1). After summing the first two equations of (5.1) we obtain, ∀(υ′h,ηh) ∈ Vh ×Mh





m (∂tυh,υ
′
h) = aFI (υh,υ

′
h) + bFIτ (υh,Λh,υ

′
h)

+ aCO (υh,υ
′
h) + bCOτ (υh,Λh,υ

′
h) ,

cFI (υh,Λh,ηh) = −cCO (υh,Λh,ηh) ,

(5.2)

where υh =

(
Hh

Eh

)
, λ = diag(µ, ε) and Vh = Vh × Vh. We define ∀υ,υ′ ∈ Vh,

ζ1,h (υ) =

(
− curl (υ2)

υ1

)
, ζ2,h

(
υ′
)

=

(
υ′1

curl (υ′2)

)
.

The bilinear forms m, aFI , aCO are defined on Vh × Vh such that, ∀(υ,υ′) ∈ Vh × Vh




m(υ,υ′) = (υ,υ′)λ = (λυ,υ′)Th ,

aFI(υ,υ′) = (ζ1(υ), ζ2(υ′))T FIh
,

aCO(υ,υ′) = (ζ1(υ), ζ2(υ′))T COh
,

(5.3)

and bFIτ and bCOτ are defined on Vh ×Mh × Vh such that, ∀ (υ,η,υ′) ∈ Vh ×Mh × Vh

bFIτ (υ,η,υ′) = −〈η,n× υ′2〉∂T FIh
− 〈τn× (υ1 − η) ,n× υ′1〉∂T FIh

,

bCOτ (υ,η,υ′) = −〈η,n× υ′2〉∂T COh
− 〈τn× (υ1 − η) , n× υ′1〉∂T COh

.



Finally, cFI and cCO are defined on Vh ×Mh ×Mh such that, ∀ (υ,η,µ) ∈ Vh ×Mh ×Mh

cFI (υ,η,µ) = 〈n× υ2,µ〉∂T FIh
+ 〈τn× (υ1 − η) ,n× µ〉∂T FIh

,

cCO (υ,η,µ) = 〈n× υ2,µ〉∂T COh
+ 〈τn× (υ1 − η) ,n× µ〉∂T COh

.

Let us now define the three operators

LFIh , LCOh and Lh : Vh ×Mh → Vh,

such that ∀(υ,η,υ′) ∈ Vh ×Mh × Vh

(LFIh (υ,η),υ′) = aFI(υ,υ′) + bFIτ (υ,η,υ′),

(LCOh (υ,η),υ′) = aCO(υ,υ′) + bCOτ (υ,η,υ′),

(Lh(υ,η),υ′) = (LFIh (υ,η),υ′) + (LCOh (υ,η),υ′).

Then, the semi-discrete HDG scheme for Maxwell equations in compact form writes as

{
m (∂tυh,υ

′
h) =

(
LFIh (υh,Λh) ,υ′h

)
+
(
LCOh (υh,Λh),υ′h

)
,

cFI (υh,Λh,ηh) = −cCO (υh,Λh,ηh) ,
(5.4)

Semi-discrete HDG scheme in compact form

for all test functions (υ′h,ηh) that belong to the space Vh ×Mh.

5.2.2 Preliminary results

We first note that ∀Set ∈ {FI, CO}, we have that ∀υ ∈ Vh,

aSet (υ,υ) = 0.

Lemma 3. ∀Set ∈ {FI, CO}, we have that ∀ (υ,η) ∈ Vh ×Mh,

bSet
τ (υ,η,υ) + cSet (υ,η,η) ≤ 0.

Proof.
bSet
τ (υ,η,υ) + cSet (υ,η,η) = ((((

(((
((−〈η,n× υ2〉∂Set

− 〈τn× (υ1 − η) ,n× υ1〉∂Set

+ 〈n× υ2,η〉∂Set

+ 〈τn× (υ1 − η) ,n× η〉∂Set

= −τ ||n× (υ1 − η) ||2∂Set

≤ 0.

Inverse estimations
Since we have a shaped-regular mesh we can deduce from [47] that ∀K ∈ Th, ∃c1,K , c2,K >
0; ∀u ∈ Vh,

|| curl(u)||L2(K) ≤ c1,K h
−1
K ||u||L2(K),

||u||L2(∂K) ≤ c2,K h
− 1

2
K ||u||L2(K).



Lemma 4. There exists two positive constants c1 and c2, such that ∀(υ,υ′) ∈ Vh × Vh and
∀(η,µ) ∈Mh ×Mh

|
(
LCOh (υ,η),υ′

)
| ≤ c1h

−1
T COh

||υ||T COh
||υ′||T COh

+

c2h
− 1

2

T COh

(
||η||∂T COh

+ τ ||υ1 − η||∂T COh

)
||υ′||T COh

,

and

|cCO (υ,η,µ) | ≤
(
||υ2||∂T COh

+ τ ||υ1 − η||∂T COh

)
||µ||∂T COh

.

Proof. First, we have ∀(υ,υ′) ∈ Vh × Vh,

|aCO(υ,υ′)| =
∣∣∣
(
− curl (υ2) ,υ′1

)
T COh

+
(
curl

(
υ′2
)
,υ1

)
T COh

∣∣∣

≤
∣∣∣
(
curl (υ2) ,υ′1

)
T COh

∣∣∣+
∣∣∣
(
curl

(
υ′2
)
,υ1

)
T COh

∣∣∣
≤ || curl(υ2)||T COh

||υ′1||T COh
+ || curl(υ′2)||T COh

||υ1||T COh

≤ c1h
−1
T COh

(
||υ2||T COh

||υ′1||T COh
+ ||υ′2||T COh

||υ1||T COh

)

≤ c1h
−1
T COh

||υ||T COh
||υ′||T COh

.

Then, we have ∀(υ,η,υ′) ∈ Vh ×Mh × Vh,

|bCOτ
(
υ,η,υ′

)
| =

∣∣∣−
〈
η,n× υ′2

〉
∂T COh

−
〈
τn× (υ1 − η) ,n× υ′1

〉
∂T COh

∣∣∣

≤
∣∣∣
〈
η,n× υ′2

〉
∂T COh

∣∣∣+
∣∣∣
〈
τn× (υ1 − η) ,n× υ′1

〉
∂T COh

∣∣∣
≤ ||η||∂T COh

||υ′2||∂T COh
+ τ ||υ1 − η||∂T COh

||υ′1||∂T COh

≤
(
||η||∂T COh

+ τ ||υ1 − η||∂T COh

)
||υ′||∂T COh

≤ c2h
− 1

2

T COh

(
||η||∂T COh

+ τ ||υ1 − η||∂T COh

)
||υ′||T COh

.

Finally, ∀(υ,η,µ) ∈ Vh ×Mh ×Mh,

|cCO (υ,η,µ) | =
∣∣∣〈n× υ2,µ〉∂T COh

+ 〈τn× (υ1 − η) ,n× µ〉∂T COh

∣∣∣

≤
∣∣∣〈n× υ2,µ〉∂T COh

∣∣∣+
∣∣∣〈τn× (υ1 − η) ,n× µ〉∂T COh

∣∣∣
≤ ||υ2||∂T COh

||µ||∂T COh
+ τ ||υ1 − η||∂T COh

||µ||∂T COh

≤
(
||υ2||∂T COh

+ τ ||υ1 − η||∂T COh

)
||µ||∂T COh

.

Corollary 4.1. For any time tm and tm′ we have
∣∣∣∣
(
LCOh (υmh ,Λ

m
h )− LCOh (υm

′
h ,Λm′

h ),υm
′

h

) ∣∣∣∣ ≤

ch−1
T COh

(
||υm′h − υmh ||T COh

||υmh ||T COh
+ ||υm′h − υmh ||2T COh

+ ||υmh ||2T COh

)
.



Proof. Let X =
(
LCOh (υmh ,Λ

m
h ),υm

′
h

)
−
(
LCOh (υm

′
h ,Λm′

h ),υm
′

h

)
.

We have that

X =
(
LCOh (υmh ,Λ

m
h ),υm

′
h

)
−����

���
�:0

aCO(υm
′

h ,υm
′

h ) − bCOτ (υm
′

h ,Λm′
h ,υm

′
h )

=
(
LCOh (υmh ,Λ

m
h ),υm

′
h − υmh

)

︸ ︷︷ ︸
X1

+
(
LCOh (υmh ,Λ

m
h ),υmh

)
︸ ︷︷ ︸

X2

− bCOτ (υm
′

h ,Λm′
h ,υm

′
h − υmh )︸ ︷︷ ︸

X3

− bCOτ (υm
′

h ,Λm′
h ,υmh )︸ ︷︷ ︸

X4

.

−X3 =
〈
Λm′
h ,n×

(
υm

′
2,h − υm2,h

)〉
∂T COh

+
〈
τn×

(
υm

′
1,h −Λm′

h

)
,n×

(
υm

′
1,h − υm1,h

)〉
∂T COh

=
〈
Λm′
h −Λm

h ,n×
(
υm

′
2,h − υm2,h

)〉
∂T COh

+
〈
Λm
h ,n×

(
υm

′
2,h − υm2,h

)〉
∂T COh

+
〈
τn×

(
υm

′
1,h − υm1,h

)
,n×

(
υm

′
1,h − υm1,h

)〉
∂T COh

+
〈
τn× υm1,h,n×

(
υm

′
1,h − υm1,h

)〉
∂T COh

−
〈
τn×

(
Λm′
h −Λm

h

)
,n×

(
υm

′
1,h − υm1,h

)〉
∂T COh

−
〈
τn×Λm

h , n×
(
υm

′
1,h − υm1,h

)〉
∂T COh

.

−X4 =
〈
Λm′
h ,n× υm2,h

〉
∂T COh

+
〈
τn×

(
υm

′
1,h −Λm′

h

)
,n× υm1,h

〉
∂T COh

=
〈
Λm′
h −Λm

h ,n× υm2,h
〉
∂T COh

+
〈
Λm
h ,n× υm2,h

〉
∂T COh

+
〈
τn×

(
υm

′
1,h − υm1,h

)
,n× υm1,h

〉
∂T COh

+
〈
τn× υm1,h,n× υm1,h

〉
∂T COh

−
〈
τn×

(
Λm′
h −Λm

h

)
,n× υm1,h

〉
∂T COh

−
〈
τn×Λm

h ,n× υm1,h
〉
∂T COh

.

We have

|X| ≤ |X1|+ |X2|+ |X3|+ |X4|.



From Lemma 4 we can deduce that

|X1| ≤ c1h
−1
T COh

||υmh ||T COh
||υm′h − υmh ||T COh

+ c2h
− 1

2

T COh

(
||Λm

h ||∂T COh
+ τ ||υmh,1 −Λm

h ||∂T COh

)
||υm′h − υmh ||T COh

≤ c1h
−1
T COh

||υmh ||T COh
||υm′h − υmh ||T COh

+ c2h
− 1

2

T COh

(
c3h
− 1

2

T COh

||υmh ||T COh
+ τc4h

− 1
2

T COh

||υmh ||T COh
+

τc3h
− 1

2

T COh

||υmh ||T COh

)
||υm′h − υmh ||T COh

≤ (c1 + c5 + τc6 + τc5)h−1
T COh

||υmh ||T COh
||υm′h − υmh ||T COh

≤ k1h
−1
T COh

||υmh ||T COh
||υm′h − υmh ||T COh

.

|X2| ≤ k2h
−1
T COh

||υmh ||2T COh
.

In addition it is clear that

|X3| ≤ k3h
−1
T COh

||υm′h − υmh ||2T COh
+ k4h

−1
T COh

||υmh ||T COh
||υm′h − υmh ||T COh

.

|X4| ≤ k5h
−1
T COh

||υmh ||T COh
||υm′h − υmh ||T COh

+ k6k3h
−1
T COh

||υmh ||2T COh
.

Finally

|X| ≤ ch−1
T COh

(
||υm′h − υmh ||T COh

||υmh ||T COh
+ ||υm′h − υmh ||2T COh

+ ||υmh ||2T COh

)
.

5.3 Formulation and stability analysis of IMEX HDG methods

We consider three different hybrid implicit-explicit (IMEX) HDG methods, which are based on the
following time schemes: the first order the Euler implicit-explicit method, a second order implicit-
explicit Runge-Kutta method, and third order implicit-explicit SSP-LDIRK3 method, which is a
mix between the explicit strong stability preserving and the L-stable diagonally implicit Runge-
Kutta methods.

5.3.1 A quick overview on Runge-Kutta and IMEX methods

Runge-Kutta methods

We may rewrite problem (2.43), while conisdering ∂Ω = Γm for instance, obtained after space
discretization as (see section 2.5.9 for details)





Mυ̇h(t) = −Dυh(t)− CAHDGΛh(t),

GΛh(t) = −Bυh(t),

υh(0) = υh,0,

(5.5)



where for each t ∈ [0, T ], the vector υh(t) contains the coefficients defining Eh(t) and Hh(t) in the
nodal basis of Pk(Th), M, D, C, G and B are the usual matrices associated with (2.43), and υh,0 is
the interpolation of the initial conditions onto the discretization space.

Classically, the key asset of HDG schemes is that the mass matrix is block diagonal, and hence,
easy to invert. Thus, we may safely rewrite (5.5) as





υ̇h(t) = f (t,υh(t),Λh(t)) ,

GΛh(t) = −Bυh(t),

υh(0) = υ0
h,

(5.6)

where f (t,υh(t),Λh(t)) := −M−1 (Dυh(t)− CAHDGΛh(t)). At this point, we recognize in (5.6) an
ordinary differential equation with a constraint (the second equation for Λ), that can be discretized
with a time marching scheme. Here, Λh is an intermediate variable computed globally on the
skeleton of the mesh leading us to find E and H locally in the mesh. After fixing a time-step
∆t, we iteratively construct iterations υnh of υh(tn), tn := n∆t. Specifically, for n ≥ 0, υn+1

h is
deduced from υnh through the following method, let s be an integer greater or equal than 1 and
let b and c two vectors of Rn, b = (b1, · · · , bn) and c = (c1, · · · , cn)t, and let A be a s× s matrix,
A = (aij)1≤i,j≤n. A s-stage Runge-Kutta method is defined by

υn,ih = υnh + ∆t
s∑

j=1

aijf
(
t0 + cj∆t,υ

n,j
h ,Λn,j

h

)
, i = 1, . . . , s,

GΛn,i = −Bυn,i, i = 1, . . . , s,

υn+1,i
h = υn,ih + ∆t

s∑

j=1

bjf
(
t0 + cj∆t,υ

n,j
h ,Λn,j

h

)
.

(5.7)

The data are usually arranged in a mnemonic device, known as a Butcher’s array

c1 a11 a12 · · · a1s−1 a1s

c2 a21 a22 · · · a2s−1 a2s

...
...

. . .
...

cn an1 an2 · · · ans−1 ans

b1 b2 · · · bs−1 bs

A Runge-Kutta method is of order p if the expansion in powers of ∆t of the numerical solution
coincides with that of the true solution up to and including a certain order p.

IMEX Runge-Kutta methods

In order to propose the IMEX Runge-Kutta schemes, we must first rewrite (5.5) as




Mυ̇h(t) = −Dexpυh(t)− CexpAHDGΛh(t)− Dimpυh(t)− CimpAHDGΛh(t),

GΛh(t) = −Bexpυh(t)− Bimpυh(t),

υh(0) = υh,0

(5.8)



where,
Dexp + Dimp = D,

Cexp + Cimp = C,

Bexp + Bimp = B.

The idea of the IMEX methods is to apply two different Runge-Kutta methods (implicit and explicit
respectively ) i.e

ĉ Â

b̂t

c A

bt

where we treat the imp part with the first method, Â, b̂ = (b̂1, · · · , b̂n), ĉ = (ĉ1, · · · , ĉn)t and the exp
part with the second method, A, b = (b1, · · · , bn), c = (c1, · · · , cn)t. From now on we shall adopt
IMEX Runge-Kutta schemes with b = b̂ [52]. It is usual to consider diagonally implicit Runge-
Kutta (DIRK) schemes for the implicit part which is simple to implement. On the other hand, if
the implicit Runge-Kutta method and the explicit one are both of order p, it is not necessary that
the IMEX Runge-Kutta method is also of order p, we must respect the "order conditions" given in
[52] to obtain the order p for the IMEX scheme. In the section below we will present three IMEX
methods of different orders when combined with the HDG method for Maxwell’s equations.

5.3.2 Hybrid implicit-explicit HDG methods (IMEX HDG)

First order IMEX HDG method (IMEX-HDG-Eul1)

Starting from (5.4), we formulate the IMEX Euler HDG method as




m

(
υn+1
h − υnh

∆t
,υ′h

)
=
(
LFIh (υn+1

h ,Λn+1
h ),υ′h

)
+
(
LCOh (υnh ,Λ

n
h),υ′h

)
,

cFI
(
υn+1
h ,Λn+1

h ,ηh
)

= −cCO
(
υn+1
h ,Λn+1

h ,ηh
)
,

(5.9)

IMEX-HDG-Eul1

for all test functions (υ′h,ηh) that belong to the space Vh×Mh. In order to solve this problem we
need first to compute the value of Λn

h. In order to do so we need the inversion of a global matrix.
However, as the trace field is defined discontinuously across the faces, by construction this matrix
is a block-diagonal matrix. Therefore, the inversion of this matrix is cheap. Then, from (5.9), we
can create a global problem to find the value of Λn+1

h on the faces. The global matrix to inverse in
this step consists of a block-diagonal matrix corresponding to the degrees of freedom in the coarse
part, and a sparse matrix corresponding to the degrees of freedom in the fine part. We are then
able to calculate locally the solution υn+1

h .



Second order IMEX HDG method (IMEX-HDG-RK2)

We define the second order Runge-Kutta IMEX HDG method as





m


υ

n+ 1
2

h − υnh
∆t

,υ′h


 = α1

(
LFIh

(
υ
n+ 1

2
h ,Λ

n+ 1
2

h

)
,υ′h

)

+ α2

(
LCOh (υnh ,Λ

n
h) ,υ′h

)
,

cFI
(
υ
n+ 1

2
h ,Λ

n+ 1
2

h ,ηh

)
= −cCO

(
υ
n+ 1

2
h ,Λ

n+ 1
2

h ,ηh

)
,

m

(
υn+1
h − υnh

∆t
,υ′h

)
=

(
Lh

(
υ
n+ 1

2
h ,Λ

n+ 1
2

h

)
,υ′h

)
,

c
(
υn+1
h ,Λn+1

h ,ηh
)

= 0,

(5.10)

IMEX-HDG-RK2

for all test functions (υ′h,ηh) that belong to the space Vh×Mh, where α1 and α2 are the coefficients
of the butcher table for the fully implicit and explicit Runge-Kutta 2 respectively (see table 5.1).
In order to solve this problem we need first to create a global problem from the first two equations
of (5.10) to find the value of Λ

n+ 1
2

h on the faces. The global matrix to inverse in this step is a
block-diagonal matrix corresponding to the degrees of freedom in the coarse part, and a sparse
matrix corresponding to the degrees of freedom in the fine part. Then we are able to calculate
locally the solution υ

n+ 1
2

h . Finally, the third equation gives us the value of the solution υn+1
h in

each element of the mesh.

0 0 0
1
2 0 1

2

0 1

0 0
1
2

1
2 0
0 1

Table 5.1 | Butcher tables for implicit RK2 (left) and explicit RK2 (right) with α1 = α2 =
1

2
.

Third order IMEX HDG method (IMEX-HDG-RK3)

We define the third order Runge-Kutta IMEX HDG method as







m

(
υn,1h − υnh

∆t
,υ′h

)
= α

(
LFIh

(
υn,1h ,Λn,1

h

)
,υ′h
)
,

cFI
(
υn,1h ,Λn,1

h ,ηh

)
= −cCO

(
υn,1h ,Λn,1

h ,ηh

)
,

m

(
υn,2h − υnh

∆t
,υ′h

)
= −α

(
LFIh

(
υn,1h ,Λn,1

h

)
,υ′h
)

+ α
(
LFIh

(
υn,2h ,Λn,2

h

)
,υ′h
)
,

cFI
(
υn,2h ,Λn,2

h ,ηh

)
= −cCO

(
υn,2h ,Λn,2

h ,ηh

)
,

m

(
υn,3h − υnh

∆t
,υ′h

)
= (1− α)

(
LFIh

(
υn,2h ,Λn,2

h

)
,υ′h
)

+ α
(
LFIh

(
υn,3h ,Λn,3

h

)
,υ′h
)

+
(
LCOh

(
υn,2h ,Λn,2

h

)
,υ′h
)
,

cFI
(
υn,3h ,Λn,3

h ,ηh

)
= −cCO

(
υn,3h ,Λn,3

h ,ηh

)
,

m

(
υn,4h − υnh

∆t
,υ′h

)
= β

(
LFIh

(
υn,1h ,Λn,1

h

)
,υ′h
)

+ η
(
LFIh

(
υn,2h ,Λn,2

h

)
,υ′h
)

+

(
1

2
− β − η − α

)(
LFIh

(
υn,3h ,Λn,3

h

)
,υ′h
)

+ α
(
LFIh

(
υn,4h ,Λn,4

h

)
,υ′h
)

+
1

4

(
LCOh

(
υn,2h ,Λn,2

h

)
,υ′h
)

+
1

4

(
LCOh

(
υn,3h ,Λn,3

h

)
,υ′h
)
,

cFI
(
υn,4h ,Λn,4

h ,ηh

)
= −cCO

(
υn,4h ,Λn,4

h ,ηh

)
,

m

(
υn+1
h − υnh

∆t
,υ′h

)
=

1

6

(
Lh
(
υn,2h ,Λn,2

h

)
,υ′h
)

+
1

6

(
Lh
(
υn,3h ,Λn,3

h

)
,υ′h
)

+
2

3

(
Lh
(
υn,4h ,Λn,4

h

)
,υ′h
)
,

c
(
υn+1
h ,Λn+1

h ,ηh
)

= 0,

(5.11)

IMEX-HDG-RK3

for all test functions (υ′h,ηh) that belong to the space Vh×Mh. where α and β and η are defined
in Table 5.2.



α α 0 0 0
0 −α α 0 0
1 0 1− α α 0
1
2 β η 1

2 − β − η − α α

0 1/6 1/6 2/3

0 0 0 0 0
0 0 0 0 0
1 0 1 0 0
1
2 0 1

4
1
4 0

0 1/6 1/6 2/3

Table 5.2 | Butcher tables for LDIRK3 (left) and SSP3 (right) with α = 0.2416942607882, β = α
4

and η =
0.1291528696059.

5.3.3 Stability of the fully discrete schemes

Euler IMEX HDG method (IMEX-HDG-Eul1)

Theorem 6. For ∆t ≤ ηh2
T COh

, the totally discrete hybrid implicit-explicit Euler HDG scheme is
stable in the sense that for all n ∈ N, there exists β > 0 (independent of h and ∆t) such that

Enh ≤ eβTE0
h,

in which the discrete electromagnetic energy is Eh(t) =
1

2
||υh(t)||2λ.

Proof. By replacing υ′h = υn+1
h and ηh = Λn+1

h in (5.9) we obtain that
(
LFIh (υn+1

h ,Λn+1
h ),υn+1

h

)
= aFI(υn+1

h ,υn+1
h )

+ bFIτ (υn+1
h ,Λn+1

h ,υn+1
h )

=
���

���
���:

0

aFI(υn+1
h ,υn+1

h )

+ bFIτ (υn+1
h ,Λn+1

h ,υn+1
h )

+ cFI(υn+1
h ,Λn+1

h ,Λn+1
h )

+ cCO(υn+1
h ,Λn+1

h ,Λn+1
h ).

From Lemma 3 we deduce that
(
LFIh (υn+1

h ,Λn+1
h ),υn+1

h

)
≤ cCO(υn+1

h ,Λn+1
h ,Λn+1

h ).

Back to the first equation of system (5.9) we can deduce that

m
(
υn+1
h − υnh ,υn+1

h

)

≤ ∆t

[ (
LCOh (υnh ,Λ

n
h),υn+1

h

)
+ cCO

(
υn+1
h ,Λn+1

h ,Λn+1
h

)]
,

which yields
1

2
||υn+1

h ||2λ −
1

2
||υnh ||2λ +

1

2
||υn+1

h − υnh ||2λ

≤ ∆t

[ (
LCOh (υnh ,Λ

n
h),υn+1

h

)
+ cCO

(
υn+1
h ,Λn+1

h ,Λn+1
h

)]
.

(5.12)

We deduce from (5.12) that the stability will depend only on the coarse mesh. Let RHS =(
LCOh (υnh ,Λ

n
h),υn+1

h

)
+ cCO

(
υn+1
h ,Λn+1

h ,Λn+1
h

)
.



We now add and substract
(
LCOh (υn+1

h ,Λn+1
h ),υn+1

h

)
to obtain

RHS =
(
LCOh (υnh ,Λ

n
h)− LCOh (υn+1

h ,Λn+1
h ),υn+1

h

)

+
(
LCOh (υn+1

h ,Λn+1
h ),υn+1

h

)
+ cCO

(
υn+1
h ,Λn+1

h ,Λn+1
h

)
.

From Lemma 3 (
LCOh (υn+1

h ,Λn+1
h ),υn+1

h

)
+ cCO

(
υn+1
h ,Λn+1

h ,Λn+1
h

)
≤ 0,

which implies
RHS ≤

(
LCOh (υnh ,Λ

n
h)− LCOh (υn+1

h ,Λn+1
h ),υn+1

h

)
.

Corollary 4.1 let us deduce that

|RHS|
≤ ch−1

T COh

(
||υn+1

h − υnh ||T COh
||υnh ||T COh

+ ||υn+1
h − υnh ||2T COh

+ ||υnh ||2T COh

)
.

Back to (5.12) we obtain

1

2
||υn+1

h ||2λ −
1

2
||υnh ||2λ +

1

2
||υn+1

h − υnh ||2λ

≤ ch−1
T COh

(
||υn+1

h − υnh ||T COh
||υnh ||T COh

+ ||υn+1
h − υnh ||2T COh

+ ||υnh ||2T COh

)
.

Therefore

1

2
||υn+1

h ||2λ −
1

2
||υnh ||2λ +

1

2
||υn+1

h − υnh ||2λ

≤
(

1

2
c2h−2
T COh

∆t2 + c∆th−1
T COh

)
||υnh ||2T COh

+
1

2
c∆th−1

T COh

||υn+1
h − υnh ||2T COh

.

Since
||υ||2T COh

≤ ||υ||2Th ≤ ||υ||
2
λ, ∀υ ∈ Vh,

we can deduce

1

2
||υn+1

h ||2λ −
1

2
||υnh ||2λ +

1

2
||υn+1

h − υnh ||2λ

≤
(

1

2
c2h−2
T COh

∆t2 + c∆th−1
T COh

)
||υnh ||2λ +

1

2
c∆th−1

T COh

||υn+1
h − υnh ||2λ.

So for ∆t ≤ c−1h2
T COh

, and since h < 1, we obtain

En+1
h − Enh ≤ ∆tEnh , ∀n ∈ N.

Finally, by Gronwall’s lemma
Enh ≤ eTE0

h.



Second order IMEX HDG method (IMEX-HDG-RK2)

Theorem 7. For ∆t ≤ ηh2
T COh

, the totally discrete scheme is stable for implicit-explicit Runge-
Kutta 2, in the sense that for all n ∈ N, there exists β > 0 (independent of h and ∆t) such
that

Enh ≤ eβTE0
h,

in which the discrete electromagnetic energy is Eh(t) =
1

2
||υh(t)||2λ.

Proof. By replacing υ′h = υ
n+ 1

2
h in the first equation of (5.10) we obtain

m

(
υ
n+ 1

2
h − υnh ,υ

n+ 1
2

h

)
=

∆t

2

(
LFIh

(
υ
n+ 1

2
h ,Λ

n+ 1
2

h

)
,υ

n+ 1
2

h

)
+

∆t

2

(
LCOh (υnh ,Λ

n
h) ,υ

n+ 1
2

h

)
,

which implies that

1

2

∥∥∥∥υ
n+ 1

2
h

∥∥∥∥
2

λ

− 1

2
‖υnh‖2λ +

1

2

∥∥∥∥υ
n+ 1

2
h − υnh

∥∥∥∥
2

λ

= ∆t

[(
LFIh

(
υ
n+ 1

2
h ,Λ

n+ 1
2

h

)
,υ

n+ 1
2

h

)

+

(
LCOh (υnh ,Λ

n
h) ,υ

n+ 1
2

h

)]
.

(5.13)

Now, by replacing υ′h = υ
n+ 1

2
h in the third equation of (5.10) we obtain

m

(
υn+1
h − υnh ,υ

n+ 1
2

h

)
= ∆t

(
LFIh

(
υ
n+ 1

2
h ,Λ

n+ 1
2

h

)
,υ

n+ 1
2

h

)
+ ∆t

(
LCOh

(
υ
n+ 1

2
h ,Λ

n+ 1
2

h

)
,υ

n+ 1
2

h

)
,

which implies that

1

2

∥∥υn+1
h

∥∥2

λ
− 1

2
‖υnh‖2λ −

1

2

∥∥∥∥υn+1
h − υn+ 1

2
h

∥∥∥∥
2

λ

+
1

2

∥∥∥∥υ
n+ 1

2
h − υnh

∥∥∥∥
2

λ

= ∆t

[(
LFIh

(
υ
n+ 1

2
h ,Λ

n+ 1
2

h

)
,υ

n+ 1
2

h

)
+

(
LCOh

(
υ
n+ 1

2
h ,Λ

n+ 1
2

h

)
,υ

n+ 1
2

h

)]
.

(5.14)

Back to the third equation of (5.10), let us divide the left hand side into two parts

m

(
υn+1
h − υnh ,υ

n+ 1
2

h

)
= m

(
υn+1
h − υn+ 1

2
h ,υ

n+ 1
2

h

)
+m

(
υ
n+ 1

2
h − υnh ,υ

n+ 1
2

h

)
.

On the other hand, we have

m

(
υn+1
h − υn+ 1

2
h ,υ

n+ 1
2

h

)
+m

(
υ
n+ 1

2
h − υnh ,υ

n+ 1
2

h

)

= m

(
υn+1
h − υn+ 1

2
h ,υ

n+ 1
2

h

)
+

∆t

2

(
LFIh

(
υ
n+ 1

2
h ,Λ

n+ 1
2

h

)
,υ

n+ 1
2

h

)

+
∆t

2

(
LCOh (υnh ,Λ

n
h) ,υ

n+ 1
2

h

)
.



Thus,

m

(
υn+1
h − υn+ 1

2
h ,υ

n+ 1
2

h

)
=

∆t

2

(
LFIh

(
υ
n+ 1

2
h ,Λ

n+ 1
2

h

)
,υ

n+ 1
2

h

)
− ∆t

2

(
LCOh (υnh ,Λ

n
h) ,υ

n+ 1
2

h
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(5.15)

Adding (5.13) to (5.14) and then substracting the result from (5.15) we obtain
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From Lemma (3)
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(5.16)

We deduce from (5.16) that the stability will depend only on the coarse mesh. Let RHS =(
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From lemma (3.9)
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Corollary (4.1) gives us
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Back to (5.16), and by taking k =
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2
we obtain
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we can deduce
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So for ∆t ≤ k−1h2
T COh

, and since h < 1, we obtain

En+1
h − Enh ≤ ∆tEnh , ∀n ∈ N.

Finally, by Gronwall’s lemma

Enh ≤ eTE0
h.

5.4 Numerical results

The IMEX HDG methods of order ≤ 3 presented in the previous section have been implemented
in the 2D case considering conforming triangular meshes.



5.4.1 Propagation of a standing wave in a PEC cavity

In order to validate and study the numerical convergence of the proposed IMEX HDG methods,
we first consider the propagation of an eigenmode in a source-free i.e. J = 0 closed cavity (Ω is the
unit square) with perfectly metallic walls. The electric permittivity and the magnetic permeability
are set to the constant vacuum values. Because we consider a renormalized form of Maxwell’s
equations in the implementation, we thus have that εr = µr = 1 for the relative values of these
electromagnetic parameters. The exact time-domain solution is given by





Ez(x, y, t) = sin(πx) sin(πy) cos(
√

2πt),

Hx(x, y, t) = −
√

2

2
sin(πx) cos(πy) sin(

√
2t),

Hy(x, y, t) =

√
2

2
cos(πx) sin(πy) sin(

√
2t),

(5.17)

Exact solution

where the electromagnetic field is initialized at t = 0 as Hx = Hy = 0 and

Ez(x, y, t = 0) = sin(πx) sin(πy).

Increasingly, uniform fine meshes are generated (see figure 5.1), for which the minimal edge size is
denoted by hmin,i, where i is the index of the mesh. The mode is evolved until a time tmax = T =
3 m (normalized unit). For each simulation, the global L∞([0, T ], L2

Ω) error is computed. For two
successive meshes, the numerical rate of convergence is deduced as

r =

log

(
maxt∈[0,T ] ||E −Eh,i||L2

maxt∈[0,T ] ||E −Eh,i+1||L2

)

log

(
hmin,i
hmin,i+1

) . (5.18)

We will consider the set of yellow triangles as the fine part and that of blue triangles as the coarse
part. For a space discretization with polynomial order p, since we proved in section 5.3.3 that to
preserve the stability, the choice of timestep will depend only on the coarse mesh, the timestep is
chosen as follows

∆t = cphT COh
= cp min

K∈CO
AK
PK

,

where AK is the area of the element K, PK its perimeter and cp is a constant chosen so that the
CFL condition is satisfied.

Remark 7. It is clear that in the case of uniform meshes, we have hT COh
= h. The goal of this

section is just to validate the hybrid implicit/explicit HDGTD scheme without seeing the gain this
method is designed for.



Mesh 1 Mesh 2

Mesh 3 Mesh 4

Figure 5.1 | Sequence of triangular meshes used to calculate the convergence rate of IMEX HDGTD methods.

Three IMEX HDGTD methods are studied in this case.

IMEX-HDG-Eul1

We recall the formulation IMEX-HDG-Eul1 method




m

(
υn+1
h − υnh
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,υ′h

)
=

(
LFIh
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)
,υ′h
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+
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h),υ′h

)
,

c
(
υn+1
h ,Λn+1

h ,ηh
)

= 0,

for all test functions (υ′h,ηh) that belong to the space Vh ×Mh.
A sequence of uniformly refined meshes is constructed such that, the zone treated implicitly is
localized in a square of side 1

3 in the middle of the domain (the yellow zone), see Fig. 5.1. The



initial EM wave from (2.61) is propagated in the cavity during a physical time tmax = 3 m. Fig. 5.2
shows the time evolution of the exact and the numerical solution of the Ez component at a fixed
point in the mesh, while Fig. 5.3 shows the time evolution of the L2-norm of the error, which is
calculated for a uniform triangular mesh with 288 elements, which is constructed from a finite
difference grid with nx = ny = 12 points, each cell of this grid yielding two triangles (Mesh 3),
between the numerical and exact solutions. Finally, Fig. 5.4 and Tab. 5.3 are concerned with the
numerical convergence of the IMEX-HDG-Eul1 method.
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Figure 5.2 | Standing wave in a PEC cavity: IMEX-HDG-Eul1 method. Time evolution of the exact and the
numerical solution of Ez at a fixed point with a P1 interpolation using the 3rd mesh of Fig. 5.1.
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Figure 5.3 | Standing wave in a PEC cavity: IMEX-HDG-Eul1 method. Time evolution of the L2-norm of the
error on Ezh for a P1 interpolation.
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Figure 5.4 | Standing wave in a PEC cavity: IMEX-HDG-Eul1 method. Numerical convergence.

||Ez − Ezh||L∞t L2
Ω

Pk Time scheme Mesh hmin Error order
2 2.44e-02 1.27e-01 -

Explicit Euler 3 1.22e-02 6.97e-02 0.87
4 6.10e-03 3.50e-02 0.99

P1 2 2.44e-02 1.28e-01 -
Implicit Euler 3 1.22e-02 6.53e-02 0.97

4 6.10e-03 3.32e-02 0.98
2 2.44e-02 9.37e-02 -

IMEX Euler 3 1.22e-02 5.44e-02 0.78
4 6.10e-03 2.78e-02 0.97

Table 5.3 | Standing wave in a PEC cavity: IMEX-HDG-Eul1 method. Maximum L2-errors and convergence
orders.

IMEX-HDG-RK2

We recall the formulation IMEX-HDG-RK2 method
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for all test functions (υ′h,ηh) that belong to the space Vh×Mh, where α1 and α2 are the coefficients
of the butcher table for the fully implicit and explicit Runge-Kutta 2 respectively (see table 5.1).
Then, fully discrete IMEX-HDG-RK2 scheme can be written as
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(5.19)

After calculating Λn
h from the last equation of (5.19), the local problem for υ

n+ 1
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h is deduced from
the first two equations as

• If i ∈ CO

Mei

υ
n+ 1

2
ei − υnei

∆t
= −α2Deiυnei − α2CeiAeiHDGΛn

⇒ υ
n+ 1

2
ei = υnei − α2∆tM−1

ei

(
Deiυnei + CeiAeiHDGΛn

)
.

(5.20)
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(5.21)

Then, the global problem for Λ
n+ 1

2
h is deduced from the second equation of (5.19) as
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2
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−
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[
AejHDG
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2
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(5.22)



Using (5.21) we can directly deduce that

QΛn+ 1
2 =−

|CO|∑

i=1

[
AeiHDG

]T Beiυ
n+ 1

2
ei − 1

α1∆t
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ej Mejυ
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ej , (5.23)

while

Q = G−
|FI|∑

j=1

[
AejHDG

]T BejA
−1
ej CejA

ej
HDG. (5.24)

Now, (5.22) gives globally the value of Λ
n+ 1

2
h , and locally the value of υn+ 1

2
h in the fine part using

(5.21). Since (5.20) gives the value υn+ 1
2

h on the coase part, we can calculate its value for the whole
mesh. Finally we can find locally the solution υn+1

h using the last equation in (5.10).

Remark 8. If we consider FI = ∅ (i.e. |FI| = 0), the global matrix K becomes equal to G, which
corresponds to the case of a fully explicit time scheme, and if CO = ∅, i.e. , |FI| = |Th|) we obtain

Q = G−
|Th|∑

j=1

[
AejHDG

]T BejA
−1
ej CejA

ej
HDG,

which corresponds to the case of a fully implicit time scheme.

Fig. (5.5) shows the difference in sparsity for the global matrix Q between the explicit HDG,
implicit HDG and IMEX-HDG-RK2 methods. We can see that, due to the IMEX scheme, we
have a block-diagonal matrix corresponding to the degrees of freedom in the coarse part and a
sparse matrix in the fine part while it is not the case for the fully implicit scheme. In particular,
in comparison with the fully implicit scheme, we have a much cheaper global matrix to inverse at
each time step with the IMEX-HDG-RK2 method.
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Figure 5.5 | The global matrix Q for explicit RK2, IMEX RK2 and fully implicit RK2 on Mesh 4 in Fig. (5.1).

Fig. 5.6 and 5.7 respectively show the time evolution of the Ez component at a fixed point in
the mesh and the L2-norm of the error for simulations that are based on Mesh 3 in Fig. 5.1. Fig. 5.8
and Tab. 5.4 are concerned with the numerical convergence of the IMEX-HDG-RK2 method.
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Figure 5.6 | Standing wave in a PEC cavity: IMEX-HDG-RK2 method. Time evolution of the exact and the
numerical solution of Ez at a fixed point with a P1 interpolation using the 3rd mesh of Fig. 5.1
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Figure 5.7 | Standing wave in a PEC cavity: IMEX-HDG-RK2 method. Time evolution of the L2-norm of the
error on Ezh for a P1 interpolation.
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Figure 5.8 | Standing wave in a PEC cavity: IMEX-HDG-RK2 method. Numerical convergence.

||Ez − Ezh||L∞t L2
Ω

Pk Time scheme Mesh hmin Error order
1 4.88e-02 1.23e-01 -

Explicit RK2 2 2.44e-02 2.37e-02 2.37
3 1.22e-02 5.20e-03 2.18
4 6.10e-03 1.30e-03 2.00

P1 1 4.88e-02 1.13e-01 -
Implicit RK2 2 2.44e-02 2.15e-02 2.39

3 1.22e-02 5.10e-03 2.07
4 6.10e-03 1.30e-03 2.00
1 4.88e-02 1.20e-01 -

IMEX RK2 2 2.44e-02 2.27e-02 2.40
3 1.22e-02 5.10e-03 2.13
4 6.10e-03 1.30e-03 2.00

Table 5.4 | Standing wave in a PEC cavity: IMEX-HDG-RK2 method. Maximum L2-errors and convergence
orders.

Tab. 5.5 summarizes a first comparison in terms of CPU time between the three methods while
considering a uniform mesh (Mesh 4), a P1 interpolation and the same time step ∆t for the three
time stepping schemes. Simulations have been performed with MATLAB on a multi-core computer
equipped with Intel(R) Xeon(R) CPU E5-1630 v3 @ 3.70GHz with 32Go of memory. The main

Explicit RK2 IMEX RK2 Implicit RK2
CPU time 30 mn 11 s 30 mn 37 s 36 mn 23 s

Table 5.5 | Standing wave in a PEC cavity: IMEX-HDG-RK2 method. Computational time in seconds.

two causes for the modification of the CPU time are the time step chosen and the number of non
zero elements in the global matrix we are inverting. Firstly, the time step chosen for the fully



explicit and the IMEX RK2 is the same in this case since hT COh
= h so the very small modification

in the CPU time between the fully explicit and the IMEX RK2 is due to the small modification
of the number of non zero elements in the global HDG matrix for the IMEX RK2 time scheme
representing the implicit zone in the mesh (see Fig. 5.5). On the other hand we can see a remarkable
modification in the number of non zero elements in the global HDG matrix between the latter two
time schemes and the fully implicit RK2. The fully implicit RK2 scheme is unconditionally stable
so we can use an arbitrary time step to compute the solution, but to maintain the same error level
we need to use the time step considered for the IMEX RK2 see Fig. 5.9.
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Figure 5.9 | Standing wave in a PEC cavity: IMEX-HDG-RK2 method. Time evolution of the L2-norm of the
error on Ezh for a P1 interpolation and different CFLs for the fully implicit RK2 time scheme.



IMEX-HDG-RK3

The fully discrete IMEX-HDG-RK3 scheme is given by the following steps
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(5.25)

where α, η and β are defined in Table 5.2 and δ = (
1

2
− β − η−α). After calculating Λn

h from the

last equation of (5.25), the local problem for υn,1h is deduced from the first two equations as

• If i ∈ CO
Mei

υn,1ei − υnei
∆t

= 0

⇒ υn,1ei = υnei .
(5.26)



• If j ∈ FI

Mej

υn,1ej − υnej
∆t

= −αDejυn,1ej − αCejA
ej
HDGΛn,1

⇒
(
Mej + α∆tDej

)
υn,1ej = Mejυ

n
ej − α∆tCejA

ej
HDGΛn,1

⇒
(

1

α∆t
Mej + Dej

)

︸ ︷︷ ︸
Aej

υn,1ej =
1

α∆t
Mejυ

n
ej − CejA

ej
HDGΛn,1

⇒ υn,1ej = A−1
ej

(
1

α∆t
Mejυ

n
ej − CejA

ej
HDGΛn,1

)
.

(5.27)

Then, the global problem for Λn,1
h is deduced from the second equation of (5.25) as

|Th|∑

l=1

[
AelHDG

]T GelAelHDGΛn,1 = −
|CO|∑

i=1

[
AeiHDG

]T Beiυ
n,1
ei

−
|FI|∑

j=1

[
AejHDG

]T Bejυ
n,1
ej .

(5.28)

Using (5.26) and (5.27) we can directly deduce that

QΛn,1 = −
|CO|∑

i=1

[
AeiHDG

]T Beiυ
n
ei −

1

α∆t

|FI|∑

j=1

[
AejHDG

]T BejA
−1
ej Mejυ

n
ej , (5.29)

while

Q = G−
|FI|∑

j=1

[
AejHDG

]T BejA
−1
ej CejA

ej
HDG. (5.30)

The local problem for υn,2h is deduced from the second two equations as

• If i ∈ CO
Mei

υn,2ei − υnei
∆t

= 0

⇒ υn,2ei = υnei .

(5.31)

• If j ∈ FI

Mej

υn,2ej − υnej
∆t

= αDejυ
n,1
ej + αCejA

ej
HDGΛn,1

− αDejυ
n,2
ej − αCejA

ej
HDGΛn,2

⇒ Aejυ
n,2
ej =

1

α∆t
Mejυ

n
ej + Dejυ

n,1
ej

+ CejA
ej
HDGΛn,1 − CejA

ej
HDGΛn,2

⇒ υn,2ej = A−1
ej

(
1

α∆t
Mejυ

n
ej + Dejυ

n,1
ej + CejA

ej
HDGΛn,1

− CejA
ej
HDGΛn,2

)
.

(5.32)



Then, the global problem for Λn,2
h is deduced from the fourth equation of (5.25) as

|Th|∑

l=1

[
AelHDG

]T GelAelHDGΛn,2 = −
|CO|∑

i=1

[
AeiHDG

]T Beiυ
n,2
ei

−
|FI|∑

j=1

[
AejHDG

]T Bejυ
n,2
ej .

(5.33)

Using (5.31) and (5.32) we can directly deduce that

QΛn,2 = −
|CO|∑

i=1

[
AeiHDG

]T Beiυ
n
ei

−
|FI|∑

j=1

[
AejHDG

]T BejA
−1
ej

(
1

α∆t
Mejυ

n
ej + Dejυ

n,1
ej + CejA

ej
HDGΛn,1

)
.

(5.34)

The local problem for υn,3h is deduced from the third two equations as

• If i ∈ CO

Mei

υn,3ei − υnei
∆t

= −Dejυn,2ej − CejA
ej
HDGΛn,2

⇒ υn,3ei = υnei −∆tM−1
ei

(
Dejυ

n,2
ej + CejA

ej
HDGΛn,2

)
.

(5.35)

• If j ∈ FI

Mej

υn,3ej − υnej
∆t

= −(1− α)Dejυ
n,2
ej

−(1− α)CejA
ej
HDGΛn,2

−αDejυn,3ej − αCejA
ej
HDGΛn,3

⇒ Aejυ
n,3
ej =

1

α∆t
Mejυ

n
ej −

(1− α)

α
Dejυ

n,2
ej

−(1− α)

α
CejA

ej
HDGΛn,2 − CejA

ej
HDGΛn,3

⇒ υn,3ej = A−1
ej

(
1

α∆t
Mejυ

n
ej −

(1− α)

α
Dejυ

n,2
ej

−(1− α)

α
CejA

ej
HDGΛn,2

−CejA
ej
HDGΛn,3

)
.

(5.36)



Then, the global problem for Λn,3
h is deduced from the sixth equation of (5.25) as

|Th|∑

l=1

[
AelHDG

]T GelAelHDGΛn,3 = −
|CO|∑

i=1

[
AeiHDG

]T Beiυ
n,3
ei

−
|FI|∑

j=1

[
AejHDG

]T Bejυ
n,3
ej .

(5.37)

Using (5.35) and (5.36) we can directly deduce that

QΛn,3 = −
|CO|∑

i=1

[
AeiHDG

]T Bei

[
υnei −∆tM−1

ei

(
Dejυ

n,2
ej + CejA

ej
HDGΛn,2

)]

−
|FI|∑

j=1

[
AejHDG

]T BejA
−1
ej

(
1

α∆t
Mejυ

n
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α
Dejυ

n,2
ej

− (1− α)

α
CejA

ej
HDGΛn,2

− CejA
ej
HDGΛn,3

)
.

(5.38)

The local problem for υn,4h is deduced from the fourth two equations as

• If i ∈ CO

Mei

υn,4ei − υnei
∆t

= −1

4
Dejυ

n,2
ej −

1

4
CejA

ej
HDGΛn,2

−1

4
Dejυ

n,3
ej −

1

4
CejA

ej
HDGΛn,3

⇒ υn,3ei = υnei −
∆t

4
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ei

(
Dejυ

n,2
ej + CejA

ej
HDGΛn,2 + Dejυ

n,3
ej

+ CejA
ej
HDGΛn,3

)

(5.39)



• If j ∈ FI

Mej

υn,4ej − υnej
∆t

= −βDejυn,1ej − βCejA
ej
HDGΛn,1
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(5.40)

Then, the global problem for Λn,4
h is deduced from the eighth equation of (5.25) as

|Th|∑

l=1

[
AelHDG

]T GelAelHDGΛn,4 = −
|CO|∑

i=1

[
AeiHDG

]T Beiυ
n,4
ei

−
|FI|∑

j=1

[
AejHDG

]T Bejυ
n,4
ej .

(5.41)



Using (5.39) and (5.40) we can directly deduce that

QΛn,4 = −
|CO|∑
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AeiHDG
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ej
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(5.42)

To validate that the HDG-IMEX-RK3 is a third order accurate, we must consider a P2 interpolation
since the HDG discretization is of order k + 1 in space. Tab. 5.6 summarizes a first comparison in
terms of CPU time between the three methods while considering a uniform mesh (Mesh 4), a P2

interpolation and the same time step ∆t for the three time stepping schemes. Fig. 5.10 and 5.11
respectively show the time evolution of the Ez component at a fixed point in the mesh and the
L2-norm of the error for simulations that are based on Mesh 4 in Fig. 5.1. Fig. 5.12 and Tab. 5.7
are concerned with the numerical convergence of the IMEX-HDG-RK3 method.

Explicit RK3 IMEX RK3 Implicit RK3
CPU time 1 h 8 mn 1 h 20 mn 2 h 6 mn

Table 5.6 | Standing wave in a PEC cavity: IMEX-HDG-RK3 method. Computational time in seconds.
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Figure 5.10 | Standing wave in a PEC cavity: IMEX-HDG-RK3 method. Time evolution of the exact and the
numerical solution of Ez at a fixed point with a P2 interpolation using the 4th mesh of Fig. 5.1
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Figure 5.11 | Standing wave in a PEC cavity: IMEX-HDG-RK3 method. Time evolution of the L2-norm of the
error on Ezh for a P2 interpolation.



10−2.2 10−2 10−1.8 10−1.6 10−1.4

10−4

10−3

10−2

1

3

hmin

L
∞ t
L

2 Ω
er

ro
r

Exp RK3
Imp RK3
IMEXRK3

Figure 5.12 | Standing wave in a PEC cavity: IMEX-HDG-RK3 method. Numerical convergence.

||Ez − Ezh||L∞t L2
Ω

Pk Time scheme CFL hmin Error order
4.88e-02 9.50e-03 -

Explicit RK3 0.6 2.44e-02 1.40e-03 2.76
1.22e-02 2.00e-04 2.81
6.10e-03 2.35e-05 3.09

P2 4.88e-02 9.50e-03 -
Implicit RK3 0.6 2.44e-02 1.40e-03 2.76

1.22e-02 2.00e-04 2.81
6.10e-03 2.39e-05 3.06
4.88e-02 9.50e-03 -

IMEX RK3 0.6 2.44e-02 1.40e-03 2.76
1.22e-02 2.00e-04 2.81
6.10e-03 2.37e-05 3.07

Table 5.7 | Standing wave in a PEC cavity: IMEX-HDG-RK3 method. Maximum L2-errors and convergence
orders.

5.4.2 Propagation of a standing wave in a PEC disc sector

We here again consider a model problem for which an analytical solution is available and that
consists in the propagation of a standing wave in a PEC disc sector (see [54] for details). The
domain of computation is defined by

Ωα = {x = (r cos θ, r sin θ) ∈ R2 ; |x1| ≤ 1, |x2| ≤ 1, 0 ≤ θ ≤ π

α
},

with perfectly metallic walls, while 0 < α < 1
2 . The electric permittivity and the magnetic

permeability are set to the constant vacuum values. By imposing a source current J(x, t) =
1

ω

(
ω2Φ(x) + ∆Φ(x)

)
sin(ωt), the exact time-domain solution is given by







Ez(x, t) = Φ(x) cos(ωt),

H(x, t) = − 1

ω
∇×Φ(x) sin(ωt),

(5.43)

Exact solution

with

Φ(x) = χ(r)Jα(wr) sin(αθ),

where χ ∈ C2(R) is a cut-off function such that χ = 1 if 0 ≤ r ≤ 0.2, χ = 0 if r > 0.9 and χ is
polynomial if 0.2 ≤ r ≤ 0.9 and Jα is the bessel function. The electromagnetic field is initialized
at t = 0 as Hx = Hy = 0 and

Ez(x, y, t = 0) = Φ(x).

We consider this problem for α = 2
3 , which corresponds to a domain meshed first uniformly in

Fig. 5.13 (left) and locally refined in Fig. 5.13 (right).
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Figure 5.13 | Standing wave in a PEC disc sector. Uniform and locally refined meshes for Ω 2
3
.

Fig. 5.14 shows the exact solution for Ez and Hx on the locally refined mesh for Ω 2
3
at time

t = 1.25. The solution presents a singularity at the origin, as shown on the bottom image of
Fig. 5.14. Therefore, it is necessary to locally refine the mesh in this region to preserve the
convergence of the HDG scheme, see Fig. 5.15, 5.16, 5.17 and 5.18. The first two figures show that
the approximated solution is much better for a probe point of coordinates (0.01, 0.01) (near to the
origin) for the locally refined mesh than the uniform mesh, while the second two figures shows that
the global L2 error ||Hx−Hxh||Ω and ||Ez−Ezh||Ω are also better in the locally refined mesh case.



Figure 5.14 | Standing wave in a PEC disc sector. Exact solution for Ez and Hx
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Figure 5.15 | Standing wave in a PEC disc sector. Time evolution of the exact and the numerical solution of Hx
at a fixed point (0.01, 0.01) with a P1 interpolation.
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Figure 5.16 | Standing wave in a PEC disc sector. Time evolution of the exact and the numerical solution of Ez
at a fixed point (0.01, 0.01) with a P1 interpolation.
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Figure 5.17 | Standing wave in a PEC disc sector. Time evolution of the L2-norm of the error on Hxh with a P1

interpolation.
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Figure 5.18 | Standing wave in a PEC disc sector. Time evolution of the L2-norm of the error of Ezh with a P1

interpolation.



The main asset that we can expect from the IMEX HDG method is in terms of computational
cost, in comparison to the fully explicit scheme, when using a locally refined mesh. This is due to
the fact that the time step insuring the stability will depend only on the smallest element of the
coarse mesh unlike the case of fully explicit scheme for which the time step insuring the stability
depends on the smallest element in the whole mesh. Let the CFL number be fixed for the totally
explicit and the IMEX scheme, so we have

CFL =
dtimp/exp

hT COh

=
dtexp
hTh

⇒
dtimp/exp

dtexp
=
hT COh

hTh
. (5.44)

The gain in computing time will be affected by the ratio between the smallest element in the coarse
mesh and the smallest element in the fine mesh. For the locally refined mesh of Fig. (5.13) right,
hT COh

= 4.7× 10−3 and hTh = 1.52× 10−4, and the ratio is almost 31, which implies that the time
step used for the IMEX HDG method is 31 times bigger, with the same error level as shown in
Fig. 5.19.
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Figure 5.19 | Standing wave in a PEC disc sector. Time evolution of the L2-norm of the error on Ezh with a
locally refined mesh and a P1 interpolation, while dtimp/exp = dtimp = 3.76× 10−3 and dtexp = 1.22× 10−4.

Fig. 5.19 shows the error level for the three different time integration schemes, while considering
the same time step for the implicit and the IMEX RK2 schemes

(
dtimp/exp = dtimp = 3.76× 10−3

)

and a 31 times smaller time step for the explicit RK2 scheme
(
dtexp = 1.22× 10−4

)
. Note that

these time steps are identical for all the results in Fig. 5.15, 5.16, 5.17 and 5.18. In order to improve
the gain in time computation between totally implicit and hybrid implicit/explicit RK2, we will
consider another locally refined mesh. The first one, considered before, contains 350 elements in
the implicit zone and 356 elements in the explicit zone. The HDG matrix to inverse at each time
step in this case, contains 12756 non zero elements while it contains 21300 non zero elements in
the totally implicit case. The second mesh, which is presented in Fig 5.20, contains 203 elements
in the implicit zone while 503 elements are contained in the explicit zone. The HDG matrix to
inverse at each time step for the second mesh, contains 9228 non zero elements. It is clear that
the computation time to inverse this matrix will be less than the computation time needed for the
first mesh, since we have less non zero elements. Note that, decreasing the number of elements
in the implicit zone leads to the decrease in the time step preserving the stability, since hT COh

is



smaller
(
hT COh

= 1.6× 10−3, dtimp/exp = 1.2× 10−3
)
. In other words, decreasing hT COh

leads to
the increase of the gain in terms of CPU time between the totally implicit and the IMEX time
scheme and to a smaller gain between the totally explicit and the IMEX time scheme. Figure
(5.21) shows that there is no difference in error level between the two considered mesh. Tab. 5.8
presents a first comparison in cost between the three methods while considering the two locally
refined meshes mentioned above for Ω 2

3
. Figure (5.22) shows the error level for the third order

IMEX HDGTD considered in this work (SSP-LDIRK3), using the second locally refined mesh.
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Figure 5.20 | Standing wave in a PEC disc sector. Second locally refined mesh of Ω 2
3
.
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Figure 5.21 | Standing wave in a PEC disc sector. Time evolution of the L2-norm of the error on Ezh with two
different locally refined meshes and a P1 interpolation.
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Figure 5.22 | Standing wave in a PEC disc sector. Time evolution of the L2-norm of the error on Ezh with a
locally refined mesh and a P2 interpolation.

SSP3 SSP-LDIRK3 LDIRK3
(explicit) (IMEX) (implicit)

Computational time 28 h 36 mn 5 h 30 mn 6 h 7 mn

Table 5.8 | Standing wave in a PEC disc sector. Computational time for fully explicit, IMEX and the fully implicit
RK3 HDG methods.

5.4.3 Propagation of a standing wave in a PEC cavity with ε = ε(x)

We now consider a model problem for which an analytical solution can be computed. The domain
of computation is defined by

Ω = {(x, y) ∈ R2 ; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},

with perfectly metallic walls. We consider the propagation of an eigenmode in a source-free i.e. J =
0 closed cavity. The electric permittivity is defined as

ε(x, y) =
1

c2(x, y)

{
1 0 ≤ x ≤ 1− h,
1

c2
1− h ≤ x ≤ 1,

(5.45)

while the magnetic permeability is set to the constant vacuum value.

Proposition 2. The exact time-domain solution is given by







Ez(x, y, t) = ψ(x) sin(πy) cos(λ0t),

Hx(x, y, t) = − π

λ0
ψ(x) cos(πy) sin(λ0t),

Hy(x, y, t) =
1

λ0
ψ′(x) sin(πy) sin(λ0t),

(5.46)

Exact solution

while ψ′(x) =
d

dx
ψ(x), λ0 is a constant dependent of c (more details in the proof below) and

ψ(x) =





sin (α0x) 0 ≤ x ≤ 1− h,

sin (α0(1− h))

sin (β0h)
sin (β0(1− x)) 1− h ≤ x ≤ 1,

(5.47)

where

α0 =
√
λ2

0 − π2 and β0 =

√
λ2

0

c2
− π2.

Proof. The Ez component of the the Maxwell equations described in (2.37) can be reformulated
in a second order wave form

1

c2(x)
∂2
t Ez(x, y, t)−∆Ez(x, y, t) = 0. (5.48)

We have a computational domain with perfectly metallic walls so the boundary conditions are

Ez(0, y, t) = Ez(1, y, t) = Ez(x, 0, t) = Ez(x, 1, t) = 0. (5.49)

Assuming that
Ez(x, y, t) = φ(x, t) sin(πy),

and inserting this expression in (5.48) we obtain

1

c2(x)
∂2
t φ(x, t) sin(πy)− ∂2

xφ(x, t) sin(πy) + π2φ(x, t) sin(πy) = 0,

and
1

c2(x)
∂2
t φ(x, t)− ∂2

xφ(x, t) + π2φ(x, t) = 0. (5.50)

Let us now consider that
φ(x, t) = ψ(x) cos(λt).

Back to (5.50) we obtain

− λ2

c2(x)
ψ(x) cos(λt)− ψ′′(x) cos(λt) + π2ψ(x, t) cos(λt) = 0,



so finally

ψ′′(x) +

(
λ2

c2(x)
− π2

)
ψ(x) = 0. (5.51)

c(x) is ≤ 1 forall x ∈ [0, 1] so we must consider λ > π to obtain a wave solution. Our goal now is
to solve the system below





ψ′′1(x) +
(
λ2 − π2

)
ψ1(x) = 0, 0 ≤ x ≤ 1− h

ψ′′2(x) +

(
λ2

c2
− π2

)
ψ2(x) = 0, 1− h ≤ x ≤ 1

(5.52)

Let us introduce α(λ) =
√
λ2 − π2 and β(λ) =

√
λ2

c2
− π2. The solution of (5.52) can be written

as {
ψ1(x) = c1 cos (α(λ)x) + c2 sin (α(λ)x) , 0 ≤ x ≤ 1− h
ψ2(x) = k1 cos (β(λ)x) + k2 sin (β(λ)x) , 1− h ≤ x ≤ 1

Remark 9. The second equation of (5.52) can be written as

ψ′′2(1− x) +

(
λ2

c2
− π2

)
ψ2(1− x) = 0, 0 ≤ x ≤ h.

Let z(x) = ψ2(1− x) for 0 ≤ x ≤ h, we have that z′′(x) = ψ′′2(1− x) for 0 ≤ x ≤ h, so

z′′(x) +

(
λ2

c2
− π2

)
z(x) = 0, 0 ≤ x ≤ h.

We can deduce that

z(x) = k1 cos (β(λ)x) + k2 sin (β(λ)x) , 0 ≤ x ≤ h,

which implies that

ψ2(1− x) = k1 cos (β(λ)x) + k2 sin (β(λ)x) , 0 ≤ x ≤ h.

Finally
ψ2(x) = k1 cos (β(λ)(1− x)) + k2 sin (β(λ)(1− x)) , 1− h ≤ x ≤ 1.

The solution of (5.52) is now written as
{
ψ1(x) = c1 cos (α(λ)x) + c2 sin (α(λ)x) , 0 ≤ x ≤ 1− h
ψ2(x) = k1 cos (β(λ)(1− x)) + k2 sin (β(λ)(1− x)) , 1− h ≤ x ≤ 1.

(5.53)

Our goal now is to find the four constants (c1, c2, k1 and k2). In order to do that, we will use
the boundary conditions, the continuity of ψ(x) and the continuity of ψ′(x). Eq. (5.49) gives us
ψ1(0) = ψ2(1) = 0, so finally

c1 = k1 = 0.

Since ψ ∈ C0(0, 1) we have that ψ1(1− h) = ψ2(1− h) and

c2 sin ((1− h)α(λ))− k2 sin (hβ(λ)) = 0.



Similary, ψ ∈ C1(0, 1) implies that ψ′1(1− h) = ψ′2(1− h) and

c2α(λ) cos ((1− h)α(λ)) + k2β(λ) cos (hβ(λ)) = 0.

The system of the last two boxed equation can be written in the matrix form as

 sin

(
(1− h)α(λ)

)
− sin (hβ(λ))

α(λ) cos
(

(1− h)α(λ)
)

β(λ) cos(hβ(λ))




︸ ︷︷ ︸
A(λ)



c2

k2


 =




0

0


 . (5.54)

In order to have a non zero solution for the above system, we must find a λ0 such that detA(λ0) = 0.
We have

detA(λ) = β(λ) sin ((1− h)α(λ)) cos(hβ(λ))

+ α(λ) sin (hβ(λ)) cos ((1− h)α(λ))

=
β(λ)

2
sin ((1− h)α(λ) + hβ(λ))

+
β(λ)

2
sin ((1− h)α(λ)− hβ(λ))

+
α(λ)

2
sin ((1− h)α(λ) + hβ(λ))

− α(λ)

2
sin ((1− h)α(λ)− hβ(λ))

=

(
β(λ) + α(λ)

2

)
sin ((1− h)α(λ) + hβ(λ))

+

(
β(λ)− α(λ)

2

)
sin ((1− h)α(λ)− hβ(λ))

Finally we must find λ0 such that

sin ((1− h)α(λ0) + β(λ0)h)

=

(
α(λ0)− β(λ0)

α(λ0) + β(λ0)

)
sin ((1− h)α(λ0)− β(λ0)h) .

(5.55)

In summary, for λ = λ0, the system (5.54) has an infinite number of solutions and we will take

c2 = 1 and k2 =
sin ((1− h)α(λ0))

sin (hβ(λ0))
as a solution verifying the first equation of this system, to

obtain

ψ(x) =





sin (α0x) 0 ≤ x ≤ 1− h,
sin (α0(1− h))

sin (β0h)
sin (β0(1− x)) 1− h ≤ x ≤ 1.

The electromagnetic field is initialized at t = 0 as Hx = Hy = 0 and

Ez(x, y, t = 0) = ψ(x) sin(πy).

In the following, we will consider c = 0.1, h = 0.2, λ0 = 7.0595 verifying (5.55), which is found
by a bisection method of order 10−13 (detA(λ0) = 1.0170 × 10−13). The graph of ψ is presented



in Figure (5.23). Fig. 5.24 shows two different meshes for Ω, i.e. , a uniform mesh (left) and a
locally refined mesh (right). We can see that for x ≥ 0.8 the wavelength is much smaller than the
wavelength before 0.8 so we have to increase the number of mesh elements in the region where
x ≥ 0.8 to better catch the information of the wave. The exact solution for Ez is presented in
Fig. 5.25 at time t = T. Figs. 5.26 and 5.27 illustrate the requirement of using a locally refined mesh.
Indeed, in Fig. 5.26, we observe that the approximate solution is much better for a probe point of
coordinates (0.9, 0.5) (in the region where the wavelength is smaller) for the locally refined mesh
than the uniform mesh. In addition, Fig. 5.27, clearly shows that the global L2 error ||Ez −Ezh||Ω
is reduced when using a locally refined mesh.

Figure 5.23 | Propagation of a standing wave in a PEC cavity with ε = ε(x). Profile of ψ(x) used for the exact
solution.

Figure 5.24 | Propagation of a standing wave in a PEC cavity with ε = ε(x). Uniform and locally refined meshes
for Ω.



Figure 5.25 | Propagation of a standing wave in a PEC cavity with ε = ε(x). Exact solution for Ez on Ω.
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Figure 5.26 | Propagation of a standing wave in a PEC cavity with ε = ε(x). Time evolution of the exact and the
numerical solution of Ez at a fixed point(0.9, 0.5), with a P1 interpolation.
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Figure 5.27 | Propagation of a standing wave in a PEC cavity with ε = ε(x). Time evolution of the L2-norm of
the error on Ezh with a P1 interpolation.

Here we have hT COh
= 2.90× 10−3 and hTh = 2.13× 10−4 (ratio between them is almost 13.6).

Thus, the time step used for the IMEX HDG method is 13.6 times bigger than the one used for
the fully explicit HDG method, without affecting the overall accuracy as shown in Fig. 5.28.
Note that the time steps used for the implicit and IMEX HDG RK2 methods are the same(
dtimp/exp = dtimp = 2.32× 10−3

)
, and dtexp = 1.7 × 10−4 is the time step considered for the

fully explicit HDG RK2 method. The implicit zone contains 1864 elements, while 391 elements are
contained in the explicit zone. the global HDG matrix to inverse at each time step in this case,
contains 58480 non zero elements while it contains 67864 non zero elements in the totally implicit
case. Tab. 5.9 presents a comparison in terms of computing cost between the three methods while
considering the locally refined mesh for Ω (Fig. 5.25) with a P1 interpolation. Fig. 5.29 shows the
time evolution of the L2-norm of the error of Ez with the third order SSP-LDIRK3 IMEX HDG
method.
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Figure 5.28 | Propagation of a standing wave in a PEC cavity with ε = ε(x). Time evolution of the L2-norm of
the error for a P1 interpolation.
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Figure 5.29 | Propagation of a standing wave in a PEC cavity with ε = ε(x). Time evolution of the L2-norm of
the error for a P2 interpolation.

Explicit RK2 IMEX RK2 Implicit RK2
Computational time 50 h 33 mn 4 h 23 mn 4 h 45 mn

Table 5.9 | Propagation of a standing wave in a PEC cavity with ε = ε(x). Computational time for fully explicit,
IMEX and fully implicit RK2 HDG methods.

5.4.4 A nano-waveguide problem

This is a prototype problem of a photonic crystal structure in the emerging nanophotonics area [40].
The idea here is to simulate an idealized waveguide device before it has undertaken an optimization
procedure to maximize the performance of directional transmission (see [55] for example). The
photonic crystal type represents a nano-structuring device encapsulated in a 10.25× 10.25 square
which is composed of 15 cylindrical holes of radius 0.3125. Here µ = 1 and the value of the
permittivity ε corresponds to silicium within the holes (ε = 3.14), silica (ε = 1.5) in the device
enclosing the holes, and surrounding air (ε = 1).
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Figure 5.30 | A nano-waveguide problem. The photonic crystal structure.



We use absorbing boundary conditions with an incident plane wave of frequency 0.5m−1 (ω =
π). We solve the problem for a time period equal T = 16/

√
2. First, we consider the photonic

crystal structure presented in Fig. 5.30 with a non locally refinement grid, see Fig. 5.31. This
mesh consists of 1830 elements, 285 elements for the 15 silicium holes, 1083 elements for the silica
part and the rest for the surrounding air. Fig. 5.32 shows the solution for Ez on the uniform mesh
at time t = 16/

√
2 with the explicit RK3 time integration and for a P2 interpolation. The time

step chosen is ∆t = 1.26× 10−2m.

Figure 5.31 | A nano-waveguide problem. A non locally refined grid for the photonic crystal device.
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Figure 5.32 | A nano-waveguide problem. The electric field at time T = 16/
√

2 with an explicit RK3 time
integration and for a P2 interpolation.



Then, we consider the same photonic crystal structure, but with a smaller distance (d = 0.025)
between the holes (see Fig. 5.33 for details). The locally refined mesh considered in Fig. 5.34
consists of 2290 elements, 948 elements for the 15 silicium holes, 1168 elements for the silica part
and the rest for the surrounding air. Fig. 5.35 shows the considered implicit zone in yellow (190
elements) and that of the explicit zone in blue (2100 elements). Here we have hT COh

= 1.18× 10−2

and hTh = 3.78× 10−3 (ratio between them is almost 3). Thus, the time step used for the IMEX-
HDG-RK3 method is three times bigger than the one used for the fully explicit RK3 HDG method
(see (5.44)).
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Figure 5.33 | A nano-waveguide problem. The photonic crystal structure.

Figure 5.34 | A nano-waveguide problem. Locally refined mesh for the photonic crystal device.



Figure 5.35 | A nano-waveguide problem. T COh and T FIh of the locally refined mesh for the photonic crystal device.

Fig. 5.36 shows the difference in sparsity for the global matrix Q defined in (5.30), between the
explicit HDG, implicit HDG and IMEX-HDG-RK3 methods. We can see that, due to the IMEX
scheme, we have a block-diagonal matrix corresponding to the degrees of freedom in the coarse
part and a sparse matrix in the fine part while it is not the case for the fully implicit scheme. In
particular, in comparison with the fully implicit scheme, we have a much cheaper global matrix
to inverse at each time step with the IMEX-HDG-RK3 method, the global HDG matrix for the
fully implicit RK3 scheme contains 154719 non zero element while that of the IMEX-HDG-RK3
contains 41319 non zero element only. Tab. 5.10 compares the three methods in terms of CPU time
while considering the mesh shown in Fig. 5.35, a P2 interpolation and the same time step for the
IMEX and the fully implicit schemes. Fig. 5.37 and 5.38 show that the solution for Ez with the
IMEX-HDG-RK3 time integration is similar to the solution Ez with the fully explicit RK3 time
scheme on the locally refined mesh (Fig. 5.35) at time t = T and for a P2 interpolation. The time
step chosen for the IMEX-HDG-RK3 is ∆t = 7 × 10−3m, while it is ∆t = 2.26 × 10−3m for the
fully explicit RK3.
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Figure 5.36 | A nano-waveguide problem.The global matrix Q for explicit RK3, IMEX RK3 and fully implicit RK3
on the mesh presented in Fig. (5.35).

Explicit RK3 IMEX RK3 Implicit RK3
Computational time 4 h 30 mn 1 h 30 mn 2 h 30 mn

Table 5.10 | A nano-waveguide problem. Computational time for fully explicit, IMEX and fully implicit RK3 HDG
methods.
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Figure 5.37 | A nano-waveguide problem. The electric field at time T = 16/
√

2 with the IMEX-HDG-RK3 time
integration and for a P2 interpolation with a small distance between the silicium holes.
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Figure 5.38 | A nano-waveguide problem. The electric field at time T = 16/
√

2 with the fully explicit RK3 time
integration and for a P2 interpolation with a small distance between the silicium holes.

5.5 Conclusion

In this chapter we have presented hybrid implicit/explicit time schemes for the hybridizable dis-
continuous Galerkin discretization of the time-dependent Maxwell’s equations with three different
orders. We have proved, in the case of the first and second order, that the stability of these schemes



depends only on the coarse mesh. Then, we have presented several numerical examples: First on
a simple test case to validate and study the numerical convergence of these methods. Second, we
studied two cases where the analytical solution is irregular. And finally we have presented a phys-
ical problem, namely photonic crystal device where we don’t have access to an analytical solution.
Overall we obtained that this contribution is to be employed as an efficient way of reducing the
computational time compared to the fully explicit and implicit schemes without any loss in the
accuracy.



6

Outlook

First, the advantages of using HDG methods over those of DG methods in stationary and time-
domain problems while using fully implicit schemes were presented. Three sample examples from
previous works were explained in detail, and numerical results showed the outperforming of the
HDG method over that of the DG method both in the memory requirement and CPU time metrics.
Then, a fully explicit HDG method for the 3D time-domain Maxwell equations was formulated
and several theoretical proofs were given. The method can be seen as a generalization of the
classical DGTD scheme based on upwind fluxes. It coincides with the latter scheme for a particular
choice of the stabilization parameter τ introduced in the definition of numerical traces in the HDG
framework. The influence of this parameter on the scheme was assessed numerically, and the
numerical solutions of Maxwell equations in the case of propagation of a standing wave in a cubic
PEC cavity, propagation of a plane wave in a homogeneous domain and scattering of a plane wave
by a dielectric sphere were presented in the last section of the chapter 3.
The next chapter contains a full presentation of a postprocessing approach for the fully explicit
hybridizable discretization of the time-dependent Maxwell’s equations in 3D. This postprocessing
technique is inexpensive, and can be computed independently in each mesh element of the mesh,
and at every time step of interest. It is thus well adapted to parallel computer architectures.
Moreover, it is particularly suited to applications requiring a higher accuracy in localized regions,
either in time or space. Numerical examples were presented, both with analytical solutions and in
complicated geometries, that indicate that our postprocessing approach improves the convergence
rate of the discrete solution in the H(curl)-norm by one order. Overall, this contribution is to
be employed as an efficient way of reducing the H(curl)-norm error of discontinuous Galerkin
discretizations.
The final chapter aims at elaborating a hybrid implicit/explicit (IMEX) HDGmethod for Maxwell’s
equations. In the first place, the semi-discrete formulation were written in terms of coarse and fine
elements and then three IMEX time schemes of different orders were proposed to complete the
fully discrete formulation of the method. Several theoretical proofs were given in order to obtain
the stability of the method for the first and second order IMEX time integration when combined
to the HDG spatial discretization. Numerical results were obtained with a 2D Matlab code on
four different numerical cases assessing the convergence, the accuracy and the gain obtained by
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the method in terms of CPU time in the cases where the locally refined meshes are a must for the
accuracy of the approximated solution.

6.1 Future works

The topics presented in this manuscript call for a number of possible further developments, both
from the numerical and the physical point of view. We close this manuscript with a shortlist of
these topics:

• Giving a theoretical proof for the k + 1 convergence order of the postprocessed solution in
the H(curl)-norm.

• Giving a theoretical proof for the optimal convergence order of the proposed hybrid impli-
cit/explicit HDG schemes. The proofs for the first and second order will be direct application
to those done in [30], while for the third order, the proof is more complex.

• Devising an IMEX HDGTD formulation for the system of time-domain Maxwell equations
coupled to a generalized dispersion model that can be fitted to describe the behavior of a
wide range of metallic nanostructures [56].

• Elaborate a 3D code with the IMEX hybridizable discontinuous Galerkin method to simulate
some realistic physical cases.



7

Appendix

This appendix contains a conference paper on the fully explicit HDGTD method for Maxwell’s
equations [37] and a submitted paper on a postprocessing technique for a discontinuous Galerkin
discretization of time-dependent Maxwell’s equations.

153



An Explicit Hybridizable Discontinuous
Galerkin Method for the 3D
Time-Domain Maxwell Equations

Georges Nehmetallah, Stéphane Lanteri, Stéphane Descombes,
and Alexandra Christophe

1 Motivations and Objectives

The DGTD method is nowadays a very popular numerical method in the compu-
tational electromagnetics community. A lot of works are mostly concerned with
time explicit DGTD methods relying on the use of a single global time step
computed so as to ensure stability of the simulation. It is however well known
that when combined with an explicit time integration method and in the presence
of an unstructured locally refine mesh, a high order DGTD method suffers from a
severe time step size restriction. An alternative approach that has been considered
in [5, 7, 16] is to use a hybrid explicit-implicit (or locally implicit) time integration
strategy. Such a strategy relies on a component splitting deduced from a partitioning
of the mesh cells in two sets respectively gathering coarse and fine elements. The
computational efficiency of this locally implicit DGTD method depends on the size
of the set of fine elements that directly influences the size of the sparse part of the
matrix system to be solved at each time. Therefore, an approach for reducing the size
of the subsystem of globally coupled (i.e. implicit) unknowns is worth considering
if one wants to solve very large-scale problems.

A particularly appealing solution in this context is given by the concept of
hybridizable discontinuous Galerkin (HDG) method. The HDG method has been
first introduced by Cockbrun et al. in [4] for a model elliptic problem and has
been subsequently developed for a variety of PDE systems in continuum mechanics
[13]. The essential ingredients of a HDG method are a local Galerkin projection
of the underlying system of PDEs at the element level onto spaces of polynomials
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to parameterize the numerical solution in terms of the numerical trace; a judicious
choice of the numerical flux to provide stability and consistency; and a global jump
condition that enforces the continuity of the numerical flux to arrive at a global
weak formulation in terms of the numerical trace. The HDG methods are fully
implicit, high-order accurate and most importantly, they reduce the globally coupled
unknowns to the approximate trace of the solution on element boundaries, thereby
leading to a significant reduction in the degrees of freedom. HDG methods for the
system of time-harmonic Maxwell equations have been proposed in [9, 10, 14].
We have only developed the implicit HDG method for the time-domain Maxwell
equations [3]. In view of devising a hybrid explicit-implicit HDG method, a
preliminary step is therefore to elaborate on the principles of a fully explicit
HDG formulation. It happens that fully explicit HDG methods have been studied
recently for the acoustic wave equation by Kronbichler et al. [8] and Stanglmeier et
al. [15]. In [15] the authors present a fully explicit, high order accurate in both
space and time HDG method. In this paper we outline the formulation of this
explicit HDGTD, present numerical results including a preliminary assessment of its
superconvergence properties. We adopt a low storage Runge-Kutta scheme [2] for
the time integration of the semi-discrete HDG equations. This work is a first step
towards the construction of a hybrid explicit-implicit HDG method for time-domain
electromagnetics.

2 Problem Statement and Notations

We consider the system of 3D time-domain Maxwell equations on a bounded
polyhedral domain Ω ⊂ R

3

⎧
⎨

⎩

ε∂tE − curlH = −J, in Ω × [0, T ],
μ∂tH + curlE = 0, in Ω × [0, T ], (1)

where the symbol ∂t denotes a time derivative, J the current density, T a final time,
E(x, t) and H(x, t) are the electric and magnetic fields. The dielectric permittivity
ε and the magnetic permeability μ are varying in space, time-invariant and both
positive functions. The boundary of Ω is defined as ∂Ω = Γm ∪Γa with Γm ∩Γa =
∅. The boundary conditions are chosen as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n × E = 0, on Γm × [0, T ],
n × E + n × (n × H) = n × Einc + n × (n × Hinc)

= ginc, on Γa × [0, T ].
(2)
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Here n denotes the unit outward normal to ∂Ω and (Einc, Hinc) a given incident field.
The first boundary condition is often referred as a metallic boundary condition and
is applied on a perfectly conducting surface. The second relation is an absorbing
boundary condition and takes here the form of the Silver-Müller condition. It is
applied on a surface corresponding to an artificial truncation of a theoretically
unbounded propagation domain. Finally, the system is supplemented with initial
conditions: E0(x) = E(x, 0) and H0(x) = H(x, 0). For sake of simplicity, we omit
the volume source term J in what follows.

We introduce now the notations and approximation spaces. We first consider a
partition Th of Ω ⊂ R

3 into a set of tetrahedron. Each non-empty intersection of
two elements K+ and K− is called an interface. We denote by FI

h the union of all
interior interfaces of Th, by FB

h the union of all boundary interfaces of Th, and
Fh = FI

h ∪FB
h . Note that ∂Th represents all the interfaces ∂K for all K ∈ Th. As

a result, an interior interface shared by two elements appears twice in ∂Th, unlike in
Fh where this interface is evaluated once. For an interface F ∈ FI

h, F = K
+∩K

−
,

let v± be the traces of v on F from the interior of K±. On this interior face, we define
mean values as {v}F = (v++v−)/2 and jumps as �v�F = n+×v++n−×v− where
the unit outward normal vector to K is denoted by n±. For the boundary faces these
expressions are modified as {v}F = v+ and �v�F = n+ × v+ since we assume v is
single-valued on the boundaries. In the following, we introduce the discontinuous
finite element spaces and some basic operations on these spaces for later use. Let
PpK

(K) denotes the space of polynomial functions of degree at most pK on the
element K ∈ Th. The discontinuous finite element space is introduced as

Vh =
{

v ∈
[
L2(Ω)

]3
such that v|K ∈ [

PpK
(K)

]3
, ∀K ∈ Th

}

, (3)

where L2(Ω) is the space of square integrable functions on the domain Ω . The
functions in Vh are continuous inside each element and discontinuous across the
interfaces between elements. In addition, we introduce a traced finite element space

Mh =
{

η ∈
[
L2(Fh)

]3
such that η|F ∈ [

PpF
(F )

]3

and
(
η · n

) |F = 0, ∀F ∈ Fh

}
.

(4)

For two vectorial functions u and v in
[
L2(D)

]3
, we denote (u, v)D = ∫

D
u · v dx

provided D is a domain in R
3, and we denote < u, v >F = ∫

F
u · v ds if F is a
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two-dimensional face. Accordingly, for the mesh Th we have

(·, ·)Th
=

∑

K∈Th

(·, ·)K , 〈·, ·〉∂Th
=

∑

K∈Th

〈·, ·〉∂K ,

〈·, ·〉Fh
=

∑

F∈Fh

〈·, ·〉F , 〈·, ·〉Γa
=

∑

F∈Fh∩Γa

〈·, ·〉F .

We set vt = −n × (n × v) , vn = n (n · v) where vt and vn are the tangential and
normal components of v such as v = vt + vn.

3 Principles and Formulation of the HDG Method

Following the classical DG approach, approximate solutions (Eh,Hh), for all t ∈
[0, T ], are seeked in the space Vh × Vh satisfying for all K in Th

⎧
⎪⎨

⎪⎩

(
ε∂tEh, v

)

K
− (

curlHh, v
)

K
= 0, ∀v ∈ Vh,

(
μ∂tHh, v

)

K
+ (

curlEh, v
)

K
= 0, ∀v ∈ Vh.

(5)

Applying Green’s formula, on both equations of (5) introduces boundary terms
which are replaced by numerical traces Êh and Ĥh in order to ensure the connection
between element-wise solutions and global consistency of the discretization. This
leads to the global formulation for all t ∈ [0, T ]

⎧
⎪⎪⎨

⎪⎪⎩

(
ε∂tEh, v

)

K
− (

Hh, curlv
)

K
+

〈
Ĥh, n × v

〉

∂K
= 0, ∀v ∈ Vh,

(
μ∂tHh, v

)

K
+ (

Eh, curlv
)

K
−

〈
Êh, n × v

〉

∂K
= 0, ∀v ∈ Vh.

(6)

It is straightforward to verify that n×v = n×vt and < H, n×v >= − < n×H, v >.
Therefore, using numerical traces defined in terms of the tangential components Ĥt

h

and Êt
h, we can rewrite (6) as

⎧
⎪⎪⎨

⎪⎪⎩

(
ε∂tEh, v

)

K
− (

Hh, curlv
)

K
+

〈
Ĥt

h, n × v
〉

∂K
= 0, ∀v ∈ Vh,

(
μ∂tHh, v

)

K
+ (

Eh, curlv
)

K
−

〈
Êt

h, n × v
〉

∂K
= 0, ∀v ∈ Vh.

(7)

The hybrid variable Λh introduced in the setting of a HDG method [4] is here
defined for all the interfaces of Fh as

Λh := Ĥt
h, ∀F ∈ Fh. (8)



An Explicit HDG Method for the 3D Time-Domain Maxwell Equations 517

We want to determine the fields Ĥt
h and Êt

h in each element K of Th by solving
system (7) and assuming that Λh is known on all the faces of an element K . We
consider a numerical trace Êt

h for all K given by

Êt
h = Et

h + τKn × (Λh − Ht
h) on ∂K, (9)

where τK is a local stabilization parameter which is assumed to be strictly positive.
We recall that n × Ht

h = n × Hh. The definitions of the hybrid variable (8) and
numerical trace (9) are exactly those adopted in the context of the formulation of
HDG methods for the 3D time-harmonic Maxwell equations [10–12, 14].

Following the HDG approach, when the hybrid variable Λh is known for all the
faces of the element K , the electromagnetic field can be determined by solving the
local system (7) using (8) and (9).

From now on we will note by ginc the L2 projection of ginc on Mh. Summing
the contributions of (7) over all the elements and enforcing the continuity of
the tangential component of Êh, we can formulate a problem which is to find
(Eh, Hh,Λh) ∈ Vh × Vh × Mh such that for all t ∈ [0, T ]

(
ε∂tEh, v

)

Th
− (

Hh, curlv
)

Th
+ 〈

Λh, n × v
〉

∂Th
= 0, ∀v ∈ Vh,

(
μ∂tHh, v

)

Th
+ (

Eh, curlv
)

Th
−

〈
Êt

h, n × v
〉

∂Th

= 0, ∀v ∈ Vh,
〈
�Êh�, η

〉

Fh

− 〈
Λh, η

〉

Γa
−

〈
ginc, η

〉

Γa

= 0, ∀η ∈ Mh,

(10)

where the last equation is called the conservativity condition with which we ask the
tangential component of Êh to be weakly continuous across any interface between
two neighboring elements.

We now reformulate the system with numerical fluxes. We can deduce from the
third equation of (10) that

Λh =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

τK+ + τK−

(
2

{
τKHt

h

}

F
+ �Et

h�F

)
, if F ∈ FI

h,

1

τK

n × Et
h + Ht

h, if F ∈ Fh ∩ Γm,

1

τK + 1

(
τKHt

h + n × Et
h − ginc

)
. if F ∈ Fh ∩ Γa.

(11)

By replacing (11) in (9) we obtain Êt
h = Êt,+

h = Êt,−
h with

Êt
h =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τK+τK−

τK+ + τK−

(

2

{
1

τK

Et
h

}

F

− �Ht
h�F

)

, if F ∈ FI
h,

0, if F ∈ Fh ∩ Γm,

1

τK + 1

(
Et

h − τKn × Ht
h − τKn × ginc

)
. if F ∈ Fh ∩ Γa.

(12)
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Thus, the numerical traces (8) and (9) have been reformulated from the conserva-
tivity condition. This means that the conservativity condition is now included in the
new formulation of the numerical fluxes and can be neglected in the global system of
equations. Hence, the local system (6) takes the form of a classical DG formulation,
∀v ∈ Vh

⎧
⎪⎪⎨

⎪⎪⎩

(
ε∂tEh, v

)

K
− (

Hh, curlv
)

K
+

〈
Ĥt

h, n × v
〉

∂K
= 0,

(
μ∂tHh, v

)

K
+ (

Eh, curlv
)

K
−

〈
Êt

h, n × v
〉

∂K
= 0.

(13)

where the numerical fluxes are defined by (11) and (12).

Remark 3 Let YK = √
εK/

√
μK be the local admittance associated to cell K and

ZK = 1/YK the corresponding local impedance. If we set τK = ZK in (11) and
1/τK = YK in (12), the obtained numerical traces coincide with those adopted in
the classical upwind flux DGTD method [6].

4 Numerical Results

In order to validate and study the numerical convergence of the proposed HDG
method, we consider the propagation of an eigenmode in a closed cavity (Ω
is the unit square) with perfectly metallic walls. The frequency of the wave is
f = √

3/
√

2c0 where c0 is the speed of light in vacuum. The electric permittivity
and the magnetic permeability are set to the constant vacuum values. The exact
time-domaine solution is given in [6].

We start our study by assuming that the penalization parameter τ is equal to 1. In
order to insure the stability of the method, numerical CFL conditions are determined
for each value of the interpolation order pK . In our particular case we have εK and
μk are constant = 1 ∀K ∈ Th, so we have verified that, as we said in Remark 3, for
τ = 1, the values of CFL number correspond to the classical upwind flux-based DG
method. In Table 1 we summarize the maximum Δt obtained numerically to insure
the stability of the scheme

Given these values of Δt max, the L2-norm of the error is calculated for a
uniform tetrahedral mesh with 3072 elements which is constructed from a finite
difference grid with nx = ny = nz = 9 points, each cell of this grid yielding
6 tetrahedrons. The wave is propagated in the cavity during a physical time tmax
corresponding to 8 periods (as shown in Fig. 1). Figure 2 depicts a comparison of

Table 1 Numerically obtained values of Δt max

Interpolation order P1 P2 P3 P4

Δt max (s.) 0.32 × 10−9 0.19 × 10−9 0.13 × 10−9 0.94 × 10−10
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Fig. 1 Time evolution of the
exact and the numerical
solution of Ex at point
A(0.25, 0.25, 0.25) with a P3
interpolation
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Fig. 2 Time evolution of the
L2-norm of the error for P4
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the time evolution of the L2-norm of the error between the solution obtained with
an HDG method and a classical upwind flux-based DG method for pK = 4. An
optimal convergence with order pK + 1 is obtained as shown in Fig. 3.

Now, we keep the same case than previously and we assess the behavior of the
HDG method for various values of the penalization parameter τ . We observe that
the time evolution of the electromagnetic energy for any order of interpolation, for
different values of the parameter τ �= 1 and when the Δt used is fixed to the values
defined in Table 1, the energy increases in time. In fact, It is necessary to decrease
the Δt max for each value of τ to assure the stability (see Table 2 and Fig. 4). For
this example, the optimal cost will be for the parameter τ = 1 (having the same cost
as an upwind flux for a DG method) otherwise we will spend more time to finish
our simulation. On Fig. 5, we show the time evolution of the L2-error for several
values of τ with respect to the maximal time step for the considered parameters.
In addition, Table 3 sums up numerical results in term of maximum L2 errors and
convergence rates. It appears that the order of convergence is not affected when the
stabilization parameter is varied from 1 (with their associated CFL conditions).
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Table 2 Numerically obtained values of the CFL number as a function of the stabilization
parameter τ for a P1 interpolation

τ 0.1 1.0 2.0 5.0 10.0

Δt max (s.) 0.31×10−10 3.2×10−10 1.7×10−10 0.66×10−10 0.32×10−10

Fig. 4 Variation of the Δt
max as a function of τ
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Fig. 5 Time evolution of the
L2-error as a function of τ

with a P3 interpolation
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Table 3 Maximum L2-errors and convergence orders

τ = 1.0

1/h P1, Δt = 0.16 × 10−09
P2, Δt = 0.99 × 10−10

P3, Δt = 0.66 × 10−10

1/4 8.29e−02 – 9.87e−03 – 9.34e−04 –

1/8 1.90e−02 2.13 1.34e−03 2.88 5.68e−05 4.04

1/16 4.74e−03 2.00 1.72e−04 2.97 3.46e−06 4.04

τ = 0.1

1/h P1, Δt = 0.16 × 10−10
P2, Δt = 0.96 × 10−11

P3, Δt = 0.66 × 10−11

1/4 2.14e−01 – 1.78e−02 – 2.19e−03 –

1/8 5.46e−02 1.97 2.85e−03 2.65 1.68e−04 3.70

1/16 1.18e−02 2.21 4.06e−04 2.81 1.14e−05 3.88

τ = 10.0

1/h P1, Δt = 0.16 × 10−10
P2, Δt = 0.96 × 10−11

P3, Δt = 0.68 × 10−11

1/4 1.74e−01 – 1.53e−02 – 1.68e−03 –

1/8 4.24e−02 2.04 2.23e−03 2.76 1.17e−04 3.84

1/16 9.4e−03 2.16 3.10e−04 2.87 7.81e−06 3.91
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5 Local Postprocessing

We define here, following the ideas of the local postprocessing developed in [1], new
approximations for electric and magnetic field and expect that both En∗

h and Hn∗
h

converge with order k + 1 in the Hcurl(Th)-norm, whereas En
h and Hn

h converge
with order k in the Hcurl(Th)-norm. To postprocess En∗

h we first compute an
approximation (pn

1,h, pn
2,h) ∈ V(K) × V(K) to the curl of E, p1(t

n) = ∇ × E(tn)

and the curl of H, p2(t
n) = ∇ × H(tn) by locally solving the below system

(pn
1,h, v)K = (En

h,∇ × v)K − 〈Êt,n
h , n × v〉∂K ∀v ∈ V(K)

and,

(pn
2,h, v)K = (Hn

h,∇ × v)K − 〈Ĥt,n
h , n × v〉∂K ∀v ∈ V(K)

We then find (En∗
h , Hn∗

h ) ∈ [Pk+1(K)]3 × [Pk+1(K)]3 such that

⎧
⎨

⎩

(∇ × En∗
h ,∇ × W)K = (pn

h,1,∇ × W)K, ∀W ∈ [Pk+1(K)]3,

(En∗
h ,∇Y )K = (En

h,∇Y )K ∀Y ∈ Pk+2(K)

and,

⎧
⎨

⎩

(∇ × Hn∗
h ,∇ × W)K = (pn

h,2,∇ × W)K, ∀W ∈ [Pk+1(K)]3,

(Hn∗
h ,∇Y )K = (Hn

h,∇Y )K ∀Y ∈ Pk+2(K)

It is important to point out that we can compute En∗
h and Hn∗

h at any time step without
advancing in time. Hence, the local postprocessing can be performed whenever we
need higher accuracy at particular time steps. Numerical results given in Table 4
shows that a second order convergence rate is obtained for the post-processed
solution.

6 Conclusion

In this paper we have presented an explicit HDG method to solve the system of
Maxwell equations in 3D. The next step is to couple explicit and implicit HDG
methods to treat the case of a locally refined mesh.
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Table 4 Errors and orders of
convergence before and after
postprocessing

τ = 1.0

||E − Eh||Hcurl
||E − E∗

h||Hcurl

Pk 1/h Error Order Error Order

P1 1/4 9.30e−01 – 6.83e−01 –

1/6 5.84e−01 1.14 3.10e−01 1.95

1/8 4.34e−01 1.03 1.67e−01 2.15

P2 1/4 1.67e−01 – 4.28e−02 –

1/6 7.46e−02 1.98 1.19e−02 3.16

1/8 4.29e−02 1.92 4.90e−03 3.06

P3 1/4 2.30e−02 – 5.00e−03 –

1/6 7.10e−03 2.90 1.10e−03 3.79

1/8 3.00e−03 2.99 3.58e−04 3.84
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Université Côte d’Azur, Inria, CNRS, LJAD
2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France
E-mail: georges.nehmetallah@inria.fr

T. Chaumont-Frelet
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1 Introduction

Maxwell’s equations are the most general model of electrodynamic theory
[14]. As a result, they are employed in a variety of applications, ranging
from telecommunication engineering [17] to nanophotonics [12], to study the
propagation of an electromagnetic field and its interaction with structures and
matter.

Nowadays, numerical schemes are routinely employed to simulate the prop-
agation of electromagnetic waves by computing approximate solutions to
Maxwell’s equations [7]. While several approaches, such as finite difference
methods [20], are available, we focus here on discontinuous Galerkin methods
[11,16,19], which have recently received a lot of attention, due to their great
flexibility and ability to handle complex geometries.

Even if currently available computational power allows for useful and
realistic simulations, modeling accurately the propagation of electromagnetic
fields in complex geometries is still a challenging and very costly task. As a
result, numerical schemes are expected to be accurate and robust, but also
very efficient and adapted to modern computer architectures.

In the context of finite element methods, postprocessing techniques are
an attractive way to improve the accuracy of an already computed discrete
approximation. In many cases, these techniques can increase the order of
convergence of the method at a very moderate cost. In addition, they often
have a “local” nature, which allows for the design of embarrassingly parallel
implementations. As a result, postprocessing techniques and superconvergence
have attracted a considerable attention in the past decades [2,5,6,13].

In this work, we elaborate a novel postprocessing technique for time-
dependent Maxwell’s equations. Following [19], Maxwell’s equations are dis-
cretized with a first-order discontinuous Galerkin method coupled with an
explicit Runge-Kutta time-integration scheme [8]. This postprocessing improves
the convergence rate in the H(curl)-norm by one order. As with similar post-
processing techniques devised in the past, our proposed approach is local, in the
sense that the enhanced solution is computed independently in each cell of the
computational mesh, and at each time step of interest. This is a key property as
(a) it enables the design of highly parallel numerical algorithms, and (b) when
the targeted application only requires the knowledge of the electromagnetic
field in a limited region of space and/or time, the amount of computations is
greatly reduced. Our postprocessing technique is inspired by two recent works,
namely, a postprocessing for an explicit HDG discretization of the 2D acoustic
wave equation [18], and a postprocessing for a HDG discretization of the 3D
time-harmonic Maxwell’s equations [1].

We do not carry out the mathematical analysis of the proposed postprocess-
ing but instead, we present a number of numerical experiments highlighting
its main features. As a result, our work is organized as follows: in Section
2, we recall the settings and key notations related to Maxwell’s equations,
discontinuous Galerkin methods, and Runge-Kutta schemes. We describe our
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postprocessing in Section 3, and Section 4 presents numerical illustrations of
the resulting methodology.

2 Settings

2.1 Maxwell’s equations

We consider Maxwell’s equations set in a Lipschitz polyhedral domain Ω ⊂ R3

and in a time interval (0, T ). Specifically, given J : (0, T ) × Ω → R3, the
electromagnetic field E,H : (0, T )×Ω → R3 satisfies

{
ε∂tE −∇×H = J ,
µ∂tH +∇×E = 0, (1a)

in (0, T ) × Ω, where the functions ε, µ : Ω → R respectively represent the
electric permittivity and the magnetic permeability of the materials contained
in Ω. We assume that 0 < c ≤ ε, µ ≤ C a.e. in Ω for fixed constants c and C.

The boundary of Ω is split into two subdomains ΓA and ΓP, and we prescribe
the boundary conditions





E × nΩ +
√
µ

ε
(H × nΩ)× nΩ = G on (0, T )× ΓA,

E × nΩ = 0 on (0, T )× ΓP,
(1b)

where nΩ denotes the unit vector normal to ∂Ω pointing outward Ω and
G : (0, T ) × ΓA → R3 is a tangential load term (i.e. G · nΩ = 0). The first
relation of (1b) is a first-order absorbing boundary condition (ABC) known as
the Silver-Muller ABC. It is the simplest form of ABC for Maxwell’s equations,
and one could alternatively consider higher order ABCs [15] or perfectly
matched layers [19]. The second equation in (1b) models the boundary of a
perfectly conducting material. Finally, initial conditions are imposed in Ω

{
E|t=0 = E0,
H|t=0 = H0,

(1c)

where E0,H0 : Ω → R3 are given functions.
Classically [4], under the assumption that the data µ, ε, J , G, E0 and H0

are sufficiently smooth, there exists a unique pair of solution (E,H) to (1).
We finally mention that in many applications, G is defined in order to

inject an “incident” field in the domain. In this case, we have

G := Einc × nΩ +
√
µ

ε
(H inc × nΩ)× nΩ , (2)

where (Einc,H inc) is a solution to Maxwell’s equations in free space. An
important example that we will consider in Section 4 is the case where the
incident field is a plane wave.
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2.2 Mesh and notations

The domain Ω is partitioned into a mesh Th. We assume that Th consists of
straight tetrahedral elements K, but hexahedral and/or curved elements could
be considered as well. We assume that ε and µ take constant values εK and
µK in each element K ∈ Th.

For the sake of simplicity, we restrict our attention to meshes that are
conforming in the sense of [10]. Specifically, the intersection K− ∩K+ of two
distinct elements K± ∈ Th is either a full face, a full edge, or a single vertex of
both K− and K+. In particular, hanging nodes are not covered by the present
analysis. This is not an intrinsic limitation of the method, but this assumption
greatly simplifies the forthcoming presentation.

We denote by Fh the faces of the partition. Recalling that Th is conforming,
each face F ∈ Fh is either the intersection ∂K−∩∂K− of two elements K± ∈ Th,
or is contained in the intersection ∂K ∩ ∂Ω of a single element K ∈ Th with
the boundary of the domain. We respectively denote by F int

h , FP
h and FA

h the
set internal faces, and the sets of faces belonging to ΓP and ΓA.

We associate with each face F ∈ Fh a unit normal nF , with the convention
that nF = nΩ if F ∈ FP

h ∪ FA
h . If F ∈ F int

h , the orientation of the normal is
arbitrary, but fixed. If v : Ω → R3 is a function admitting well-defined traces
on F ∈ Fh, the notations JvKF and {{v}}F denote the “jump” and the “mean”
of v on F . If F ∈ F int

h with F = ∂K− ∩K+, these quantities are defined by

JvKF := v+|F (n+ · nF ) + v−|F (n− · nF ), {{v}}F := 1
2 (v+|F + v−|F ) ,

where v± := v|K± and n± denotes the unit outward normal to K±, while we
simply set

JvKF := {{v}}F := v|F ,
if F ∈ FP

h ∪ FA
h .

In the remaining of this work, k is a fixed non-negative integer representing
a polynomial degree. For every element K ∈ Th, Pk(K) denotes the set of
polynomials defined on K of degree less than or equal k, and Pk(K) :=
(Pk(K))3 denotes the space of vector-valued functions having polynomial
components. We finally employ the notation

Pk(Th) :=
{
v : Ω → R3 | v|K ∈ Pk(K) ∀K ∈ Th

}
,

for the space of piecewise polynomial functions. We also employ the notation
Pt
k(F ) for the set of vector-valued polynomial functions defined on F that are

tangential to F . Pt
k(Fh) is then the set of tangential polynomial defined on

the skeleton of the mesh that are piecewise in Pt
k(F ).

2.3 The discontinuous Galerkin scheme

We seek the discrete fields as piecewise polynomial functions, namely Eh,Hh ∈
Pk(Th). Following [3], the first step is to multiply (1a) by two test functions v
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and w, and integrate by parts over each element K ∈ Th. We obtain
{

(ε∂tEh,v)Th − (Hh,∇× v)Th + 〈Ĥt
h, JvK× n〉Fh

= (J ,v),
(µ∂tHh,w)Th + (Eh,∇×w)Th − 〈Ê

t
h, JwK× n〉Fh

= 0,
(3)

where Ê
t
h, Ĥ

t
h ∈ Pt

k(Fh) are face-based tangential fields called “numerical
fluxes”, and

〈M̂ t
h, JuK× n〉Fh

:=
∑

F∈Fh

∫

F

M̂
t
h · (JuKF × nF ) ,

for M t
h ∈ Pt

k(Fh), and uh ∈ Pk(Th). We make use of numerical fluxes
in the spirit of local DG methods that were originally introduced in [9] for
scalar elliptic equations, and later in [16] for Maxwell’s equations. We follow
[19] to define our numerical fluxes. Specifically, we set ZK :=

√
µK/εK and

YK := 1/ZK for each K ∈ Th, and we select

Ê
t
h|F := 1

{{Y }}

(
{{YEh}}t

F + 1
2 JHhKF × n

)
,

Ĥ
t
h|F := 1

{{Z}}

(
{{ZHh}}t

F −
1
2 JEhKF × n

)
,

for all F = ∂K− ∩ ∂K+ ∈ F int
h , and

Ê
t
h|F := 0 Ĥ

t
h|F := −YEh × n + Ht

h,

if F = ∂K ∩ ΓP ∈ FP
h , and

Ê
t
h|F := 1

2
(
Et
h + ZHh × n + G× n

)
,

Ĥ
t
h|F := Y

2
(
ZHt

h −Eh × n−G
)
,

when F = ∂K ∩ ΓA ∈ FA
h .

2.4 Time discretization

We can rewrite problem (3) obtained after space discretization as

MU̇h(t) +KUh(t) = B(t), Uh(0) = Uh,0 (4)

where for each t ∈ [0, T ], the vector Uh(t) contains the coefficients defining
Eh(t) and Hh(t) in the nodal basis of Pk(Th), M and K are the usual mass
and stiffness matrices associated with (3), and Uh,0 is the interpolation of the
initial conditions in the discretization space.
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Classically, the key asset of DG schemes is that the mass matrix is block-
diagonal, and hence, easy to invert. Thus, we may safely rewrite (4) as

U̇h(t) = −GUh(t) + F (t), Uh(0) = Uh,0, (5)

where G := M−1K and F (t) := M−1B(t). At this point, we recognize in (5) a
system of ordinary differential equations that can be discretized with a time
marching scheme.

Here, we focus on a low storage Runge-Kutta scheme, usually denoted by
LSRK(5,4), presented in [8]. After fixing a time-step ∆t, we iteratively construct
approximations Unh of Uh(tn), tn := n∆t. Specifically, we let U0

h := Uh,0, and
for n ≥ 0, Un+1

h is deduced from Unh through the following algorithm




V 1
h = Unh

V 2
h = akV

2
h +∆t

(
GV 1

h + F (tn + ck∆T )
)

V 1
h = V 1

h + bkV
2
h

}
for k = 1, · · · , 5

Un+1
h = V 1

h ,

where the coefficients ak, bk and ck are described in Table 1. Then, Eh,n

and Hh,n are the element of Pk(Th) expended on the nodal basis with the
coefficients stored in Unh .

The above scheme is of particular interest as it is fourth-order accurate
with respect to the time step ∆t while being memory efficient. Indeed, it only
requires the storage of two coefficient vectors in memory.

Classically, as this time integration scheme is explicit, it is stable under a
CFL condition linking together the mesh size h and the selected time step ∆t.
Specifically, given a mesh Th, we fix the time step by

∆t := αk min
K∈Th

1
cK

VK
AK

(6)

where, cK := 1/√εKµK is the wave speed in the element K, and VK and AK
are respectively the volume and the area of K. The constant αk is selected
according to the polynomial degree k. Here, we use the values listed in Table
2, that we obtained after testing the scheme on simple test-cases.

Finally, to ease the discussions in numerical experiments below, we denote
by N the number of time steps performed in each simulations.

3 A novel postprocessing

As discussed above, Eh,n and Hh,n are respectively meant to approximate
E(tn) and H(tn). The purpose of this section is to introduce postprocessed
solutions E?

h,n and H?
h,n that are more accurate representations of E(tn)

and H(tn). This postprocessing is purely local in time, in the sense that the
computation of E?

h,n and H?
h,n only involves Eh,n and Hh,n. It is also local in
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Coeff Value Coeff Value Coeff Value

a1 0 b1
1432997174477
9575080441755

c1 0

a2 − 567301805773
1357537059087

b2
5161836677717
1361206829357

c2
1432997174477
9575080441755

a3 −2404267990393
2016746695238

b3
1720146321549
2090206949498

c3
2526269341429
6820363962896

a4 −3550918686646
2091501179385

b4
3134564353537
4481467310338

c4
2006345519317
3224310063776

a5 −1275806237668
842570457699

b5
2277821191437
14882151754819

c5
2802321613138
2924317926251

Table 1 Values of the coefficients of the LSRK(5,4) scheme.

k 1 2 3 4
αk 0.70 0.46 0.30 0.21

Table 2 Values of αk in CFL condition (6).

space as the computation are local to each element K ∈ Th. Actually, E?
h,n|K

(resp. H?
h,n|K) only depends on Eh,n|K̃ (resp. Hh,n|K̃), where K̃ is the union

of all elements K ′ ∈ Th sharing (at least) one face with K.
Our approach closely follows previous works. Specifically, similar postpro-

cessing strategies have been derived for the time-harmonic Maxwell’s equations
[1], as well as time-dependent acoustic wave equation [18]. These works develop
in the context of hybridizable discontinuous Galerkin (HDG) methods, but can
be easily applied to the DG scheme under consideration, as we depict hereafter.

Our postprocessing hinges on element-wise finite element saddle-point
problems. For each element K ∈ Th, there exists a unique pair (E?

h,n, p) ∈
Pk+1(K)× Pk+2(K)/R such that




(∇×E?
h,n,∇×w)K + (∇p,w)K = (∇×Eh,n,∇×w)K

+ 〈Et
h,n − Ê

t
h,n,n×∇×w〉∂K ,

(E?
h,n,∇v)K = (Eh,n,∇v)K ,

for all w ∈ Pk+1(K) and v ∈ Pk+2(K)/R. Similarly, for the magnetic field,
there exists a unique pair (H?

h,n, q) ∈ Pk+1(K)× Pk+2(K)/R such that




(∇×H?
h,n,∇×w)K + (∇q,w)K = (∇×Hh,n,∇×w)K

+ 〈Ht
h,n − Ĥ

t
h,n,n×∇×w〉∂K ,

(H?
h,n,∇v)K = (Hh,n,∇v)K ,

for all w ∈ Pk+1(K) and v ∈ Pk+2(K)/R. E?
h,n and H?

h,n are then our
postprocessed approximations to E(tn) and H(tn).

The left-hand sides of the above definition lead to solve symmetric linear
systems of small size. In addition, observing that the left-hand side is actually
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the same for the two postprocessing schemes, we deduce that only one matrix
factorization is required per element.

The right-hand sides further show that for each K ∈ Th, the postprocessed
field E?

h,n|K only depends on Eh,n|K and the value at the flux Ê
t
h,n|F on each

face F ∈ FK . In turn, since the flux is defined using the two elements sharing
the face F , we see that Eh,n|K depends on the values taken by Eh,n on all the
elements K ′ sharing at least one face with K. A similar comment holds true
for H?

h,n.

4 Numerical experiments

4.1 Standing wave in a cavity

We first consider a model problem given by the propagation of standing wave
in unit cube Ω := (0, L)3, L := 1 m, with perfectly conducting walls (i.e.
ΓP := ∂Ω and ΓA := ∅). Specifically, we consider Maxwell’s equations (1) with
right-hand sides J := 0, G := 0 and initial conditions

E|t=0 :=



− cos(πx1) sin(πx2) sin(πx3)

0
sin(πx1) sin(πx2) cos(πx3)


 ,

and H|t=0 := 0. ε and µ are respectively set to the vacuum values ε0 :=
(1/36π)× 10−9 Fm−1 and µ0 := 4π× 10−7 Hm−1, and we select the simulation
time T := 10 ns. The analytical solution is available, and reads

E(t,x) := cos(ωt)



− cos(πx1) sin(πx2) sin(πx3)

0
sin(πx1) sin(πx2) cos(πx3)


 ,

and

H(t,x) := π

ω
sin(ωt)




sin(πx1) cos(πx2) cos(πx3)
2 cos(πx1) sin(πx2) cos(πx3)

cos(πx1) cos(πx2) sin(πx3)


 ,

where the angular frequency is given by ω :=
√

3πc0/L, c0 := 1/√ε0µ0 being
the speed of light.

We consider structured meshes Th that are obtained by first splitting Ω
into n×n×n cubes (n := L/h), and then splitting each cube into 6 tetrahedra.

Figures 1 and 2 show the behavior of the error for the original and post-
processed discrete solutions with respect to time on a fixed mesh built from
a 8 × 8 × 8 Cartesian partition. The time step ∆t is selected following CFL
condition (6). Both the original and the postprocessed error exhibit an oscilla-
tory behavior, which is typical of this particular test case. The postprocessed
solution is about 10 times more accurate than the original one.

Table 3 presents in more detail our results on a series of meshes and
for different polynomial degrees. We see that in each case, the curl of the
postprocessed solution converges with the expected order, namely k + 1.
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10−3
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‖∇× (E(tn)−Eh,n)‖Ω
‖∇× (E(tn)−E?h,n)‖Ω

Fig. 1 Standing wave in a cubic cavity: time evolution of the error on the electric field.
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‖∇× (H(tn)−H?

h,n))‖Ω

Fig. 2 Standing wave in a cubic cavity: time evolution of the error on the magnetic field.

4.2 Plane wave in free space

We now consider the propagation of a plane wave in free space. Specifically,
we consider Maxwell’s equations (1) with Ω := (0, L)3, L := 1 m, ΓP := ∅ and
ΓA := ∂Ω. J := 0, and G is defined by (2) with

Einc(t,x) := p cos
(
ω

(
t− d · x

c0

))
, H inc(t,x) :=

√
ε0
µ0

d×Einc(t,x),
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Table 3 Standing wave in a cubic cavity: numerical convergence.

h ‖∇× (E(T )−Eh,N )‖Ω ‖∇× (E(T )−E?h,N )‖Ω
1/4 7.99e-01 6.37e-01

P1 1/6 4.94e-01 (eoc 1.19) 2.69e-01 (eoc 2.13)
1/8 3.65e-01 (eoc 1.05) 1.45e-01 (eoc 2.15)

1/4 1.40e-01 3.80e-02
P2 1/6 6.55e-02 (eoc 1.87) 1.04e-02 (eoc 3.20)

1/8 3.75e-02 (eoc 1.94) 4.24e-03 (eoc 3.12)

1/4 2.05e-02 4.32e-03
P3 1/6 6.17e-03 (eoc 2.96) 9.29e-04 (eoc 3.74)

1/8 2.62e-03 (eoc 2.98) 3.09e-04 (eoc 3.83)
h ‖∇× (H(T )−Hh,N )‖Ω ‖∇× (H(T )−H?

h,N )‖Ω
1/4 6.17e-01 4.18e-01

P1 1/6 3.76e-01 (eoc 1.22) 1.80e-01 (eoc 2.08)
1/8 2.70e-01 (eoc 1.15) 9.71e-02 (eoc 2.15)

1/4 9.94e-02 2.19e-02
P2 1/6 4.68e-02 (eoc 1.86) 6.00e-03 (eoc 3.19)

1/8 2.71e-02 (eoc 1.90) 2.44e-03 (eoc 3.13)

1/4 1.60e-02 2.46e-03
P3 1/6 4.83e-03 (eoc 2.95) 5.39e-04 (eoc 3.74)

1/8 2.06e-03 (eoc 2.96) 1.82e-04 (eoc 3.77)

where p := (1, 0, 0)T is the polarization, d := (0, 0, 1)T is the direction of
propagation and ω := 6πc0/L is the angular frequency. We impose the initial
conditions (1c) with E0 := Einc|t=0 and H0 := H inc|t=0. Then, since the
medium under consideration is homogeneous, no reflection and/or diffraction
occur, and the analytical solution is simply E = Einc and H = H inc. We
select the simulation time T := 10 ns. As for the cubic cavity test, we consider
structured meshes Th, that we obtain by first splitting Ω into n× n× n cubes
(n := L/h), and then splitting each cube into 6 tetrahedra. As explained above,
the time step is selected using (6). Figures 3 and 4 show the behaviour of the
error for the original and postprocessed discrete solutions with respect to time
on a fixed mesh based on a 12× 12× 12 Cartesian partition. The postprocessed
solution is about 5 times more accurate than the original solution. Table 4
presents in more detail our results on a series of meshes and for different
polynomial degrees. We see that in each cases, the curl of the postprocessed
solution converges with the expected order, namely k + 1.

4.3 Scattering of a plane wave by a dielectric sphere

We now consider a problem involving a dielectric sphere of radius 0.15 m with
ε = 2ε0 and µ = µ0. The computational domain is bounded by a cube of side 1
m on which the Silver-Muller absorbing condition is applied and the simulation
time is T := 3 ns. We make use of an unstructured tetrahedral mesh, which
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0 0.2 0.4 0.6 0.8 1
·10−8

100

10−1

Time (s)

‖∇× (E(tn)−Eh,n)‖Ω
‖∇× (E(tn)−E?h,n)‖Ω

Fig. 3 Plane wave in free space: time evolution of the error on the electric field.

0 0.2 0.4 0.6 0.8 1
·10−8

100
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‖∇× (H(tn)−Hh,n)‖Ω
‖∇× (H(tn)−H?

h,n))‖Ω

Fig. 4 Plane wave in free space: time evolution of the error on the magnetic field.

consists of 32,602 elements with 565 elements in the sphere and ∆t is chosen
via (6). The right-hand sides J and G are the same than in Example 4.2,
and the initial conditions are taken to be zero. We select P2 elements, and
denote by (Eh,Hh) and (E?

h,H
?
h) the original and postprocessed solutions. As

the analytical solution to the problem is unavailable, we compute a reference
solution (Er,Hr) with P4 elements on the same mesh and the time step is
defined as ∆tr := ∆t/3. ∆tr is chosen as an integral division of ∆t to facilitate
comparisons. We chose to divide ∆t by 3 since, following Table 2, it is the
smallest integer for which CFL condition (6) holds true. We refer the reader to
Figure 5 for a snapshot of the reference solution.
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Table 4 Plane wave in free space: numerical convergence.

h ‖∇× (E(T )−Eh,N )‖Ω ‖∇× (E(T )−E?h,N )‖Ω
1/8 5.37e-00 6.02e-00

P1 1/10 4.38e-00 (eoc 0.92) 3.99e-00 (eoc 1.84)
1/12 3.75e-00 (eoc 0.86) 2.73e-00 (eoc 2.08)

1/8 1.98e-00 7.92e-01
P2 1/10 1.36e-00 (eoc 1.70) 3.72e-01 (eoc 3.38)

1/12 9.77e-01 (eoc 1.81) 2.08e-01 (eoc 3.18)

1/8 4.63e-01 1.01e-01
P3 1/10 2.44e-01 (eoc 2.88) 4.25e-02 (eoc 3.87)

1/12 1.43e-01 (eoc 2.93) 2.22e-02 (eoc 3.56)
h ‖∇× (H(T )−Hh,N )‖Ω ‖∇× (H(T )−H?

h,N )‖Ω
1/8 5.89e-00 6.01e-00

P1 1/10 4.68e-00 (eoc 1.03) 3.97e-00 (eoc 1.85)
1/12 4.00e-00 (eoc 0.86) 2.75e-00 (eoc 2.03)

1/8 2.16e-00 7.60e-01
P2 1/10 1.45e-00 (eoc 1.79) 3.71e-01 (eoc 3.21)

1/12 1.03e-00 (eoc 1.89) 2.11e-01 (eoc 3.10)

1/8 4.87e-01 1.01e-01
P3 1/10 2.54e-01 (eoc 2.93) 4.32e-02 (eoc 3.79)

1/12 1.48e-01 (eoc 2.96) 2.29e-02 (eoc 3.48)

Fig. 5 Representation of |Er(T )| in the scattering example.

To assess the impact of the postprocessing, we consider a set of evaluation
points A, and we compute relative errors

err(V )2 =
∑N
n=1 ||∇× (V r(tn,A)− V h,n(A))||2
∑N
n=1 ||∇× (V r)(tn,A)||2

and

err?(V )2 =
∑N
n=1 ||∇× (V r(tn,A)− V ?

h,n(A))||2
∑N
n=1 ||∇× (V r)(tn,A)||2
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Table 5 Scattering of a plane wave by a dielectric sphere: L2 error between the refer-
ence solution and the solution with a P2 interpolation with and without applying the
postprocessing.

Point Field err err?

E 0.083 0.033
A1(0, 0, 0.45) H 0.103 0.048

E 0.008 0.005
A2(0.2,−0.3, 0.8) H 0.008 0.006

E 0.019 0.005
A3(0.2,−0.3, 0.2) H 0.020 0.006

E 0.015 0.004
A4(0.2, 0.3, 0.2) H 0.017 0.005

E 0.019 0.007
A5(0.2, 0.3, 0.8) H 0.027 0.007

E 0.015 0.008
A6(−0.2,−0.3, 0.8) H 0.014 0.008

E 0.027 0.008
A7(−0.2,−0.3, 0.2) H 0.028 0.008

E 0.021 0.007
A8(−0.2, 0.3, 0.2) H 0.024 0.007

E 0.010 0.005
A9(−0.2, 0.3, 0.8) H 0.011 0.005

with V := E or H. Table 5 shows that our postprocessing approach reduces
the error by at least a factor of 2 for the 9 evaluation points that we have
selected.

5 Conclusion

In this work we have presented a postprocessing approach for a discontinuous
Galerkin discretization of the time-dependent Maxwell’s equations in 3D. This
postprocessing technique is inexpensive, and can be computed independently
in each element of the mesh, and at every time step of interest. It is thus well
adapted to parallel computer architectures. Moreover, it is particularly suited
to applications requiring a higher accuracy in localized regions, either in time
or space. We have presented numerical examples, both with analytical solution
and in complicated geometries, that indicate that our postprocessing approach
improves the convergence rate of the discrete solution in the H(curl)-norm by
one order. Overall, this contribution is to be employed as an efficient way of
reducing the H(curl)-norm error of discontinuous Galerkin discretizations.
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