
                       

 

                 

Joint Asclepios/ Athena teams  

Internship offer  

Geometric Dimension Reduction Methods  

for Brain Computer Interface Signals 

 

Project Description:  
Brain Computer Interfaces (BCI)  
EEG-based BCI are interfaces where the acquisition is carried out by an 
Electroencephalograph (EEG) and the application-specific information is extracted from 
the resulting signal [Clerc et al., 2016]. The goal is to classify segments of EEG signals 
to their corresponding mental tasks (for simplicity assume a binary classification problem 
with two classes). First, a classifier is trained with labeled data obtained through a 
tedious calibration, preceding the usage session, during which the BCI user is asked to 
perform the two mental tasks. EEG data have an extremely low Signal-to-Noise Ratio, 
while being subject to an important amount of cross-session and cross-subject 
variability: the reduced representation of the feature space allows to separate 2 classes 
(blue/red) in a single session (left figure below), but not in multiple session (right figure 
below).  
 

     
Hence, state-of-the-art classifiers generalize poorly, and calibration needs to precede 
each and every usage session. In the works of the Athena team,  the recurring problem 
of pre-usage calibration is tackled by training a classifier that generalizes well. Recent 
researches have shown that the classification task is more robust to cross-session / 
cross-subject variability under the framework of Riemannian geometry [Barachant et al., 
2012]. Under the assumption that each mental task follows a specific distribution, the 
feature vector associated to a signal segment consists of the coefficients of a large 
covariance matrix. The resulting feature space is the high dimensional Riemannian 
manifold of Symmetric Positive Definite matrices, where an affine-invariant metric is well 
defined. As shown in recent works by Athena, while Riemannian distance-based 
classifiers show promising results, the high dimensionality of the manifold is still an issue 
[Gayraud et al., 2016]. 



                       

 

 
  
  

Geometric learning: Non-linear subspace approximation in non-linear manifolds 
Principal Component Analysis (PCA) is the ubiquitous tool to obtain low dimensional 
representation of the data in linear spaces. To generalize PCA to Riemannian manifolds,  
one can perform the analysis of the covariance matrix of the data in the tangent space at 
the Fréchet mean (Tangent PCA). This is often sufficient when data which are 
sufficiently centered around a central value (unimodal or Gaussian-like data), but 
generally fails for multimodal or distributions with a large variability with respect to the 
curvature, which is the case for the covariance matrix of the EEG signal. Instead of 
maximizing the explained variance, methods minimizing the unexplained variance were 
proposed: Principal Geodesic Analysis (PGA) and Geodesic PCA (GPCA) minimize the 
distance to a Geodesic Subspaces (GS) spanned by the geodesics going through a 
point with tangent vector is a restricted linear subspace of the tangent space.  
A new type of subspaces in manifolds was recently introduced in Pennec, 2016]: 
Barycentric Subspaces. These spaces are implicitly defined as the locus of weighted 
means of k+1 reference points. This locally define a submanifold of dimension k which 
generalizes previously introduced subspaces like geodesic subspaces. They can 
naturally be nested, which allow the construction of inductive forward or backward 
nested subspaces approximating data points. This results into a particularly appealing 
generalization of PCA on manifolds, that is called Barycentric Subspaces Analysis 
(BSA). In practice, a hierarchy of embedded barycentric subspaces is defined by an 
ordered series of points in the manifold, and data may be characterized by their 
barycentric coordinates inside the submanifold plus an orthogonal residual from the data 
points to their projection in the BS.  An 
example application to the analysis of 
3D cardiac image sequences through 
non-linear image registration (Figure 
on the right) has shown that the 
optima reference points were actually 
very meaningful transition points 
between the cardiac phases in the 
sequence. Moreover, the barycentric 
coordinates were powerful signatures 
discriminating different clinical 
conditions [Rohe et al., 2016]. 
 
 

Program of the internship 
The goal of the proposed internship will be to study and implement the barycentric 
subspace analysis procedure on SPD matrices endowed with the affine invariant metric 
and to test it with BCI datasets. In the context of BCI, the problem is not trivial. The 
cross-session and cross-subject variability must be taken into account during the 
process of selecting the optimal lower dimensional subspace. In a first step, algorithms 
will be developed to project points into a barycentric subspace, and then to optimize the 
location of the reference points themselves. In order to avoid an intensive optimization, 
one will usefully restrict reference points to belong to the original data points. In a 
second step, the barycentric coordinates will be used to describe the data in the 
hierarchy of embedded barycentric subspaces and one will study the power of this 



                       

 

signature to classify / predict the correct brain state 
 

Hosting groups:  
The Asclepios and Athena team (Inria Sophia Antipolis) are located in the tech Park of 

Sophia Antipolis and in Nice, in the French Riviera.   

 

Required competences: 
Competences in signal processing and statistics are required as well as a god 
knowledge of mathematics and in particular differential geometry (Master 2 level). Solid 
programming and IT skills are necessary (Python, bash scripting, version control 
systems), along with strong communication abilities.  
 

Contacts: 
Xavier.pennec@inria.fr  and Maureen.clerc@inria.fr  
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