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Abstract. Atlas construction is a fundamental problem in Medical Image Com-
puting. Every disease assessment task requires a template “reference” to compare
to in order to assess the amount of changes in the anatomy or function. The key
then is to define this “reference” in a meaningful fashion. The “reference” also
commonly referred to as an atlas is normally defined as the most representative
of the population of given data. Statistically, this is chosen to be an average or a
weighted average of the given data set. Since the control population consists of
distinct subjects, the task of estimating an unbiased atlas is posed as a groupwise
non-rigid diffeomorphic registration of the given data to this unknown average
defined as the minimizer of the sum of squared geodesic distances cost function.
This is a hard joint minimization over the space of diffeomorphisms and atlases,
and is computationally very expensive. In this paper, we present an efficient alter-
native which involves arbitrarily choosing one of the given data sets as a reference
and estimating the diffeomorphisms from the given pool of data to this reference.
Then, efficiently estimating the Fréchet mean (FM) of these diffeomorphisms and
applying this FM-diffeomorphism to the chosen reference yields the desired un-
biased atlas. We prove that the atlas obtained in this manner is the same as the
one obtained using the conventional groupwise registration approach mentioned
above. The key advantage of our approach over conventional groupwise regis-
tration approach is that we do not require any optimization over the space of
atlases, thereby reducing computational cost dramatically. Further, our approach
is a recursive approach and thus is amenable to updates when the data pool is
augmented with new data without the need to compute the atlas from scratch.
We present several real data experiments demonstrating the computational ad-
vantages of our proposed approach over state-of-the-art.
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1 Introduction

An atlas is an informative representative of a population of “objects” (images in our
context). Constructing an atlas is a key ingredient to many applications including but
not limited to image alignment [22], image segmentation [23,27] and statistical analy-
sis [2,10]. Hence, over the past decade, algorithms for atlas construction have attracted
substantial attention in Medical Image Analysis research. In particular, an unbiased
diffeomorphic atlas construction algorithm was first proposed in [13]. This algorithm
spawned a flurry of activity in the area of atlas construction resulting in many variants
being proposed in the recent past. Some of the recent methods for constructing multiple
atlases on heterogeneous data are [19,26]. A popular approach for atlas construction is
to compute the arithmetic mean of group-wise registered images. But, these algorithms
[13,16,19] often generate a blurred atlas. Recently Xie et al. [26] proposed a multiple at-
las construction framework which yields “sharp” atlases. Other methods for generating
“sharp” atlases also exist in literature and we refer the reader to [4,25]

Since most of the popular atlas construction (sequential) algorithms (implemented
on standard multi-core desktops) are computationally intensive (typically taking tens
of hours to days of CPU time), there is a dire need to develop a time efficient atlas
construction algorithm. In this work, we propose a computationally efficient atlas con-
struction algorithm. We further assume that the images in the given data pool can be
diffeomorphically registered to each other and to atlas being sought. This is not an
uncommon assumption and was made in Younnes [28] for tackling the diffeomorphic
registration problem. Now, instead of doing averaging on the image space, we com-
pute the average over the space of diffeomorphisms. By using methods in [15], we can
map a subset of “interesting” diffeomorphisms to the Hilbert sphere. We propose an
efficient mean estimator on the hypersphere and consistency of this estimator is shown
in an accompanying manuscript published in this workshop[20]. Using this fast esti-
mator, we obtain an efficient way to compute the atlas of an image population. In the
experiments section, we have shown the significant time gain of our proposed atlas con-
struction algorithm over state-of-the-art. Now, we present a brief survey of existing atlas
construction algorithms.

A popular way to construct an atlas is based on an unbiased group-wise registration
method. This type of formulation [13] requires the solution to a hard non-convex opti-
mization problem involving two high dimensional unknowns namely, the atlas and the
non-rigid transformations between the unknown atlas and input image data. It is solved
using an alternating strategy, involving, fixing the average and estimating the transfor-
mations required to transform all the input data sets to this average, then fixing the trans-
formations and estimating the average. This is a hard optimization problem and local
solutions can be unsatisfactory at times. Another, popular atlas construction algorithm
is iCluster [19], which computes the atlas by fitting Gaussian mixture model to the in-
put images. Then, they use an Expectation-Maximization (EM) algorithm to construct
the atlas. In this algorithm, they also compute the arithmetic mean of the groupwise
registered images. Both of these algorithms [13,19] lead to a blurred atlas which is the
result of arithmetic mean of images. Note that, the arithmetic mean of the images need
not necessarily lie on the underlying manifold (from which the images were sampled),
hence if the images are not tightly clustered on the manifold, arithmetic mean is a poor



Recursive Atlas Construction 157

choice. Hence, in Xie et al. [26] they proposed a multiple atlas construction method
which produces a “sharp” atlas. In this method, they use a graph representation of the
underlying manifold. Then, they used a graph partitioning followed by computing the
FM of images belonging to each cluster. Though this algorithm produced a “sharp” at-
las, like other atlas construction algorithm it is computationally expensive. For other
recent image atlas construction methods we refer the reader to [8,9,11,3,24,5] and for
shape atlases to [6] and the references therein.

The rest of the paper is organized as follows. In section 2, we describe our proposed
method in detail. Several real data experimental results along with comparisons are
presented in section 3. Finally, we conclude in section 4.

2 Methodology

In this section, we present our proposed method of incremental atlas construction from
multiple images. We will use the term incremental, recursive and inductive interchange-
ably throughout the paper. We would like to emphasize that our proposed method is
applicable to scalar, vector and tensor-valued fields. However, for simplicity, here we
present a formulation for the case of scalar-valued fields, i.e., intensity images. Let I
denote the space of images, we define images in I as L2 functions on a image domain
σ ⊂ Rd. Given a set of images C = {I1, · · · , In} ⊂ I, our goal is to construct an atlas
from these n images. We will assume that the set of images are rigidly registered by
randomly choosing a reference image and rigidly registering the rest to this reference
image. Now, given the set of images in the same coordinate system, an atlas can be
defined as the minimizer of the sum of squared (geodesic) distances from it to the rest
of the given images in the data pool. Let, dI(Ii, Ij) denote the “distance” between two
images Ii and Ij . Note that here we use “distance” loosely without having defined the
underlying metric or even the underlying manifold. In the spirit of Xie et al. [26], we
will assume that the images are samples from an unknown manifold. Now, let I∗ be the
atlas of the n input images, then I∗ = argminµ

∑n
i=1 d

2
I(µ, Ii). Note that this is pri-

marily the Fréchet mean (FM) [7] of the n images. Though this formulation is simple,
it is computationally expensive as the space of images I is huge, and the minimization
of the sum of squared distances formulation involves searching over the entire space I.
This provides us sufficient motivation to seek an alternative time-efficient algorithm to
compute the atlas. Below, we present a simple yet illustrative example, that captures the
essence of our proposed approach to atlas construction.

Motivating Example: Given the following real numbers −1, −5, 0, 2, 8 and 8, the
Fréchet mean (FM) (arithmetic mean in this simple case) is 2. But instead of averag-
ing on the numbers, we can instead do the following. We randomly choose one of the
numbers as the reference number. Then compute the FM (arithmetic mean in this case)
of the differences between each of the numbers and the reference. For example, let us
choose −5 as the reference number, then the differences between −5 and each of the
numbers are 4, 0, 5, 7, 13 and 13 respectively. The average of these six numbers is 7.
Then, if we add this mean-difference to our chosen reference, i.e., −5 we get the mean
of the numbers, i.e., 2.
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At the outset, this approach seems more complicated than simply using the standard
arithmetic mean of six numbers. But, if instead of an input of real numbers, our input is
a set of images, then developing a time-efficient algorithm for computing the FM of the
“differences”, will make this second approach more time-efficient. But, two important
questions that surface naturally are, first, like in our toy example above, will the second
approach still yield the true FM of images? Second, what is the “difference” term in
context of images? In the context of image registration and atlas construction, it is
natural to interpret this “difference” as the transformation required to register the two
images. In this work, we will assume that the images in the given data pool whose atlas
is to be constructed can all be diffeomorphically registered with each other and with the
atlas to be constructed. The answer to the first question is given by the theorem given
below. Using the second approach, the key advantage that we gain in atlas construction
over conventional approaches such as [13] and variants thereof is that the hard joint
optimization over the space of diffeomorphisms and atlases is now transformed to one
over the space of diffeomorphisms. This leads to an enormous savings in computation
time as evidenced through the experiments in section 3. We now state and prove the
aforementioned theorem.

Let σ be an open subset of Rd and G a group of diffeomorphisms on σ. Consider
a set of images J ∈ I on which G has an action, i.e., for every I ∈ J and every
φ ∈ G, the result of the action of φ on J is denoted by φ. I ∈ J , where . is the
group operator. Let C ⊂ J be a set of n images, i.e., C = {I1, · · · , In}. Let Iref ∈
C be an arbitrarily chosen reference image. Let, Ti be the diffeomorphism from Iref
to Ii, i.e., Iref (x) = Ii(Ti(x)), ∀i. Further, given an arbitrary image µ ∈ J , let Tµ be
the diffeomorphism from Iref to µ. Let dI and dT be the geodesic distance functions
on the space of images and transformations respectively. Let us define the relation ∼
between two objective functions f1 and f2 iff ∃ a bijection between F(f1) and F(f2),
where F(.) is the set of solutions of the corresponding objective function. It is easy to
show that ∼ is an equivalence relation. Then we have,

Theorem 1.

argmin
µ

n∑
i=1

d2I(µ, Ii) ∼ argmin
Tµ

n∑
i=1

d2T (Ti, Tµ) (1)

Proof.

argmin
µ

n∑
i=1

d2I(µ, Ii) = argmin
µ

n∑
i=1

d2I(Ii(Ti ◦ T−1µ (x), Ii(x))

∼ argmin
Tµ

n∑
i=1

d2I(Ii(Ti ◦ T−1µ (x), Ii(x))

= argmin
Tµ

n∑
i=1

d2I(Ii(Ti ◦ T−1µ (x), Ii(Tµ ◦ T−1µ (x))

∼ argmin
Tµ

n∑
i=1

d2T (Ti, Tµ)



Recursive Atlas Construction 159

The above equalities hold based on the following two claims.

Claim 1: argminµ
∑n
i=1 d

2
I(Ii(Ti ◦T−1µ (x), Ii(x))∼ argminTµ

∑n
i=1 d

2
I(Ii(Ti ◦

T−1µ (x), Ii(x))

Proof. Let S1 = argminµ
∑n
i=1 d

2
I(Ii(Ti◦T−1µ (x), Ii(x)) and S2 = argminTµ

∑n
i=1

d2I(Ii(Ti ◦ T−1µ (x), Ii(x)). We have to prove that ∃ a bijection between S1 and S2. Let
us first prove the cardinality of S1 and S2 are same. Let I ∈ S1, then, it is easy to
see that TI ∈ S2, which proves S1 ⊂ S2. The other way of double containment is
similar to prove. Hence, the cardinalities are same. And given I ∈ I, ∃! a TI such that
I(x) = Iref ((TI)

−1(x)). And for a given TI , the choice of I is also unique. Hence, ∃
a bijection between S1 and S2. This proves the claim. �

Claim 2: argminTµ

∑n
i=1 d

2
I(Ii(Ti ◦T−1µ (x), Ii(Tµ ◦T−1µ (x))∼ argminTµ

∑n
i=1

d2T (Ti, Tµ)

Proof. It’s easy to see that argminTµ

∑n
i=1 d

2
I(Ii(Ti(y), Ii(Tµ(y))∼ argminTµ

∑n
i=1

d2T (Ti, Tµ). And by transitivity of the relation, ∼, our claim holds. �

Now, from the proofs of the two claims, the proof of the theorem follows. �

So by Theorem 1, in order to compute the FM of the given images, we first compute
the FM of the diffeomorphisms (between the images and an arbitrarily chosen reference
Iref ) and apply this mean diffeomorphism on the arbitrarily chosen reference. Hence,
if T ∗ is the FM of the diffeomorphisms and I∗ is the atlas, I∗(x) = Iref ((T

∗)−1(x)).
Note that the above hypothesis that, ∃ a diffeomorphism between any two images in

J simply means that members ofJ are of same topology and diffeomorphically related.
In practise, for the atlas construction problem, the given image data pool from which the
atlas is being constructed can be assumed to have the same structures of interest, since,
it is meaningful to construct atlas from a population of say,“normal” human brains
but it is not meaningful to construct an atlas from a population consisting of ”normal”
human brains and brains with pathology as they maybe of a different topology.

Corollary 1. Given the hypothesis as above, let a set of n images C = {I1, · · · , In},
then, eqn. 1 in Thm. 1 holds for any transformations GL(m) (with appropriate m),
whereGL(m) denotes the general linear group consisting ofm×m invertible matrices.

Proof. The proof follows from Thm. 1. �

Corollary 2. Given the hypothesis as above, let a set of n images C = {I1, · · · , In},
then, eqn. 1 in Thm. 1 holds for all local affine transformations.

Proof. For local affine transformations, the transformationNi for each image is a prod-
uct ofGL(m) matrices (with appropriatem). Hence, the proof follows from Cor. 1. �

Now, our next concern is how to efficiently compute FM on the space of diffeomor-
phisms. Let M be the image domain and let dµ be an associated Riemannian volume
form on M . Let Diff(M) and Diffµ(M) denote the infinite dimensional group of
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diffeomorphisms on M and its infinite dimensional subgroup of volume preserving dif-
feomorphisms onM . Khesin et al. in [15] showed that the right invariant Ḣ1 metric (see
[15] for definition of this metric) on Diff(M) descends to a non-degenerate Rieman-
nian metric on the homogeneous space of densities on M , Dens(M) = Diff(M)/
Diffµ(M). Further, they proved that equipped with the Ḣ1 metric, the spaceDens(M)
is isometric to a subset of an infinite dimensional sphere in the Hilbert space. We use
this result in our work here and compute the FM of this class of diffeomorphisms (points
in Dens(M)) identified with those on the Hilbert sphere.

Now, we can use the square root of the density parameterization to map a point in
Dens(M) to the infinite dimensional unit Hilbert Sphere. But, note that our goal was
to compute FM on the space of diffeomorphisms, i.e., Diff(M). Hence, we need to
justify why working on the quotient spaceDiff(M)/Diffµ(M) instead ofDiff(M)
is an acceptable choice. The atlas construction problem is normally posed as follows:
Given a population of images acquired from distinct subjects, the goal is to construct a
representative image or an atlas. It is reasonable to assume that in constructing the at-
las from distinct subject scans, volume preserving diffeomorphisms are highly unlikely
and ought to be treated as nuisance transformations. Hence, they ought to be quotiented
out. Moreover, by quotienting out the volume preserving diffeomorphisms (volumor-
phisms), the computed atlas becomes invariant to any volumorphisms i.e., rigid transfor-
mations etc. This is an additional advantage of our proposed atlas construction scheme.
Now, given that we have mapped the points from Dens(M) to the unit Hilbert Sphere,
we propose an efficient scheme to compute FM on the unit Hilbert sphere.

A common approach to computing the FM of a finite sample set of points on a
Riemannian manifold is to find the global optimum (if it exists) of the sum of squared
geodesic distances cost function. A popular approach to solve this problem involves the
use of the gradient descent method. An alternative way to compute the FM is to develop
a recursive/inductive definition that does not involve optimizing the aforementioned
cost function. Where applicable, a recursive algorithm can take advantage of the closed
form solution to compute the FM of two points as the base of the recursion and recurse
through the number of points in the given set. This will yield a much faster way to
compute the FM if and when the convergence of the algorithm can be proved.

Note that in Euclidean space, the recursive form of computing the arithmetic mean
(which yields the same solution as the minimization of sum of squared distances) in-
volves only two points in each recursion step and can be geometrically interpreted as
moving an appropriate distance away from the already computed mean (old mean) to-
wards the new-mean on the straight line joining the old mean and the new data point.
This geometric procedure can be readily extended to any Riemannian manifold using
geodesics. To this end, we make use of the closed form expression – derived using the
sphere metric on the hypersphere – for the geodesic between two points on the hyper-
sphere. More precisely, after computing the estimate of the FM of k points, denoted by
Mk, the k + 1th estimate lies on the geodesic between Mk and the k + 1th point Sk+1.
This readily yields an algorithm for computing the FM that does not require any func-
tion optimization, a considerable advantage often realized as gains in computation time
of several orders in magnitude over non-incremental algorithms based on minimization
of sum of squared geodesic distances. Since, the FM on a sphere is unique only when all
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the data lie with in an injectivity radius of π/2 [18,14,1], we will make this assumption
through the rest of this paper.

Let {S1, · · · , Sn} ⊂ S∞, then we define the inductive (recursive) estimator of the
FM by the recursion in Eqn. 2. A proof of convergence of this algorithm is presented in
[20].

M1 = S1 (2)

Mk+1 = Γ
(
Mk, Sk+1, ωk+1

)
(3)

Here, Γ
(
X,Y, .

)
denotes the geodesic

betweenX and Y . The geodesic Γ (X,Y, t)
on S∞ is defined as follows:

Γ (X,Y, t) = ExpX(t Exp−1X (Y )) (4)

where, Exp and Exp−1 are the Riemannian exponential and inverse exponential map-
ping as defined below.

– Exponential Map: Given a vector v ∈ TXS∞, the Riemannian Exponential map
on SN is defined asExpX(v) = cos(|v|)X+sin(|v|)v/|v|. The Exponential map
gives the point which is located on the great circle along the direction defined by
the tangent vector v at a distance |v| from X .M

– Inverse Exponential Map: The tangent vector v ∈ TXS∞ directed from X to Y
is given by, LogX(Y ) = θ

sin(θ) (Y −X cos(θ)) where, θ = arccos(XTY ).

After computing the FM on hypersphere, we lift it back to the space of diffeomor-
phisms, Diff(M) using the formulation proposed in [21] to get the mean diffeomor-
phism. Note that this mean diffeomorphism is unique upto volume preserving transfor-
mations. And finally we apply this mean diffeomorphism to the reference image to get
the atlas image. As claimed above, this formulation is easily generalized to tensor field
data. We call this atlas construction procedure as the incremental atlas construction
algorithm, iAcA. We summarize the steps of our algorithm in the following:

Algorithm 1 Algorithm for incremental atlas construction

1: Input: a population of n images {I1, · · · , In}.
2: Output: an atlas image, I∗ of the population.
3: Step 1. Arbitrarily choose any one of the given images as the reference, denoted by Iref .
4: Step 2. Compute the diffeomorphisms {Ti} from Iref to Ii, where Ti is the diffeomorphism

to Ii.
5: Step 3. Map each of these diffeomorphisms, Ti, to the hypersphere (of appropriate dimen-

sion) using the scheme proposed in [21,15]. Let the points on the hypersphere be {Si}.
6: Step 4. Compute the inductive FM, S∗, of {Si} using Eqn. 2.
7: Step 5. Map S∗ onto Diff(M) using the method in [21]. Let the FM diffeomorphism be

T ∗.
8: Step 6. Apply T ∗ on Iref to get the atlas image I∗.

We now list a few advantages of iAcA.

– The key advantage of iAcA over popular atlas construction methods such as the
one in [13] and variants thereof perform a hard multi-variate optimization involving
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joint search over very large spaces of diffeomorphisms and atlases respectively. In
contrast, iAcA involves a search only over the space of diffeomorphisms. This leads
to a much simpler and more time efficient alternative.

– The iAcA is very time efficient as demonstrated via the experimental results in
section 3.

– iAcA yields an atlas that is invariant to volume preserving transformations.
– In many medical imaging applications, it is customary to augment the data pool as

and when new scans are acquired. In such situations, it is more time efficient to
update the already computed atlas rather than to compute the atlas from scratch.
Due to it’s recursive nature, iAcA achieves this optimally.

3 Experimental Results

In this section, we present experimental results of our atlas construction algorithm,
iAcA, and compare its performance with two other atlas construction algorithms, one
for constructing atlases from fields of ensemble average propagators (EAPs) derived
from diffusion MR scans acquired from rat spinal cords [5] and another for 2D shapes
from the MPEG-7 database [17]. For the MPEG-7 data, we used the atlas construction
algorithm in the well known ANTS [3] software. We report the time taken by both of
these algorithms. All the computation time required for various algorithms reported in
this paper, were measured on an Intel-7 quad-core processor, 16GB RAM desktop. Ac-
curacy is hard to assess on real data sets and will be focus of our future work. We would
like to point out that though ANTS is a highly optimized toolbox written in C++, our
iAcA code was written in MATLAB, which is not efficient for non-matrix operations.
Code optimization to achieve further time savings with iAcA implementation will be
the focus of our future work.

3.1 Atlas construction from diffusion MR scans of rat spinal cords

In this section, we used HARDI data acquired from several rat spinal cords. The HARDI

Class Time (s)
iAcA ANTS

Spinal Cord 109800.0 302400.0
apple 2092.0 27280.0
heart 2272.9 34800.0
car 2304.6 37134.0

Table 1: Computational time
for atlas construction

scans were acquired using a 3T Phillips MR scanner with
the following parameters: b−values: 0, 1500 s

mm2 , 22
gradient directions and voxel size = 2 × 2 × 2mm3. We
have constructed the EAP field atlas from EAP fields de-
rived from 7 control rat data sets. The EAP fields from
each HARDI data set was first estimated using the ap-
proach in [12]. Sample slices from the HARDI scans of
the rat spinal cords as well as the atlases constructed by
the method in [5] and iAcA respectively are shown in Fig. 1. In this figure, the top row
(left to right) depicts the zero gradient image, S0 from the HARDI scans of three rat
spinal cords. Second row, left to right, depicts a slice from the estimated EAP fields
superposed on the corresponding slice of the S0 images. Last row, left to right, de-
picts a slice from the atlas EAP fields (superimposed on the corresponding S0 images)
estimated by iAcA and the approach in [5].

From a visual inspection view point, the atlas computed from iAcA appears to be
much sharper and better than that from the method in [5]. The time required by these
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two atlas construction methods are presented in Table 1. From this table, it is evident
that computationally, iAcA is significantly faster compared to the approach in [5].

3.2 Atlas construction on MPEG-7 data

We randomly chose 3 classes of objects from the MPEG-7 database namely, heart, apple
and car shapes. Each of these classes contains 20 two-dimensional images from which
we construct an atlas for each shape class. In Fig. 2, we present 10 random images of
each of these three classes and the atlases constructed by iAcA and ANTS respectively.
For ANTS, we have used Greedy Symmetric Normalization for non-rigid registration.
Further, the initial atlas is chosen to be the default i.e., the arithmetic mean of the pop-
ulation of the class. In the figure, for all these three subjects, the leftmost image in
the bottom row is the atlas constructed by iAcA and this is followed by the atlas con-
structed using ANTS. The first, second, fourth and fifth rows consist of images of 10
sample data from the respective classes. The computation time required for these two
algorithms is reported in Table 1, which clearly depicts the superior time efficiency of
iAcA over ANTS. Further, from a visual inspection view point, the atlas constructed by
iAcA appears to be of higher quality (sharper). Our future work will focus quantita-
tively validating the accuracy of the constructed atlases.

4 Conclusions

Fig. 2: Apple, heart and car shape atlas construction. Rows 1,2,4 &
5 depict samples from the data pool. Rows 3 & 6 depict the atlas
obtained using iAcA and ANTS repectively.

In this paper, we pre-
sented a novel incre-
mental atlas construc-
tion algorithm called
iAcA. The key advan-
tage of this algorithm
over conventional unbi-
ased groupwise regis-
tration based atlas con-
struction approach (which
requires a joint opti-
mization over the space
of diffeomorphisms and
atlases) is that, it needs
an optimization only
over the space of dif-
feomorphisms to regis-
ter (n− 1) pairs of data
sets from the given pool
of n data sets. A refer-
ence data set is arbitrarily chosen from the given pool and all the other data are dif-
feomorphically registered to this reference. We then compute the FM of these diffeo-
morphisms after quotienting out the volumorphisms. The FM computation is achieved
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Fig. 1: Constructed Atlases from Spinal Cord 3D data. [a-c]: sample S0 images from the popu-
lation of controls, [d-f]: corresponding sample EAP fields superposed on respective S0 images,
[g,i]: S0 and EAP atlas using iAcA, [h,j]: S0 and EAP atlas using [5]. Last row shows the color
ball used to color the EAPs.
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recursively and does not require any optimization. This Fm is then applied to the chosen
reference to obtain the desired atlas. We demonstrated dramatic savings in computa-
tional cost using our approach (over state-of-the-art) for the task of atlas construction
from diffusion MR scans of rat spinal cords and MPEG-7 shape data sets. Our future
efforts will focus on a thorough quantitative validation of the constructed atlases.
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