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Abstract. Finding the Riemannian center of mass or the Fréchet mean (FM) of
manifold-valued data sets is a commonly encountered problem in a variety of
fields of Science and Engineering including but not limited to, Medical Image
Computing, Machine Learning, and Computer Vision. For instance, it is encoun-
tered in tasks such as, atlas construction, clustering, principal geodesic analysis
etc. Traditionally, algorithms for computing the FM of the manifold-valued data
require that the entire data pool be available apriori and not incrementally. When
encountered with new data, the FM needs to be recomputed over the entire pool,
which can be computationally as well as storage inefficient. A computational and
storage efficient alternative is to consider a recursive algorithm for computing the
FM which simply updates the previously computed FM when presented with a
new data set. In this paper, we present such an alternative called the incremen-
tal Fréchet mean estimator (iFME) for data on the hypersphere. We prove the
asymptotic convergence of iFME to the true FM of the underlying distribution
from which the data samples were drawn. Further, we present several experiments
demonstrating the performance on synthetic and real data sets.

1 Introduction

With the advent of sophisticated sensing technologies, manifold-valued data sets have
become pervasive in many fields of applied sciences and Engineering including Medical
Image Computing, Machine Learning and Computer Vision. Among these data, the
most widely encountered are those that lie on a k—sphere, k& > 2. To mention a few,
the directional data which are often encountered in Image Processing and Computer
Vision are points on the unit 2—sphere S? [15]. Further, 3 x 3 rotation matrices can
be parameterized by unit quaternions which can be represented by points on the 3-
dimensional unit sphere S? [9]. Also, any probability density function, e.g., Orientation
Distribution Function (ODF) in diffusion magnetic resonance imaging (MRI) [23]], can
be represented as points on a unit Hilbert sphere [4120].
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In most of these applications, mean computation is a key ingredient. Examples in-
clude, the interpolation and smoothing of ODF fields [5l4.8]], estimation of the mean
rotation from several corresponding pairs of points in multi-view geometry [9] and sta-
tistical analysis of directional data [15]]. Given a set of samples on S¥, the Fréchet mean
(FM), is defined as the minimizer of the sum of squared geodesic distances. In general,
the minimizer is non-unique and this issue has been well studied in literature and we
refer the reader to [1.16] and references therein for details. It is also known that for a
set of more than two samples on a hypersphere, the FM cannot in general be computed
in closed form, and iterative schemes like the gradient descent must be employed [1116]
which for very large data sets can prove to be computationally quite expensive. Further,
in many real-world applications the entire input data are not available all at once, and
the population is usually augmented over time. Hence, in this context the standard gra-
dient descent based iterative computation of the FM suffers from two major drawbacks:
(1) for each new sample, it has to compute the new FM from scratch, and (2) it requires
the entire input data to be stored, in order to estimate the new FM. Instead, an incre-
mental i.e., a recursive technique can address this problem more efficiently with respect
to time/space utility.

Recently, several incremental mean estimators for manifold-valued data have been
reported. In [21], Sturm presented an incremental mean, the so called inductive mean,
and proved its convergence to the true FM for all non-positively curved (NPC) spaces.
In [7]], authors showed several algorithms (including a recursive algorithm) for FM com-
putation for data residing in CAT(0) spaces, which are NPC. They also demonstrated
several applications of the same to Computer Vision and Medical Imaging. Further, in
[LO] an incremental FM computation algorithm along with its convergence and appli-
cations was presented for a population of Symmetric Positive Definite (SPD) matrices.
Recently, in [14]], Lim presented an inductive FM to estimate the weighted FM of SPD
matrices. The convergence analysis in all of these works is applicable only to the sam-
ples belonging to NPC spaces and hence, their convergence analysis does not apply
to the case of the hypersphere which is a positively curved Riemannian manifold with
constant sectional curvature [11]. In [3]], Arnaudon et al. present a stochastic gradient
descent algorithm for barycenter computation of probability measures on Riemannian
manifolds under some conditions. They also proved that their algorithm almost surely
converges to the true Riemannian barycenter. Their algorithm is a stochastic version of
ours as well as that of Sturm [21]].

In this paper, we present a novel incremental FM estimator (iFME) of a set of sam-
ples on the hypersphere. When encountered with a new sample data set, an incremen-
tal update of the previously estimated FM is more computationally efficient compared
to the non-incremental counterpart (henceforth denoted by nFM), because the update
problem involves just the weighted FM of two items (previously computed mean and
the new sample) and no optimization method is needed for its computation. This leads
to significant efficiency in time and space (storage) consumption. Further, we will an-
alytically show that in the limit (over the number of samples), our estimator converges
to the true FM of the distribution from which the samples are drawn. To the best of our
knowledge, this is the first convergence analysis for an incremental FM estimator on a
positively curved Riemannian manifold. Finally, we will present examples of recursive
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FM computation on several synthetic and real data sets along with its application to an
incremental principal geodesic analysis iPGA algorithm which is used in the classifica-
tion of movement disorder patients from their diffusion MR scans.

2 Riemannian Geometry of the Hypersphere

The hypersphere is the simplest of the constant positive curvature Riemannian mani-
folds encountered in numerous application problems. Its geometry is well known and
here we will simply present the closed form expressions for the Riemannian Exponen-
tial and Log maps as well as the geodesic between two points on it. Further, we also
present the square root parametrization of probability density functions, which allows
one to identify them with points on the unit Hilbert sphere. This will be needed in rep-
resenting the probability density functions namely, the ensemble average propagators
(EAPs) in diffusion MRI, as points on the unit Hilbert sphere.

Without loss of generality we restrict the analysis to PDFs deﬁned on the interval
[0, T'] for simplicity: P = {p : [0,T] — R|Vs,p(s) > 0, fo ds = 1}. In [17], the
Fisher-Rao metric was introduced to study the Rremanman structure of a statistical man-
ifold (the manifod of probability densities). For a PDF p; € P, the Fisher-Rao metric
is defined as (v;, vg) fo vi(s pi(s)ds, where v;, vy, € T}, P. The Fisher-Rao
metric is invariant to reparameterlzatlons of the functions. In order to facilitate easy
computations when using Riemannian operations, the square root density representa-
tion ¢ = ,/p was used in [20]. The space of square root density functions is defined

as¥ = {¢ : [0,T] — R|Vs,9(s) > 0, fo 1?(s)ds = 1}. As we can see, ¥ forms a
convex subset of the unit sphere in a Hilbert space. Then, the Fisher-Rao metric can be
written as (v, vy) fo vj(s)vg(s)ds where, v, vy € Ty, ¥ are tangent vectors. Given
any two functions ;,1; € W the geodesrc distance between these two points is given
in closed form by d(;,v;) = cos™ ({1;,1;)) The geodesic at v; with a direction
v € Ty, W is defined as (t) = cos(t)4; + sin(t) 77 Then, the Riemannian exponential
map can be expressed as expy, (v) = cos(|v|)1; + sin(|v|) > To7» Where, |v] € [0, 7). The

Riemannian logarithmic map is then given by log,, (1;) = wcos™ (i, 1)) // (u, u)
where, u = ¥; — (Y;, V;)¢i.

Using the geodesic distance provided above, one can define the Fréchet mean (FM)
of a set of points on the hypersphere as the minimizer of the sum of squared geodesic
distances (so called Fréchet functional). Let B(C, p), be the geodesic ball centered at C'
with radius p, i.e., B(C, p) = {Q € S¥|d(C, Q) < p}. Authors in [13] showed that for
any C € S* and for data samples in B(C, %), the minimizer of the Fréchet functional
exists and is unique. Therefore, in the rest of the paper, we assume that this condition is
satisfied for any set of given points, X; € S¥. For more details on Riemannian geometry
of the sphere, reader is referred to chapter 2 of [[L1] and references therein.

3 Weak Consistency of iFME on the Sphere

In this section, we present the detailed proof of convergence of our recursive estimator
on S*. The proposed method is similar in “spirit” to the incremental arithmetic mean
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update in the Euclidean space; given the old mean, M,,_1, and the new sample, X,
we define the new mean, M,,, as the weighted mean of M,,_; and X,, with the weights
being an and %, respectively. From a geometric viewpoint, this corresponds to the
choice of the point on geodesic curve between M,, 1 and X,,, with the parameter ¢t = %

Formally, let X, X5, ..., X 5 be a set of N samples on hypersphere S*, all of which
belong to the geodesic ball of radius 7). The iFME estimate M,, of the FM with the
nt" given sample X, is defined by:

where A#,B is the point on the short-
est geodesic path from A to B (¢ SF)
for a parameter value of ¢, and 1 is the M, =X, e
weight assigned to the new sample point My, =M, 1#1X, 2)
(in this case the n'" sample), which is =
henceforth called the Euclidean weight. In the rest of this section, we will
show that if the number of given samples, N, tends to infinity, the iFME es-
timates will converge to the FM of the distribution from which the samples
are drawn. Note that the proof steps given below are not needed to compute
the iFME, these steps are needed only to prove the weak consistency of iFME.
Our proof is based on the idea of projecting the samples on the sphere, X, to the tangent
plane using the Gnomonic Projection [9], and perform the convergence analysis on the
projected samples in this linear space, i.e., x;, instead of doing the analysis on the
hypersphere. We take advantage of the fact that the geodesic curve between any pair
of points on the hemisphere, is projected to a straight line in the tangent space at the
anchor point (in this case, without loss of generality, assumed to be the north pole), via
the gnomonic projection. A figure depicting the Gnomonic Proiection is shown in Fig.

m

Despite the simplifications used in the statis-
tical analysis of the iFME estimates on the hy-
persphere using the gnomonic projection, there is
one important obstacle that must be considered.
Without loss of generality, suppose the true FM
of the input samples, X, is the north pole. Then,
it can be shown through counter examples that: Fig. 1: Gnomonic Projection

— The use of Euclidean weights, %, to update the iFME estimates on Sk, does not

necessarily correspond to the same weighting scheme between the old arithmetic
mean and the new sample, in the projection space i.e., the tangent space.

n &

The above fact can be illustrated us-
ing two sample points on a unit circle
(SY), X; = 7/6 and X, = m/3, whose
intrinsic mean is M = 7/4. Then, the
midpoint of the gnomonic projections of
X, and X5, which are denoted by x;
and xo, is 1™ = tan('n'/?));tan(ﬂ’/(i) _
1.1547 # tan(r/4) = m (see Fig.[2).

For the rest of this section, without  Fig. 2: Illustration of the counterexample
loss of generality, we assume that the true FM of NV given samples is located at the
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north pole. Since the gnomonic projection space is anchored at the north pole, this
assumption leads to significant simplifications in our convergence analysis. However, a
similar convergence proof can be developed for any arbitrary location of the FM, with
the tangent (projection) space anchored at the location of this mean.

In what follows, we prove that the use of Euclidean weights, i.e., w, = %, to
update the incremental FM on the hypersphere, corresponds to a set of weights in the
projection space, denoted henceforth by ¢,,, for which the weighted incremental mean
in the tangent plane, converges to the true FM on the hypersphere, which in this case is
the point of tangency.

Theorem 1 (Angle Bisector Theorem). [2]/ Let M,, and M, , denote the iFME es-
timates for n and n + 1 given samples, respectively, and X, 1 denotes the (n + 1)%
sample. Further, let my,, my_1,Xnt1 be the corresponding points in the projection
space, then

P |[mn — mpy 1| _ |0 — my|| sin(d(My, Mn+1))
" ot = mngall (|0 = xnpal| T osin(d(Magr, Xp1))

where, d(.) is the geodesic distance on the hypersphere.

3

In the rest of this section, we assume that the input samples, X;, are within the
geodesic ball, B(C, ¢), where 0 < ¢ < /2. This is needed for the uniqueness of the
FM on the hypersphere (see [ll]). Then, we bound ¢,, with respect to the radius ¢.

Lemma 1 (Lower and Upper Bounds for ¢,,). With the same assumptions made as in
Theorem([l} the following inequality holds:

cos(9) i < 1

n "7 cos(¢)3n

“

Lower Bound. To prove this lower bound for ¢,,, we find the lower bounds for each
fraction on the right hand side of Eq. |3} The first term reaches its minimum value, if
M, is located at the north pole, and X, is located on the boundary of the geodesic

ball, B(C, ¢). In this case, ||O — my|| = 1 and ||O — Xp41|| = ﬁw) This implies
that: 10 !
—m,
——————— > cos(9) 4)
10 = Xna]|

Next, note that based on the definition of iFME, this second fraction in[3]can be rewrit-

sin(d(Mp,,Mp4+1)) _ sin(d(My,,M,+1)) _ 1
N as o X 1)) = SR d(Ma M) = Uni(eos@ iy Where, Un 1

(x) is the Chebyshev polynomial of the second kind [19]. For any = € [—1,1], the
maximum of U, _;(x) is reached when z = 1, for which U,,_1(1) = n. Therefore,
Un-1(z) <nand m > % This implies that:

sin(d(My,, My+1)) _ 1

sin(n X d(Mp41, Mpy1))  Un—1(cos(d(My, Mp11)))

(6)
>

S

The inequalities[5]and 6] complete the proof. [ |
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Note that when ¢ tends to zero, cos(¢) converges to one, and this lower bound tends
to %, which is the case in Euclidean space.

Upper Bound. First, the upper bound for the first term in |3|is reached when M,, is on
the boundary of geodesic ball, and X, is given at the north pole. Therefore,

|0 — my|| 1
10 = xnqal[ — cos(9)

Finding the upper bound for the sin term however is quite involved. Note that the
maximum of the angle between OM,, and OX,, 1, denoted by «, is reached when
M,, and X,,; are both on the boundary of the geodesic ball, i.e., @ < 2¢. Therefore,
¢ € [0, 5) implies that o € [0, ). Further, we show in the Appendix that the following
inequality holds for any « € (0, ).

@)

sin( 2%
‘,(%H > ncos2(g) = ncos?(¢) 8)
bln( e+l 2

From[7]and [6] the result follows. [ |

Thus far, we have shown analytical bounds for the sequence of weights, t,,, in the
projection space, corresponding to Euclidean weights on sphere (Eq. ). We now prove
the convergence of iFME estimates to the true FM of distribution from which the sam-
ples are drawn, when the number of samples tend to infinity.

Theorem 2 (Unbiasedness). Ler (o,w) denote a probability space with probability
measure w. A vector valued random variable, x is a measurable function on o taking
values in R¥, i.e., x : 0 — R*. The distribution of x is the push-forward probabil-
ity measure, dP(x) = x*(0) on R¥. The expectation is defined by E[x] = [ xdw.
Let x1,Xa2, ... be i.i.d. samples from the distribution of x. Also, let m,, be the incre-
mental mean estimate corresponding to n"* given sample, xy, which is defined by: (i)
my = Xy, (if) my, = t,Xn + (1 — t,,)my_1. Then, my, is an unbiased estimator of the
expectation E[x].

Proof. Forn = 2; mg = toxa + (1 —t2)x1, hence E[ma] = ta F[x|+ (1 —t2)E[x] =
Elx].

By induction hypothesis we have, F[my_1] = E[x]. Then, F[m,] = ¢, E[x] +
(1 —t,) E[x] = E[x], hence the result. |

Theorem 3 (Weak Consistency). Let var[my,| denotes the variance of the n'" incre-

mental mean estimate (which is defined in Theorem@), with %«’5) <t, < m, Yo €

[0,7/2). Then, 3p € (0,1], such that **r2al < (nP cosb(¢))~1.

var[x]

First note that var[my,] = t2var[x] + (1 — t,)?var[my,_1]. Since, 0 < ¢, < 1,
one can see that var[m,] < var[x] for all n. Besides, for each n, the maximum of
the right hand side is achieved, when ¢,, attains either its minimum or its maximum
value. Therefore, we need to prove the theorem for the following two values of ¢,,, (i)
t, = %@45) and (ii) t,, = . These two cases will be proved in the Lemmas
and [3|respectively.

1
n cos3 (¢)
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Lemma 2. Suppose the same assumptions as in Theorem |2| are made. Further, t,, =
L VnandV¢ € [0,7/2), then “2H®al < ( cosb(¢)) 1.

n cos3(¢)’ var[x] —

Proof. Forn = 1, var[mi] = var[x] which yields the result, since cos(¢) < 1. Now,

assume by induction that %&]ﬂ] < (n—1)cosb(¢))~L. Then,

varlmy] o svarmp_1] _ o 5 1
i 2 () e 2 (1)
var[x| nt ) var[x] — " + ) (n—1)cosb(¢)
1 1
- - 1— 2
= oo T i) et )
B SO PO N
~ cost(¢)n? n (n —1)cosb(o)
1 n-1 1
~ cosO(p)n?  n2cosb(¢)  mncost(¢)
|
Lemma 3. Suppose the same assumptions as in Theoremhold. Further, t, = @

Vn and Ve € [0,7/2), then, 2222l < n=7 for some 0 < p < 1..

var[x]
Proof. Forn = 1, var[m,,] = var[x] which yields the result, since cos(¢) < 1. Now,
assume by induction that var[mn_a] (n —1)~P. Then,

var[x]
var(my] cvarma_1] _ o e 1
var[x] tn+ (1= tn) var|[x| Stat(L=ta) (n—1)p
2(¢) (n—cos(@)? 1
S COZQ( ) + (n (1;1028( )) % (ni 1)p (10)
~ (n—1)Pcos?(¢) + cos?(¢) — 2n cos(¢) + n?
- n2(n —1)P

Now, it suffices to show that the numerator of the above expression is not greater
than n?~P(n — 1)P. In other words:

(n — 1)P cos?(¢) + cos?(¢) — 2ncos(¢) +n? —n?"P(n —1)P <0 (11)
The above quadratic function in cos(¢) is less than zero, when

1—(n—1p2 /(=L + L1 L+ (n— 1P/ (=t + L1
1+ (n—1)p ) < cos(¢) < nf 1+ (n—1)p

n(

)

12)
The inequality on the right is satisfied for all values of the cos function. Besides, it is
easy to see that the function on the left hand side is increasing w.r.t. n > 1, and hence
attains its minimum when n = 2. This implies that:

1—+/2P — 1 < cos(¢)
— ¢ <cos (1 —+y/21-P —1) 13)

—0<p<1—1loga[(1—cos(¢))? +1]
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Note that p > 0, for all ¢ < 7/2. [ ]

Convergence. Armed with the above two results, it is easy to see that V¢ € [0, 7/2),
there exists a p satisfying 0 < p < 1, such that

- Ift, = COSTL(¢), then Y&7nl « 1 1 pocayge cos(¢) < 1.

var[x] — nP — nPcos(¢)’
o 1 var[my] 1 1
- Ift, = n cos3(p)’ then var[x] < n cosS (¢) < n? cosb(¢)’ because p < 1.
These two pieces together complete the proof of convergence. |

The inequality in Theorem [3| implies that when n — oo, for any ¢ € [0,7/2)
the variance of iFME estimates in the projection space tends to zero. Besides, when ¢
approaches 7 /2, the corresponding power of n, as well as cos(¢), become very small,
hence the rate of convergence gets slower. Note that instead of the weights scheme used
here (i.e., in spirit of incremental mean in Euclidean space), one can choose different
weights scheme inherent to the manifold (i.e., as a function of curvature) to speed up
the convergence rate.

4 Experimental Results

We now evaluate the effectiveness of the iFME algorithm, compared to the non-incremental
counterpart, nFM, for computing the FM of a finite set of samples on the sphere (north-
ern hemi-sphere not including the equator). As mentioned earlier, nFM for computing
the FM uses a gradient descent technique to minimize the sum of squared geodesic
distances cost function. We report the results for samples drawn from a mixture of Log-
Normal distribution on the upper hemi-sphere. A set of random samples are drawn from
the distribution and fed to both the iFME and the nFM algorithms, incrementally. The
computation time needed by each method for computing the sample FM, and the er-
ror was recorded, for each new sample incrementally introduced. The error is defined
by the geodesic distance between the estimated mean (using either iFME or the nFM)
and the true expected value of the input distribution. Because of the randomness in
generating the samples, we repeated this experiment 100 times for each case, and the
mean time consumption and the error for each method are shown. All the computation
time required for various algorithms reported in this paper, were measured on an Intel-7
quad-core processor, 25GB RAM desktop.

A set of samples are
drawn from a mixture of | e mo e man
Log-Normal distributions on
the sphere. The mean of
each Log-Normal compo- ;
nent is set randomly, and o

Time (s)
°

the covariance matrices are o m % s m s o g
set to 0'11 and 0.21 respec_ Number of Samples Number of Samples.
tively, where I is the iden- (a) (b)

tity matrix. Similar to the
previous experiment, the Flg 3: Time and error comparisons of iFME and nFM
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performances of iFME and nFM are evaluated with respect to the time consumption
and accuracy, and are illustrated in Fig.|3aand Fig. |3b|respectively.

Though iFME’s accuracy is
still very similar to that of nFM,
it estimates the intrinsic mean sig-
nificantly faster. Now, we com-
pare the performance of iFME with
nFM and eFME (the extrinsic FM
estimator). The eFME is defined
as IT(>, X;), where I1 is the pro-
jection operator from R¥*1 to S*,
i.e., I1(x) = x/|x|. We randomly
generated 50 samples on north-
ern hemi-sphere with varying data ~ Fig. 4: Comparison between iFME, nFM, eFME
variance. From Fig.[4] it is evident that for high data variance, eFME exhibits high com-
putationally efficiency but a rather poor accuracy in its estimate of the FM.

5 Application to the classification of movement disorders

In this section we first present a novel incremental version of the PGA algorithm in [25]]
applicable to data lying on a sphere. We will call this the iPGA algorithm. Then, we
present an application of iPGA to real data sets. The (batch-mode) PGA proposed in
[25] for diffusion tensor fields consists of (1) computing the FM of the input data, (2)
projecting each data point to the tangent space at the FM using the Riemannian log-
map, (3) performing standard PCA in the tangent plane and (4) projecting the result
(principal vectors) back to the manifold, using the Riemannian exp-map.

An incremental form of this PGA technique was proposed recently in [18]]. How-
ever, their technique was limited to manifolds with non-positive sectional curvatures.
Equipped with the iFME on the sphere presented in the previous section, we can now
extend the iPGA technique in [18] to the case when data lie on a hypersphere. For this,
we need to use iFME for the FM computation and use the parallel transport operation on
the hypersphere. The parallel transport operation on the hypersphere can be expressed
in a closed form expression. The formula for parallel transporting p € T,,S* from n to
m is given by

q= Fn—>m(p)

= (o= v (T8 ) )+ B (= smvIDIvIE) +veos(iviD)

where, v = Log,m. We now present the iPGA method in an algorithm form summa-
rized in Table [T] and refer the reader for details to [18].

The dataset for classification contains HARDI scans from (1) healthy controls, and
patients with, (2) Parkinson’s disease (PD), and (3) essential tremor (ET). We aim to
automatically discriminate between these three classes using features derived from the
HARDI data. This dataset consists of 25 controls, 24 PD, and 15 ET images. The
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HARDI data were acquired using a 3T Phillips MR scanner with the following param-
eters: TR = 7748 ms, TE = 86 ms, b—values: 0, 1000 —2, 64 gradient directions

mm2 )
and voxel size = 2 x 2 x 2mm?.

Authors in [24] em-
ployed DTI based anal- 1: Input the data matrix Ay, = [v1, ..., vg] for k samples

ysis, using scalar-valued the new sample xx 1, and the old mean my,

features to address the
problem of movement
disorder classification.
Later in [18]], a PGA-
based classification al-
gorithm was proposed,
using Cauchy deforma-
tion tensors (computed

: Compute my 1 from xy41 and my, using Eq.

(Yk+1 = Logm, ,y (Xk+1)

: Parallel Transport zx+1 = I'my,_; —n(Yr+1)

: Compute el = LOgm,CJrl (mk) and tk+1A: kaJrl*)n(I‘kJﬁl)
: Add tx41 to every column of Ay to obtain A, = [V1, ..., Vk]

: Perform standard PCA on Ay = [Ak :Zk+1 ]

: Parallel transport the 5" principal component, Pj,

00 3 N L AW

back to TmHlSk, via q; = I'n—my,, (Pj)

from a non-rigid regis-
tration of patient scans
to a HARDI atlas) which
are SPD matrices. In the next subsection, we develop classification method based on (1)
Ensemble Average Propagators (EAPs) derived from HARDI data within an ROI, and
(2) shapes of the ROI over the input population. Using a square root density parameter-
ization [22], both features can be mapped to points on an unit Hilbert sphere, where the
proposed iFME in conjunction with the iPGA method is applicable.

Table 1: The Incremental PGA Algorithm on a Unit Hyper-
sphere

Classification Results using the Ensemble Average Propagator as Features: To
capture the full diffusional information, we chose to use the ensemble average propaga-
tor (EAP) at each voxel as our feature in the classification. We compute the EAPSs using
the method described in [12] and use the square root density parameterization of each
EAP. This way the full diffusion information at each voxel is represented as a point on
the unit Hilbert sphere.

We now present the classification algorithm which is a combination of iPGA-based
reduced representation and the nearest neighbor classifier. The input to the iPGA algo-
rithm is EAP features in this case. The input HARDI data are first rigidly aligned to the
atlas computed from the normal group, then a 3-D box surrounding the ROI, i.e., the
midbrain, is placed on each image, and the EAPs within this box are computed. Finally,
the EAP field extracted from each ROI image is identified with a point on the product
manifold (the number of elements in the product is equal to the number of voxels in the
ROI) of unit Hilbert spheres. This is in spirit similar to the case of the product manifold
formalism in [25/18]].

A set of 10 Control, 10 PD and 5 ET images are randomly picked as the test set,
and the rest of the images are used for training. Also, classification is performed using
iPGA, PGA and the standard PCA, and is repeated 300 times to report the average
accuracy. The results using EAP features are summarized in Table 2| It is evident that
the accuracy of iPGA is roughly the same as that of the non-incremental PGA, while
both methods are considerably more accurate than the standard PCA, as they account
for the non-linear geometry of the sphere. Further, the savings in computation time for
iPGA are significant in comparison to PGA as evident from the table.
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Results using Shape Features Results using EAP Features
Control vs. PD | Control vs. ET PD vs. ET Control vs. PD | Control vs. ET PD vs. ET
iPGA |PGA [PCA|iPGA |PGA |PCA|iPGA|PGA|PCA [iPGA|PGA [PCA |iPGA |PGA |PCA|iPGA |PGA|PCA
Accuracy | 91.5(93.0(67.3| 88.3 |190.1|75.7| 86.1 |87.6|64.6| 92.7 |93.5|59.8| 90.1 |91.3|70.2| 89.7 |90.9 | 66.0
Sensitivity| 88.0 |91.0(52.0| 84.4 |86.2|80.1| 80.5 [82.4|58.4| 90.7 |91.8|48.3| 87.5|89.7|79.8| 84.0 | 84.7|56.3
Specificity| 95.0 |95.0(82.7| 92.2 |94.1|71.3| 91.7 |92.8|70.8| 94.7 |95.2|71.3| 92.7 |92.9|60.6| 95.5 |97.1|75.7
Time (s) | 4.1 |18.5 4.0 142 3.5 |14.7 11.6 |30.9 9.8 |27.3 10.8 {28.0

Table 2: Classification results from iPGA, PGA and PCA respectively.

Classification Results using the Shapes as Features: In this section, we evaluated
the iPGA algorithm based on shape of the Substantia Nigra region in the brain images,
for the task of movement disorder classification. We first collected random samples
(point) on the boundary of each 3-D shape, and applied the Schrodinger distance trans-
form (SDT) technique in [6] to represent each shape as a point on the unit hyper-sphere.
The size of the ROI for the 3-D shape of interest was set to 28 x 28 x 15, the resulting
samples lie on a S''759 manifold. Then, we used iPGA for classification. The results
given in Table [2| show significant time gains for iPGA over PGA but with similar accu-
racy.

6 Conclusion

In this paper, we presented a novel incremental Fréchet mean estimator (iFME), for data
lying on a hypersphere. We proved the asymptotic convergence of iFME to the true FM.
Significant time efficiency of iFME compared to nFM was shown via synthetic and real
data experiments. Further, we also presented an incremental PGA (iPGA) algorithm that
entailed the use of iIFME. We used the iPGA in conjunction with a nearest neighbor clas-
sifier to classify movement disorder patients using diffusion MR brain scans. Our clas-
sification demonstrated significant gains in computation time compared to batch mode
PGA (in conjunction with the nearest neighbor classifier), and as expected achieved the
same accuracy as batch-mode PGA. In our future work, we will focus on providing an
upper bound on the distance between iFME and the FM for finite set of samples.

Appendix

sin(-2e n+1 )

In this appendix, we show that sin(—2-)
n+1

> ncos?($) forany o € (0, 7).

Proof. Let, f = sin(nf)—ncos? (234
and fp = n cos(nb) + 2n cos(241) si
Solving this eqn., as 6 € (0,7/(n + 1)
check fegg.

fooolo—o = —n®* +15n(n+1)>+n >0, n > 1So,atd = 0, f has
a minimum where, 6 € (0,a/(n + 1)). flp=o = 0 Thus, f > 0asn >1. As for
0 € (0,a/(n+ 1)), sin(0) > 0, sty > 0 Lo = =D — ncos2(L+19) Hence,

in(791) <
sm(nJr )

+0)sin(0), 0 € (0,a/(n+1)),a € (0,7),n > 1.
in(6) sin(210) (L) — n cos? (£ 0) cos ()
), we get, 8 = 0. But, fgg|o—o = 0. Hence, we

S;ngf;) — ncos?(%5L0) > 0 Then, by substituting 6 = a/(n + 1), we get

ncos*(%)
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