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Abstract. As purification methods for obtaining cardiomyocytes from
stem cells continue to improve, the need for automated methods for high-
throughput classification of these cells is becoming extremely important.
Since the shape of the action potential of an adult cell is discrimina-
tive of its phenotype, a promising classification approach is to use the
metamorphosis distance between the action potentials of embryonic and
adult cells. However, current gradient descent methods for computing the
metamorphosis distance are extremely slow, hence unsuitable for large
scale classification. In this paper, we show that the metamorphosis path
can be computed in closed form given the velocity field, which leads to
an efficient alternating minimization approach for computing the meta-
morphosis distance. We test this algorithm on heart cell datasets varying
from 100 to 7,000 cells.
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1 Introduction

Ever since Kehat et al. [1] pioneered cardiomyocyte differentiation back in 2001,
there has been a lot of hope in the potential of stem cell based cardiology. This
dream was bolstered further by the work of [2], which showcased the medical
potential for human embryonic stem cell derived cardiomyocytes in infarcted
rat hearts. The goal of utilizing stem-cell derived cardiomyocytes for cardiac
regeneration, as well as disease models [3] could prove instrumental to the future
of cardiology. However, as expressed in multiple texts [4, 5], there is still a need
for methods to identify cardiomyocyte phenotype (nodal, atrial, or ventricular) in
order to prevent potential arrhythmias, improve sustained cardiac regeneration,
or to provide consistent models for therapeutic study.

In 2003, [6] showed that stem cell derived cardiomyocytes could be divided
into several phenotypes based on their electrophysiological signature, called an
action potential (AP). They labelled the three phenotypes embryonic nodal-like,
embryonic atrial-like, and embryonic ventricular-like. Examples of the embryonic
atrial-like and embryonic ventricular-like APs are provided in Figure 1. They de-
termined this classification manually, and verified it by obtaining measurements
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of features of the action potentials, such as action potential amplitude and du-
ration, and showing statistically significant differences between the phenotypes.
Other works [7, 8] have used similar processes for classification. The problem
with classification methods of this type is that they are subjective, which makes
them difficult to transfer across datasets, where acquisition protocols may be
different.

Fig. 1. Sample embryonic action po-
tentials as described by [6]

We believe that automated, objective
methods for embryonic heart cell classifi-
cation are integral to the study of embry-
onic cardiomyocytes. However, the devel-
opment of classification methods faces sev-
eral fundamental challenges. First, the se-
lection of shape features for classification
is only well understood in the case of adult
cells, and continues to be an art. Second,
the phenotypes of immature cells need not
coincide with the phenotype of adult cells,
and even if they do, the shape of the action
potential may change throughout the mat-
uration process. Understanding the mor-
phological changes of the AP during mat-
uration may prove insightful to the underlying cellular processes.

As these embryonic cardiomyocytes will eventually become one of the ma-
ture phenotypes of interest to clinicians, determining the fate and maturation
process of an embryonic cardiomyocyte from the shape of the AP will help re-
duce the potential risks in future studies. We would like a model that not only
provides a way to determine the mature fate of the embryonic cardiomyocyte,
but also provides insight into the modification of the AP as it matures from
infancy to adulthood. While there is limited evidence of the maturation pro-
cess, the general hypothesis is that the action potential evolves smoothly from
infancy to maturity. Thus, smooth deformation models, like the metamorphosis
distance, introduced in [9–11] and applied in [12] to cardiomyocyte classifica-
tion, is a promising approach to address these challenges. However, while [12]
showed very promising results on using the metamorphosis distance for action
potential classification, the method used for computing the distance is computa-
tionally inefficient. As cardiomyocyte differentiation methods mature, and larger
populations of cells become available, there is a need for faster approaches for
computing the metamorphosis distance.

The main contribution of this paper is to propose an alternative method for
computing the discrete metamorphosis model. Given two action potentials, the
metamorphosis is obtained by finding the optimal interpolant and deformation
paths that interpolate the two action potentials, warping one into the other.
Rather than solving the optimization problem by gradient descent, we show
that the optimal interpolant path for a given velocity field can be computed in
closed form. Our experiments show that this leads to a slightly more efficient
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alternating minimization approach for computing the metamorphosis distance,
which requires fewer iterations and perfoms better compared to gradient descent
methods. We demonstrate the performance of the proposed algorithm on a small
microelectrode recording dataset of about 100 action potentials and, for the first
time, on a large optical mapping dataset of about 7,000 action potentials.

2 Review of Metamorphosis

The metamorphosis distance, proposed in [10] and [11], is an interpolation scheme
used for defining a Riemannian distance between two shapes. In this section, we
will review this scheme in the context of cardiac action potentials, which are one
dimensional shapes. However, this scheme may be applicable to other shapes.

Let I0(τ) and I1(τ) be two action potentials, called, respectively, template
and target. We assume that these signals are periodic, continuously differentiable
and square integrable, i.e., I0, I1 ∈ L2(S1), where S1 is the unit circle. A meta-
morphosis is a family of action potentials {I(·, t) ∈ L2(S1)), t ∈ [0, 1]} that inter-
polates between the template (I(τ, 0) = I0(τ)) and the target (I(τ, 1) = I1(τ)).
Each element of this family can be further decomposed in terms of a diffeomor-
phism φ(·, t) ∈ Diff(S1) acting on an evolving template i(τ, t) as

I(τ, t) = φ(τ, t) · i(τ, t) = i(φ−1(τ, t), t). (1)

To define a distance between two action potentials using this model, we need
to define an energy that depends on the infinitesimal change in the deformation
(∂φ∂t ) and the infinitesimal change in the template ( ∂i∂t ). Because φ is a diffeomor-

phism, we can define the infinitesimal change in the deformation ∂φ
∂t by a smooth

flow field v (∂φ∂t = v(φ(τ, t), t)) and penalize its smoothness with a Sobolev norm
(a norm on a function and its derivatives). For example, let L(·) is a linear dif-

ferential operator acting on v (for example, Lv = v − α ∂2

∂τ2 v). We can use a
Sobolev norm that can be expressed in terms of the Euclidean norm as:∥∥∥∂φ

∂t

∥∥∥2
V

= ‖v‖2V = 〈v, Lv〉. (2)

On the other hand, we can compute the infinitesimal change in the template by
taking the derivative of I(τ, t) with respect to t, which gives (see [11] for the
details):

∂i

∂t
=
∂I

∂t
+
∂I

∂τ
v, (3)

and then penalize this change using its Euclidean distance. Combining the two
penalties with a balancing parameter σ allows us to define an energy on the
family, which can be minimized over all families to define a distance between
template and target as:

d2M(I0, I1) = inf
v,I

I(τ,0)=I0(τ)
I(τ,1)=I1(τ)

∫ 1

0

(1

2
‖v(τ, t)‖2V +

1

2σ2

∥∥∥∂I
∂t

(τ, t)+
∂I

∂τ
(τ, t) v(τ, t)

∥∥∥2
L2

)
dt.

(4)
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One approach to minimizing this distance is to discretize the energy, and then
develop methods to minimize the resulting discretized energy. For example, [12]
and [13], take advantage of the following approximation to discretize τ :∫ 1

0

∥∥∥∂I
∂t

(τ, t) +
∂I

∂τ
(τ, t)v(τ, t)

∥∥∥2
L2

dt ≈
S−1∑
k=0

∥∥∥I(t+ δtv(τ, tk), tk+1)− I(τ, tk)

δt

∥∥∥2
L2

.

(5)
After combining this with a discretization for τ , the energy becomes:

E(v(τi, tk), I(τi, tk)) =

S−1∑
k=0

1

2
‖v(τi, tk)‖2V +

1

2σ2
‖I(τi+v(τi, tk), tk+1))−I(τi, tk)‖2l2 .

(6)
Both [12] and [13] minimize this discrete energy via alternating gradient descent.
In particular, following [12], let Ld be the discretized version of the linear op-
erator in (2), and let K = L−1d be the corresponding smoothing kernel for the

derivative operator Ld. Now, using w = L
1/2
d v, the gradient of E with respect

to this new variable w at each interpolation step can be calculated via the chain
rule as:

∂E

∂w(τi, tk)
= w(τi, tk) +

1

σ2
K1/2(I(τ̄i, tk+1)− I(τi, tk))

∂I(τ̄i, tk+1)

∂τi
, (7)

where τ̄i = τi +K1/2w(τi, tk).
Now, given w, and as a result, v, the gradient update of the metamorphosis

interpolants, I(τ, tk) can be determined by making an approximation. Since we
are discretizing in the “spatial” domain τ , we sample each I(τ, tk) and specific
points τi. Thus, when we look at I(τ+v(τ, tk), tk+1), it is likely that τi+v(τi, tk)
does not coincide with the original samples τi. Therefore we have to approximate
the value of I(τi + v(τi, tk), tk+1) in terms of the samples original discretization
I(τi, tk+1) so that they can be compared to the samples of I(τi, tk). The action of
approximating the sampling of I(τ+v(τ, tk), tk+1) using the samples of I(τ, tk+1)
is denoted by the operator Nvk and is realized by the linear interpolation matrix:

NvkI(τ, tk+1) ≈ I(τ + v(τ, tk), tk+1). (8)

This leads to:

E(I(τ, t)) ≈
S−1∑
k=0

1

2σ2
‖NvkI(τ, tk+1)− I(τ, tk)‖2L2 . (9)

The gradient with respect to I(τ, tk), k = 1, . . . , S − 1, is given by:

∂E

∂I(τ, tk)
=

1

σ2
(NT

vk−1
(Nvk−1

I(τ, tk)− I(τ, tk−1))− (NvkI(τ, tk+1)− I(τ, tk))).

(10)
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While alternating between updates of v and I does find a local minimum to the
optimization problem, the gradient descent steps are handcuffed by the choice
of the step size. This can be addressed by either finding an appropriate adaptive
step size, or by a large number of iterations at a fixed, but stably small step size.
However, both schemes require additional computational effort.

3 A Closed Form Update for Continuous Metamorphosis

If the goal is a model of maturation and classification of large populations of
cardiomyocytes, it will be difficult to scale gradient descent methods for solv-
ing tens of thousands of optimization problems. In this paper, we propose an
alternative approach in which the solution for some variables can be computed
in closed form given the other variables. To motivate the proposed approach, in
this section we present a formulation derived in [14] for solving the alternating
minimization updates of the continuous energy in (4). In the next section, we
will show how this approach can be extended to the discrete energy.

We begin by applying the chain rule to compute the variation of the energy
in (4) with respect to v. This leads to an update for v(τ, t) with fixed I(τ, t) that
is based on solving the following non-homogeneous differential equation:(

2L+
1

σ2

(∂I
∂τ

(τ, t)
)2)

v(τ, t) =
1

σ2

(
− ∂I

∂t
(τ, t)

∂I

∂τ
(τ, t)

)
, (11)

where Lv = v−α ∂2

∂τ2 v. Now, alternatively, minimizing this distance with respect
to I(τ, t), with v(τ, t) fixed, leads to minimizing the following energy:

E(I(τ, t)) =

∫ 1

0

1

2σ2

∥∥∥∂I
∂t

(τ, t) +
∂I

∂τ
(τ, t) v(τ, t)

∥∥∥2
L2
dt. (12)

Taking the variation with respect to I(τ, t) leads to a complicated differential
equation to be solved. However, if we instead let J(τ, t) = I(φ(τ, t), t) and u =
φ−1(τ, t), then it is not difficult to show that differentiating J(τ, t) with respect
to t leads to the following result:

∂J(φ−1(τ, t), t)

∂t
=
∂I(τ, t)

∂t
+
∂I(τ, t)

∂τ
v(τ, t). (13)

After making the change of variables u = φ−1(τ, t) and substituting the above
relationship, the energy becomes:

E(J(u, t)) =

∫ 1

0

‖∂J(u, t)

∂t
‖2L2

∂φ(u, t)

∂u
dt. (14)

The Gateaux variation of E with respect to J , and setting it to 0 leads to:

J(u, t) = J(u, 0)

∫ 1

t
1

∂φ(u,t′)
∂u

dt′∫ 1

0
1

∂φ(u,t′)
∂u

dt′
+ J(u, 1)

∫ t
0

1
∂φ(u,t′)
∂u

dt′∫ 1

0
1

∂φ(u,t′)
∂u

dt′
. (15)
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After computing J(u, t), one may obtain I(τ, t) by back-substitution. Thus, not
only it is possible to compute the optimal I(τ, t) given v(τ, t) in closed form,
the optimal solution is essentially a weighted combination of the source and the
target. In practice, however, the update for v given I and vice versa cannot be
implemented without first discretizing the equations, as discussed next.

4 A Closed Form Update for Discrete Metamorphosis

One approach to implementing the updates for v and I described in the previous
section is to simply discretize the updates. However, a naive discretization of the
continuous updates need not coincide with the updates for a discretization of
the original objective, such as that in (6). In this section, we derive closed form
updates for the minimization of the discrete energy in (6).

4.1 Formulation

Let Nk = Nvk and Ik = I(τ, tk). If Zk = NkIk+1 − Ik, then at the optimum,
(10) simplifies to:

Zk = NT
k−1Zk−1 (16)

If we let Ri,j = NiNi+1 . . . Nj−1, it follows that Zk = RT0,kZ0. Using this, and
the original definition of Zk, we can write an equation for Ik:

Ik = NkIk+1 − Zk = NkIk+1 −RT0,kZ0. (17)

Iterating backwards from k = S − 1, we can write these equations using IS as:

Ik = Rk,SIS − (

S−1∑
i=k

Rk,iR
T
0,i)Z0 = Rk,SIS −Ak,SZ0, (18)

where Al,m =
∑m−1
i=l Rl,iR

T
0,i. To determine Z0, we look at I0:

I0 = R0,SIS −A0,SZ0 =⇒ Z0 = A−10,S(R0,SIS − I0). (19)

So, after replacing Z0, we find an update for Ik that depends only on I0 and IS :

Ik = Ak,SA
−1
0,SI0 + (Rk,S −Ak,SA−10,SR0,S)IS . (20)

4.2 Computation

From (20), we get a closed form update for the interpolants Ik in terms of the
template I0 and target IS . The next major question to solve is how to efficiently
compute this update. Looking at the equation, we need Rk,S and Ak,S for all
k. But given the current definition, Ak,S requires knowledge of all Ri,j . This is
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a large computational storage overhead, but it can be avoided by noticing that
Ak,S can also be determined using backwards iteration:

Ak,S =

S−1∑
i=k

Rk,iR
T
0,i = RT0,k +NkAk+1,S . (21)

Thus we have the following system of forward and backwards updates:

Ik = Bk,SI0 + (Rk,S −Bk,SR0,S)IS (22)

Rk,S = NkRk+1,S (23)

CT0,k = NT
k C

T
0,k−1 (24)

Bk,S = CT0,k +NkBk+1,S , (25)

where Bk,S = Ak,SA
−1
0,S , C

T
0,k = RT0,kA

−1
0,S . The initial conditions for the updates

are: RS,S = Id, CT0,0 = A−10,S , and BS,S = 0. Here, A−10,S can be computed by using
the original definition and the storage of R0,k which then can be used to generate
C0,k. Since the biggest computational task in this update is computing A−10,S , the

update of A−10,S can be done once every n iterations if a faster approximation is
required. Our update for velocity follows that of [12]. The overall algorithm is
presented in Algorithm 1. We acknowledge that this step is still gradient descent,
and may be a limiting step in performing the overall algorithm. Finding a closed
form solution for this optimization problem is difficult given the nonlinearity in
v of the template evolution summand of the energy. Alternative approaches to
performing this update more efficiently are a future research direction.

4.3 Convergence to continuous formulation

We have derived a closed form update for the metamorphosis interpolants, and
provided a way to efficiently compute this optimum using forward-backward
schemes. We comment now on how this proposed update relates to the contin-
uous formulation. We omit many of the details here, but they can be found in
the Supplementary Material. The convergence result can be summarized by the
following theorem:

Theorem 1. Let Ik, k = 0, . . . , S, be the metamorphosis interpolants derived
from (20), and let I(τ, t) be the family of interpolants derived from J(u, t) given
by (13). Then, as S →∞, Ik → I(τ, t).

Sketch of the Proof: Given that J represents the interpolants in the template
domain, it follows that the discrete version Jk of Ik is Jk = R0,kIk. Proceeding
from Ik = Ak,SA

−1
0,SI0 + (Rk,S −Ak,SA−10,SR0,S)IS , it is not difficult to show that

Jk = (Id − A0,kA
−1
0,S)J0 + A0,kA

−1
0,SJS . From here, after some analysis one can

show R0,k(J(·, t))→ J(φ(·, kS ), t), which leads to the result.
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Algorithm 1 Discrete Metamorphosis via Direct Image Computation

Given a Template Signal I0(τ), a Target Signal I1(τ), a balance parameter σ, the
number of evolution time steps S, and a Sobolev Operator Ld, update frequency n.

1. Initialization.
(a) Set m = −1, d−1 =∞. Calculate K = L−1

d .
(b) Set w(τi, tk) ≡ 0, v(τi, tk) = K1/2w(τi, tk) ≡ 0, for all tk and τi.
(c) For k = 0, . . . , S: Set I(τi, tk) = S−k

S
I0(τi) + k

S
I1(τi)

(d) Calculate d20 =
∑S−1
k=0

1
2
‖w(τi, tk)‖2l2 + 1

2σ2 ‖NvkI(τi, tk+1))− I(τi, tk)‖2l2
2. Until dm−1 − dm converges

(a) Set dm → dm−1,m+ 1→ m.
(b) For k = 0, . . . , S − 1, Update w(τi, tk) using (7).

Calculate v(τi, tk) = real(K1/2w(τi, tk)), Update Nvk .
Compute R0,k and Rk,S for k = 0, . . . , S.

(c) if mod(m,n) = 0,
Calculate A0,S =

∑S−1
i=0 R0,iR

T
0,i, Calculate A−1

0,S .

(d) Initialize CT0,0 = A−1
0,S , BS,S = 0. Calculate:

CT0,k = NT
k C

T
0,k−1

Bk,S = CT0,k +NkBk+1,S

Ik = Bk,SI0 + (Rk,S −Bk,SR0,S)IS
(e) Calculate d2m =

∑S−1
k=0

1
2
‖w(τi, tk)‖2l2 + 1

2σ2 ‖NvkI(τi, tk+1))− I(τi, tk)‖2l2

5 Experiments

5.1 Patch Clamp Data

In this section, we evaluate the efficiency of our algorithm by comparing it to
the gradient descent based method proposed in [12] on the dataset generated by
[6]. The dataset contains 16 embryonic atrial-like and 36 embryonic ventricular-
like cardiomyocytes, manually labeled according to [6] based on AP features.
The data was pre-processed using the protocol described in [12]. Namely, we
fixed the cycle length to 1 second using the algorithm presented by [15]. For
classification purposes, we generated 10 mature atrial and 10 mature ventricular
protoype action potentials using the atrial model of [16] and the ventricular
model of [17], respectively. All signals were then normalized so that the resting
membrane potential has voltage 0, and the amplitude has voltage 1.

We computed the metamorphosis distance from each of the embryonic car-
diomyocytes to each one of the mature prototypes. We used the linear operator
Ld(·) = id(·)− α∆(·), with α = 8, and set the parameterσ to 0.3 and the num-
ber of interpolants between template and target to 3 (S = 4). We iterated our
algorithm and that of [12] until they reached convergence or 300 iterations.

Figure 2 compares the method of [12] and two variants of our method (with
A−10,S updated each iteration or every 10 iterations) in terms of the final interpo-
lations and the distances they produce. We see that there is very little difference
between the three interpolations, and that the three distances are approximately
equal. The main difference is that our method with A−10,S updated every 10 iter-
ations requires about half the number of iterations than the other methods.
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(a) Gradient Descent Metamorphosis [12]: d2M = 206.8240, Iterations: 74

(b) Proposed method, A−1
0,S updated every iteration: d2M = 208.2602, Iterations: 72

(c) Proposed method, A−1
0,S updated every 10 iterations: d2M = 207.6308, Iterations: 38

Fig. 2. Comparison of the metamorphosis method in [12] and two variants of the
proposed method in terms of the interpolants and the distances they compute.

Table 1 compares the the Euclidean distance, the metamorphosis distance
computed with the method in [12], and the metamorphosis distance computed
using the two variants of our method in terms of their classification performance
and computation time on the entire dataset. For this purpose, we use the 20
mature prototypes as our training set, and the entire dataset as the test set.
Classification is done with the 1 nearest neighbor (NN) and 3 NN classifiers,
meaning we classify an AP based on the class of the closest 1 or 3 mature
prototypes. While the Euclidean distance is the fastest to compute, the classi-
fication performance is better using the metamorphosis distance. Moreover, we
see that our method provides improved classification rate relative to the current
state-of-the-art method at reduced computation time. In fact, when n = 10,
the computation time is almost completely in the gradient descent update for
v, suggesting that the computational limit in the interpolant update has been
reached. While improving the speed of the velocity updates is one of our future
research goals, the findings on this dataset suggest that our algorithm provides
an improvement over the current standard.

5.2 Optical Data

We also tested our algorithm on a much larger dataset consisting of 9 cell clusters
with APs recorded using the optical mapping technique of [18]. The number of
APs in each cell cluster ranges from 400 to 1000, and the total number of APs
in the dataset equals 6940. Mature prototypes were generated using the same
computational models as in the previous experiment. The signals were paced at



128 Gorospe et al.

Table 1. Comparison of the metamorphosis method in [12] and two variants of the
proposed method in terms of classification performance and computation time on a
patch clamp dataset.

Euclidean Gorospe Our Method Our Method
Distance et al. [12] (n = 1) (n = 10)

1 NN Atrial Scoring 16/16 13/16 14/16 14/16
1 NN Ventricular Scoring 29/36 36/36 36/36 36/36

3 NN Atrial Scoring 16/16 13/16 14/16 14/16
3 NN Ventricular Scoring 29/36 36/36 36/36 36/36

Computation Time (in seconds) < 1 17.0181 15.8265 12.0815

a rate of 1.5 Hz (cycle length of 2
3 seconds), and also normalized to have resting

potential voltage 0, and maximum voltage amplitude of 1.
We computed the metamorphosis distance using our new formulation with

n = 1 from each AP in the dataset to each one of the mature prototypes using
the same parameters as in the patch clamp experiment. The algorithms were
run in 2 8-core computer nodes with 8 hyperthreaded 2.3 GHz CPUs per node.
The total time to complete the analysis on the entire dataset was 13 hours, with
individual cell clusters taking between 50 and 80 minutes.

Figure 3 compares the classification results obtained by a 1-NN classifier with
the Euclidean distance versus the metamorphosis distance for each one of the 9
cell clusters. We omit the 3 NN results as the results are identical. The blue color
indicates areas where the APs were classified as atrial, and red indicates areas
that were classified as ventricular. While some of the cell clusters present with
only 1 phenotype, the majority of the cell clusters present with both phenotypes
in varying concentrations, affirming recent work [19].

Figure 3(c) compares the action potentials of the cell clusters obtained by
a 1-NN classifier with the Euclidean and Metamorphosis distances for a pair
of heterogeneous clusters. For the metamorphosis classification, the two classes
show distinct shapes, and they are similar to those described by [6] for embryonic
atrial-like and embryonic ventricular-like. In comparison, the Euclidean classifi-
cation fails to capture the distinction between the phenotypes. This affirms that
the metamorphosis distance is a suitable automated counterpart to manual clas-
sification by biologists. More importantly, it suggests that the metamorphosis
model could be used to reliably assess the phenotype statistics of populations
of APs. As a consequence, the metamorphosis model may prove insightful to
a growing collection of methods that have been derived to isolate a particular
phenotype of embryonic cardiomyocytes [20, 21].

6 Conclusion

We have presented an algorithm for computing the metamorphosis that performs
comparably with the current state of the art, but at approximately two-thirds
the run time. We presented a closed form update for the interpolants that can
be computed via a series of forward and backwards updates, as well as demon-
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(a) Euclidean 1-NN

(b) Metamorphosis 1-NN

Classified Cell Cluster Atrial Signals Ventricular Signals
(c) Cell cluster classifications and their corresponding action potentials.

Fig. 3. Comparison of the Euclidean distance and the metamorphosis distance for 1-NN
classification of the optical dataset.

strated its convergence to the continuous evolution metamorphosis updates. We
demonstrated its effectiveness on a studied microelectrode recording dataset, as
well as a much larger scale optical mapping dataset. We believe that the new
method could lead to advances in stem cell cardiology, as well as lead to potential
new frontiers in computational shape analysis.
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