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Abstract. In this work we introduce a new dissimilarity measure for
shape registration using the notion of normal cycles, a concept from
geometric measure theory which allows to generalize curvature for non
smooth subsets of the euclidean space. Our construction is based on the
definition of kernel metrics on the space of normal cycles which take ex-
plicit expressions in a discrete setting. This approach is closely similar to
previous works based on currents and varifolds [13,5]. We derive the com-
putational setting for discrete curves in R3, using the Large Deformation
Diffeomorphic Metric Mapping framework as model for deformations.
We present synthetic experiments and compare with the currents and
varifolds approaches.

Introduction

Many applications in medical image analysis require a coherent alignment of
images as a pre-processing step, using efficient rigid or non-rigid registration
algorithms. Moreover, in the field of computational anatomy, the estimation of
optimal deformations between images, or geometric structures segmented from
the images, is a building block for any statistical analysis of the anatomical vari-
ability of organs. Non-rigid registration is classically tackled down by minimizing
a functional composed of two terms, one enforcing regularity of the mapping, and
the data-attachment term which evaluates dissimilarity between shapes. Defining
good data-attachment terms is important, as it may improve the minimization
process, and focus the registration on the important features of the shapes to be
matched.

In [13,9] a new framework for dissimilarity measures between sub-manifolds
was proposed using kernel metrics defined on spaces of currents. This setting is
now commonly used in computational anatomy ; its advantages lie in its simple
implementation and the fact that it provides a common framework for continuous
and discrete shapes (see [7] for a computational analysis of currents and their
numerical implementation). However, currents are oriented objects and thus a
consistent orientation of shapes is needed for a coherent matching. Moreover, due
to this orientation property, artificial cancellation can occur with shapes with
high local variations. To deal with this problem, a more advanced model based
on varifolds has been introduced recently [4]. Varifolds are measures over fields
of non-oriented linear subspaces. See [4], chap. 3 for an exhaustive analysis.
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In this work, we propose to use a second-order model called normal cycle
for defining shape dissimilarities. The normal cycle of a submanifold X is the
current associated with its normal bundle NX . The normal cycle encodes second
order, i.e. curvature information of X; more precisely one can compute inte-
grals of curvatures by evaluating the normal cycle over simple differential forms.
Moreover, it has a canonical orientation which is independent of the orientation
of X (in fact X does not need to be oriented).

Our approach is closely related to the currents and varifolds models in that
it is based on the definition of kernel metrics that take explicit form in a discrete
setting. This paper is organized as follows : in Sect. 1 and 2 we introduce the
mathematical notions of currents and normal cycles and define the kernel metric
in a general setting. In Sect. 3 we derive explicit formulas for the metric in the
case of discrete curves in R3. In Sect. 4 we introduce the general curve matching
problem and recall some basic facts about the diffeomorphic model. Finally we
present two sets of synthetic experiments in Sect. 5.

1 Currents and Normal Cycles

1.1 Currents

We recall here the definition of current used in [7], definition 1.2.

Definition 1 (Currents).
The space of m-currents in Rd is defined as the topological dual Ωm0 (Rd)′,

where Ωm0 (Rd) := C00(Rd, (ΛmRd)∗) is the space of continuous m-differential
forms vanishing at infinity, with the supremum norm : ‖ω‖∞ = supx∈Rd |ωx|. A
m-current is thus a linear map T : Ωm0 (Rd) → R such that there exists CT > 0
such that for every differential form ω,

T (ω) ≤ CT ‖ω‖∞

Example 1. A fundamental example of current (which will be useful when deal-
ing with discrete shape) is the "Dirac" current. Let x ∈ Rd, α ∈ Λm(Rd). For
ω ∈ Ωm0 (Rd), we define δαx (ω) := ωx(α).

Any sufficiently regular shape in Rd can be seen as a current. Let Hm be the
m-dimensional Hausdorff measure in Rd. If X is a regular m-dimensional sub-
manifold, Hm coincides on X with the volume form of X. Assume X is a com-
pact, oriented, m-rectifiable set (see definition in [8]). Then the tangent space
TxX exists for Hm-almost every x ∈ X, and one can associate to X a current
[X], defined as :

[X](ω) :=

∫
X

ωx(τX(x))dHm(x) (1)

where τX(x) = τ1(x) ∧ · · · ∧ τm(x), with (τi(x))1≤i≤m an orthonormal basis of
TxX. If we consider the opposite orientation of X : X̃, we have [X̃] = −[X].
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1.2 Normal Cycles

Normal cycles find their roots in the seminal work of Federer. In [8], he proved
that for a set with positive reach (see definition below), the volume of the ε-
parallel neighbour of X ∩ B (where B is a borelian) can be expressed as a
polynomial of ε; and more importantly that the coefficients of this polynomial
can be interpreted as curvature measures of the set X. These measures have
integral representation, and Zähle in [15] introduced d− 1 generalized principal
curvatures for sets with positive reach, and retrieved Federer’s curvature mea-
sures by integrating functions of these principal curvatures over the unit normal
bundle. She showed that this can be done by integrating adequate differential
forms on the associated current : this is exactly the normal cycle. This work was
pushed forward in [16]. The book of Morvan ([12]) is a self-sufficient reference
for normal cycles as they will be used in this paper. Note that normal cycles
have already been applied for computational analysis of discrete surfaces in [6].
Cohen-Steiner and Morvan derive a definition of discrete curvature and discrete
curvature tensor for polyhedral surfaces based on the normal cycle.

We follow Federer [8] to give a definition of the normal bundle and the normal
cycle in the context of sets with positive reach.

Definition 2 (Sets with positive reach). Let X ⊂ Rd and for any ε > 0,
denote Xε = {x ∈ Rd, d(x,X) ≤ ε} the ε tube around X. The reach of X is
the supremum of r > 0 such that for every 0 < ε ≤ r, there exists a unique
projection of x ∈ Xε onto X. X is said to be a positive reach set if r > 0.

On a set with positive reach R, one can roll a ball of radius less than R.
Thus, a set with positive reach can be seen heuristically as a set with a bounded
below curvature.

Definition 3 (Unit Normal bundle). Let X be a set with positive reach. We
define the unit normal cone at x ∈ X and the unit normal bundle repectively as

Nor(X,x) = {u ∈ Rd | ∃ε > 0 | ∀y ∈ B(x, ε) ∩X, 〈y − x, u〉 ≤ 0} ∩ Sd−1,
NX = {(x, n), x ∈ X, n ∈ Nor(X,x)}.

For a C2-submanifold, the unit normal bundle defined here coincides with the
classical one, which is a (d−1)-submanifold in the (2d−1) dimensional manifold
Rd × Sd−1. More generally, NX is a (d− 1)-rectifiable set in Rd × Sd−1 when X
has positive reach and ∂Xε is a (d − 1)-dimensional differentiable submanifold
(hypersurface), with Lipschitzian unit normal vector field (see again [8], 4.8).

Example 2 (Unit normal bundle of a curve in R3). Let γ : [0, L] → R3 be a
parametrized curve in R3, and suppose γ is C2 on [0, L], with γ′(t) 6= 0, ∀t ∈
[0, L]. On a regular part of the curve (i.e. γ(t), 0 < t < L), the normal cone
is simply γ′(t)⊥ ∩ S2 (note that for a segment, the normal bundle is thus a
cylinder). For the singular part (i.e. the two endpoints), we denote S+

v := {u ∈
S2, 〈u, v〉 ≥ 0}. One can easily show that the normal cone at γ(0) and γ(1) are
{γ(0)}×S+

−γ′(0) and {γ(1)}×S
+
γ′(1) respectively. These are two half spheres with

a coherent orientation with respect to the normal bundle (independent of the
parametrization).
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Canonical orientation of NX . ∂Xε being a closed hypersurface, it is canoni-
cally oriented and this induces a canonical orientation on the unit normal bun-
dle of X as follows : let (e1, . . . , ed) be an orthonormal basis of Rd, and let
(τ1(x, n), . . . , τd−1(x, n)) an orthonormal basis of T(x,n)NX such that〈

(πp+ επn)(τ1(x, n))∧ · · · ∧ (πp+ επn)(τd−1(x, n))∧n , e1 ∧ · · · ∧ ed
〉
> 0, (2)

where πp denotes the projection on the spatial space, and πn the projection on
the normal space : πp : (x, n) ∈ Rd × Rd 7→ x, πn : (x, n) ∈ Rd × Rd 7→ n. Then
τNX (x, n) := τ1(x, n) ∧ · · · ∧ τd−1(x, n) is a simple (d − 1)-vectorfield orienting
NX . Expression (2) is independent of 0 < ε < ReachX. Besides, the orientation
of the normal bundle of X does not depend on any orientation of X.

Definition 4 (Normal cycle). The normal cycle of a positive reach set X ⊂
Rd is the (d− 1)-current associated with NX with its canonical orientation. For
any differential form ω ∈ Ωd−10 (Rd × Rd), one has :

N(X)(ω) := [NX ](ω) =

∫
NX

ω(x,n)(τNX (x, n))dHd−1(x, n) (3)

Normal cycles for unions of sets with positive reach The theory of normal cycles
can be extended to the case of finite unions of sets with positive reach, as done
in [16]. This allows to define normal cycles for a very large class of subsets. In
particular it allows to define normal cycles for unions of segments, which will be
used as our discrete models for curves. This extension can be stated as follows :

Theorem 1 (Additive property). There is a unique extension of normal cy-
cles to finite unions of sets with positive reach such that the following property
holds for any two such sets C, S :

N(C ∪ S) := N(C) +N(S)−N(C ∩ S) (4)

In fact this additive property holds for sets with positive reach, and is used
recursively as definition in the case of unions of such sets. It can be shown that
this definition is fully coherent.

2 Metrics on Normal Cycles

For our numerical purpose, we need a computable expression for the dissimilarity
between shapes. In the very same spirit of [9,7,4], we will use a dual kernel metric
on normal cycles as dissimilarity measure. This can be done by considering a
kernel K : (Rd × Sd−1)2 → B(Λd−1(Rd × Rd),R) of the form

K((x, u), (y, v))(α, β) := kp(x, y)kn(u, v) 〈α, β〉

where x, y ∈ Rd, u, v ∈ Sd−1, α, β ∈ Λd−1(Rd × Rd), and:
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- kp(x, y) is a positive definite kernel on Rd. In our experiments we used
kp(x, y) = exp

(
−|x−y|2
σ2
W

)
, where σW is a scale parameter.

- kn(u, v) is a positive definite kernel on Sd−1. We used the reproducing kernel
of a Sobolev space Hs(Sd−1) of order s. This kernel is in fact a scalar function of
the distance between two vectors of Sd−1. Therefore it is rotation invariant and
can be expanded in spherical harmonics, which will be useful for the numerical
aspect.

- 〈·, ·〉 is a scalar product between d − 1-vectors in Rd × Rd. We used a
modification of the canonical scalar product between d − 1-vectors that takes
into account the parameter σW to ensure invariance of the kernel metric when
a rescaling is applied jointly to the data coordinates and σW . It is defined by

〈u1 ∧ · · · ∧ ud−1, v1 ∧ · · · ∧ vd−1〉 := det((〈ui, vj〉σV )1≤i,j≤d−1)

where 〈u, v〉σV := 1
σ2
V
〈πp(u), πp(v)〉Rd + 〈πn(u), πn(v)〉Rd .

This kernel K defines a Reproducing Kernel Hilbert Space (RKHS) W of
(d − 1)-differential forms in Rd × Sd−1 and ι : W ↪→ Ωd−10 (Rd × Sd−1) is a
continuous injection under some regularity conditions on the kernel (see [9], prop
18, basically we require the continuity of the kernel, bounded, and vanishing at
infinity ). W ′ has also a structure of Hilbert space, and Ωd−10 (Rd×Sd−1)′ ⊂W ′.

The key point of the model is the formula for the scalar product between two
normal cycles in the dual space W ′ :

〈N(C), N(S)〉W ′ =
∫
NC

∫
NS

kp(x, y)kn(u, v) 〈τNS (x, u), τNC (y, v)〉 dHd−1(x, u)dHd−1(y, v)

(5)
The dissimilarity between two shapes S and C is then defined as

‖N(S)−N(C)‖2W ′ = 〈N(S), N(S)〉W ′ − 2 〈N(S), N(C)〉W ′ + 〈N(C), N(C)〉W ′
(6)

3 Computational Framework

The aim of this section is to derive the expression of the kernel metric on normal
cycles (5) for unions of segments in R3, which we will use as approximations of
real curves.

3.1 Decomposition of the Normal Cycle for Unions of Segments

Let a, b ∈ R3 and C = [a, b] be the segment with extremities a and b. We
denote C̃ = C \ {a, b}. As noticed in example 2, the normal bundle of C is
composed of two parts, a cylindrical part and a spherical part. More precisely,
NC = N cyl

C ∪N
sph
C with N cyl

C := C̃× ((b−a)⊥∩S2) and N sph
C := ({a}×S+

a−b)∪
({b}×S+

b−a). The normal cycle N(C) thus satisfies N(C) = N(C)cyl+N(C)sph

with N(C)cyl := [N cyl
C ] and N(C)sph := [N sph

C ].
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In order to get a nice decomposition in the case of unions of segments, it is
convenient to define the normal cycle associated to the "open" segment C̃ as:
N(C̃) := N(C)−N({a})−N({b}). This definition is made on purpose to allow
to extend the additive property (4) to such open segments. Since the normal
bundles of {a} and {b} are entire spheres, we see that N(C̃) expresses also as a
sum of a cylindrical part and a spherical part: N(C̃) = N(C)cyl+N(C̃)sph with
N(C̃)sph := −[{a} × S+

b−a]− [{b} × S+
a−b].

Now let C = C1 ∪ · · · ∪Cn be a union of n segments in R3. We can consider
without loss of generality that the intersection of two segments Ci ∩Cj is either
empty or composed of a single point. If we denote {v1, . . . , vN} the set of end
points of all segments Ci, 1 ≤ i ≤ n, we can rewrite C as the disjoint union of
the C̃i, 1 ≤ i ≤ n, and the {vj}, 1 ≤ j ≤ N . The additive property (4) then
becomes straightforward and we get

N(C1 ∪ · · · ∪ Cn) =
n∑
i=1

N(C̃i) +

N∑
j=1

N({vj}) (7)

which we can further decompose into cylindrical and spherical parts as follows :

N(C1 ∪ · · · ∪ Cn) =

(
n∑
i=1

N(Ci)
cyl

)
+

 n∑
i=1

N(C̃i)
sph +

N∑
j=1

N({vi})



3.2 Computation of the Kernel Metric for Unions of Segments

Let C = C1 ∪ · · · ∪ CnC , S = S1 ∪ · · · ∪ SnS be two unions of segments. The
calculation of the expression of (5) in this case is simplified by the following
property:

Theorem 2. The cylindrical part and the spherical part are orthogonal with
respect to the kernel metric presented in Sect. 2.

This means we only need to compute scalar products between spherical parts,
and scalar products between cylindrical parts. We do not give full details of this
computations here and only sketch the main arguments. We denote x1, . . . , xNC
(resp. y1, . . . , yNS ) the vertices of C (resp. of S) and fi = xf2

i
−xf1

i
, 1 ≤ i ≤ nC

(resp. gj = yg2j−yg1j , 1 ≤ j ≤ nS) the edges of C (resp. S). For an edge fi, xf1
i
and

xf2
i
are its two vertices. Moreover, we define ci = 1

2 (xf1
i
+xf2

i
), dj = 1

2 (yg1j +yg2j )

and, θij = arccos
(〈

fi
|fi| ,

gj
|gj |

〉)
.

For the cylindrical part, in (5), the point kernel integrated over the segment
is approximated by its value at the center, with a coefficient taking into account
the length of the edge. For the normal part, we use an expansion in spherical
harmonics of kn (which is valid since kn is rotation invariant), and pre integrate
the kernel on the normal parts. The result is a quantity depending on the angle
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between the edges. For the spherical part, the evaluation of the point kernel is
immediate and we use the same argument for the normal kernel. Finally we get

〈
N(C)cyl, N(S)cyl

〉
W ′
' 1

σ2
W

nC∑
i=1

nS∑
j=1

kp(ci, dj) 〈fi, gj〉
∑
m≥0

am cos(mθij) (8)

and〈
N(C)sph, N(S)sph

〉
W ′

=

NC∑
k=1

NS∑
l=1

kp(xk, yl)

(
1− nxk + nyl

2

)
β

+

nC∑
i=1

nS∑
j=1

2∑
a,b=1

b0 + (−1)a+b
∑
m≥0

bm cos(mθij)

 kp(xfai , ygbj )

(9)

where nxk (resp. nyl) is the number of edges adjacent to the vertex xk (resp. yl).
The constant β and the am and bm coefficients have explicit expansions in

spherical harmonics, and are pre-computationable. Even though they are not
detailed here, we just precise the fact that they vanish for m even. This ensures
that if we invert the orientation of the edges (i.e. if we invert xf1

i
and xf2

i
), the

scalar product remains unchanged. We retrieve here the fact that normal cycles
are unoriented objects. With these two scalar products, we have all we need
to implement an algorithm which computes dissimilarity between two discrete
curves. This is the first step to have a matching algorithm.

4 Curve Matching via Normal Cycles

Given two curves C, S in R3, we define the curve matching problem as the
minimization of a functional over a given set of deformations G. This functional
takes the form

ϕ0 = argmin
ϕ∈G

E(ϕ) +A(N(ϕ(C))) (10)

where A(N(ϕ(C))) = ‖N(ϕ(C))−N(S)‖2W ′ is the data attachment term eval-
uating the dissimilarity between the deformed curve ϕ(C) and the target S,
and E(ϕ) is an energy which ensures regularity of the mapping. In our exper-
iments we chose to use the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) framework for defining the space G of deformations and the energy
E, but of course other frameworks for non-rigid registration could be used, such
as for example Thin Plate Splines ([3]).

In a discrete setting, curves are given as unions of segments. As a first ap-
proximation, we replace ϕ(C) by the union of segments corresponding to moving
only the vertices of C (we do not consider the deformation of all the curve). Note
that it is possible to define a geometric action of a diffeomorphism ϕ of Rd on
normal cycles, by considering the diffeomorphism induced by ϕ on Rd × Sd−1
and the standard push forward action on currents. However we do not use this
action in this work.
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4.1 Gradient of the Data Attachment Term Associated with
Normal Cycle

As explained previously, we suppose that the deformation acts only on the ver-
tices. Thus, we can consider that A is a function of the current position of
the vertices of C : A(ϕ(xk)1≤k≤N ). This function can be computed explicitely
using (6) and the expressions for the scalar products (8), (9). Then a numer-
ical implementation of the minimization of (10) requires the computation of
∇A((xk)1≤k≤N )), which takes an explicit form by deriving these expressions.
We do not detail this calculation here.

4.2 Large Deformation Diffeomorphic Metric Mapping (LDDMM)

The classical LDDMM framework as explained for example in [2] is a variational
problem : 

min
v∈L2([0,1],V )

J(v) := γ

(∫ 1

0

‖vt‖2V dt
)
+A(ϕ1(C))

∂ϕt
∂t

= vt ◦ ϕt

(11)

where V , the space of deformation is chosen to be a RKHS with kernel KV . In
this article, KV will be a Cauchy kernel, with width σV : KV (x, y) =

1

1+
|x−y|2

σ2
V

.

We can show in the same spirit as [9] (Chap. 1, Prop. 9 and Chap. 5, Prop 34)
that if V ↪→ C30(Rd,Rd), then there exists a minimum for problem (11).

As explained previously, we only consider at the discrete level the deformation
of N points (xi)1≤i≤N in R3 (the vertices of discrete curves). As shown in [9],
if we denote by qi(t) = ϕt(xi) the points trajectories, the optimal vector field
minimizing (11) is necessarily of the form

vt =

N∑
i=1

KV (·, qi(t))pi(t)

where the pi(t) ∈ R3 are called momentum vectors. Further, it was shown in [11]
that the problem can be written in Hamiltonian form and that qi(t) and pi(t)
must satisfy geodesic equations which write

q̇i(t) =

N∑
j=1

KV (qi(t), qj(t))pj(t)

ṗi(t) = −(dqi(t)vt)
∗pi(t).

(12)

Initial positions qi(0) being fixed, we can consider the mapping ϕ and further
functional J as function of the pi(0) only. This property allows to derive an al-
gorithm which optimizes only on these initial momentum vectors, which reduces
significantly the dimensionality of the problem. This algorithm is called geodesic
shooting ([11,1]).
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5 Application to 3D Curve Matching

5.1 Algorithm

We use the shooting algorithm and optimize the functional depending on p0
with a quasi Newton Broyden Fletcher Goldfarb Shanno algorithm with limited
memory (L-BFGS) [10]. The step in the descent direction is fixed by a Wolfe
line search. For the numerical integrations, a Runge-Kutta (4,5) scheme is used
(function ode45 in Matlab). For the normal cycles, the point kernel kp is a
Gaussian kernel, with width σW , and the normal kernel kn is a Sobolev kernel,
associated with the operator L = (I − ∆)2. We used a spherical harmonics
expansion of this kernel truncated at order 5 for the numerical purpose. All the
numerical computations have been done on a laptop using Matlab.

5.2 Numerical Results on Synthetic Data

In this section, we show some of our results on synthetic data and compare them
with the varifolds method and currents method. The point kernel chosen for the
varifolds is a Gaussian kernel, with the same width σW as for normal cycles.
The kernel associated with the Grassmanian is chosen linear (see [4]), so that
no parameter is involved as for the normal kernel with normal cycles. Lastly, a
Gaussian kernel is used as well for currents, again with width σW . The trade-off
parameter γ is fixed for normal cycles : γ = 0.1 (since a factor 1

σ2
W

appears in the
cylindrical scalar product, the balance between the two terms is also modified
with the kernel width σW ). For currents and varifolds, we set the parameter γ
to be consistent with the metric on normal cycles : we set γ = 0.1× σ2

W .

Registrations of branching curves (Fig. 1) The first example of registration is
two 3D curves with branching. These curves were chosen because the distance
between them is large compared to their typical sizes, the curves have some high
local curvature and the size of the corresponding branches implies high local
deformations. Besides, we would like to see the behaviour of normal cycles with
respect to connecting points.

The two curves are enclosed in a cubic box of size one. Both curves have 150
vertices. In Fig. 1, we show two views of a matching using normal cycles, varifolds
and currents. The kernel KV associated to the deformation space is chosen to be
a Cauchy kernel, with width σV = 0.2. Computation time for registration with
currents and varifolds were 37 and 120 seconds respectively. Computations with
normal cycles are more expensive and took 580 seconds.

As we can see in Fig. 1, we get a nearly perfect registration with normal
cycles. The connecting points of the two curves are well matched, as well as
the end points. This is not the case with varifolds and currents, which give less
accurate matchings on this example.
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(a) Normal cycles, view 1 (b) Normal cycles, view 2

(c) Varifolds, view 1 (d) Varifolds, view 2

(e) Currents, view 1 (f) Currents, view 2

Fig. 1: Registration of two 3D curves with different data attachment terms. Initial
curve is in black, target curve in red, and deformed curve in green. Trajectories
of vertices along the flow are displayed in blue. Parameters are σV = 0.2 and
σW = 0.3



Kernel Metrics on Normal Cycles and Application to Curve Matching 117

Registration of fishes contours (Fig. 2) Here a registration between two fishes
contours is performed (see [14] for the original data). Even if they are 2D objects,
we consider them as 3D objects with no z variation. In this example, fishes have
around 100 vertices. A first optimization of the momenta was performed with
parameters σW = 0.75 and σV = 0.2. This can be seen as an initialization step to
avoid local minima. Then minimization was done with σW = 0.2 and σV = 0.2.
Computation time was 310 seconds for normal cycles and 60 seconds for varifolds.
The main difficulty here is the trade off to find between the matching of the long
tail of the stingray (in green in Fig. 2) and the high local curvature in the upper
part of the fish in dark. The results in Fig. 2 show that a perfect matching
with normal cycles can be achieved, even with σW = 0.2 which is quite large
compared to the local feature in the upper part of the fish. With varifolds, one
can see that this local feature still remains in the green matched curve. To avoid
this behaviour, one can decrease the size of σW , but it would lead to a bad
matching of the tail.

−1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a) Normal cycles

−1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b) Varifolds

Fig. 2: Registration of a dark fish to a red fish. In green the dark deformed
fish matching the red one. We used normal cycles and varifolds with the same
parameters σV = 0.2 and σW = 0.2. The registration with currents is worse than
with varifolds.

6 Perspectives

In this article, we have presented the first application of normal cycles in the
context of 3D curve registration. As for currents, a kernel metric is used to
provide a closed form for the distance between two curves, and a numerical
derivation is done for curves approximated by unions of segments. The first re-
sults on synthetic data are promising and suggest that the normal cycles metric
improves matchings between connection points and regions with high curvature.
Of course, wether such a property is desirable in real applications remains an
open debate and highly depends on the type of data in use. Moreover, more ex-
haustive studies on synthetic and real data are necessary to validate the method.
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The next stage will be the registration using normal cycles for surfaces. This case
is more intricate, at least numerically since the decomposition of normal bundle
as seen in Sect. 3 is more complex. We also would like to investigate the link
between varifolds and normal cycles, as we believe that varifolds can be seen in
our context as a projection of normal cycles, by ignoring variation in Sd−1.
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